Exercise sheet 4: Markov processes and regularity properties

version 2: the order of reasoning in exercise 3 has been changed + some minor tweaks

1. MARKOV PROCESSES

Exercise 1 — The Ornstein-Uhlenbeck process.

For $t \in \mathbb{R}$, set $X_t = e^{-t}B_{e^{2t}}$, where B is a Brownian motion.

- (1) Show that X is a continuous Gaussian process, compute its covariance function. For any given t, what is the distribution of X_t ?
- (2) Show that it is X_t Markov process and compute its transition kernel.
- (3) Given some probability measure μ , construct (using *B*) a process with this kernel started from the distribution μ at time 0. What choice of μ gives a stationary process ? Show that independently of μ there is convergence to the stationary distribution.

Exercise 2 - Cauchy process.

Let $(B^{(1)}, B^{(2)})$ be a two-dimensional Brownian motion, and $T_a = \inf\{t \ge 0, B_t^{(1)} \ge a\}$ for $a \ge 0$. Set $C_a = B_{T_a}^{(2)}$.

- (1) Compute the distribution of C_a .
- (2) Show that $(C_{a+.} C_a)$ is independent of \mathcal{F}_{T_a} and distributed like C. Deduce that C is a Markov process and give its transition kernel.
- (3) Is C continuous ?

2. Regularity of B

Exercise 3 — One-sided and two-sided local minima.

A (strict) local minimum of B is a time t for which there exists $\varepsilon > 0$ such that $B_s \leq B_t, s \in [t - \varepsilon, t + \varepsilon]$ ($B_s < B_t, s \in [t - \varepsilon, t + \varepsilon], s \neq t$). A right decrease point is a time t for which there exists $\varepsilon > 0$ such that $B_s \leq B_t, s \in [t, t + \varepsilon]$.

- (1) What is the Lebesgue measure of those points ?
- (2) Show that almost surely there is a density of local minima.
- (3) Show the minimum values of the Brownian motion on two distinct rational intervals are almost surely different.
- (4) Deduce that almost surely, all local minima are strict, with distinct values. Deduce that they are at most countable.
- (5) Show that there is almost surely an uncountable number of right decrease points.

Exercise 4 — Quadratic and absolute variation.

For fixed t, a partition \underline{t} is a finite sequence $0 = t_0 \leq t_1 \leq \ldots \leq t_{\#\underline{t}} = t$ and its mesh-size

is $|\underline{t}| = \max_{1 \le i \le \# \underline{t}} |t_i - t_{i-1}|$. The absolute (resp. quadratic) variation of B between 0 and t is

$$\lim_{\epsilon \to 0} \sup_{|\underline{t}| \le \epsilon} \sum_{i=1}^{\underline{\#}\underline{t}} |B_{t_i} - B_{t_{i-1}}| \qquad \left(\text{resp.} \quad \lim_{\epsilon \to 0} \sup_{|\underline{t}| \le \epsilon} \sum_{i=1}^{\underline{\#}\underline{t}} (B_{t_i} - B_{t_{i-1}})^2 \right)$$

- (1) If $\underline{t}^{(k)}$ is a sequence of partitions with $|\underline{t}^{(k)}| \to 0$, then show that $\lim_{k\to\infty} \sum_{i=1}^{\#\underline{t}^{(k)}} (B_{t_i^{(k)}} B_{t_{i-1}^{(k)}})^2$ exists in the L^2 sense. What is it ?
- (2) If $(\underline{t}^{(k)})_k$ is such that $\sum_{k=1}^{\infty} \sum_{j=1}^{\# \underline{t}^{(k)}} (t_i^{(k)} t_{i-1}^{(k)})^2 < \infty$, then the convergence is almost sure.
- (3) Deduce that the Brownian motion almost surely does not have finite absolute variation (i.e. is not a bounded variation function).