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Brownian Motion and Stochastic Processes E. Jacob & M. Maazoun

Solutions for Exercise sheet 4 : Markov processes and regularity
properties

Solution 1 — The stationary Ornstein-Uhlenbeck process.

Firstly, Cov(X;, X,) = e =5, So at each time t, X; is a standard Gaussian. For the
Markov property, start from the standard filtration F of B. The standard filtration of X
is then ¢t — F.2¢. Then we easily compute

_ 1 (y—e‘sx)z)
P(Xpss € dy | Fiz) = P(e™*z + By_o2: € dy) = exp (Y =C¢ Ty
(i €y | Fon) = B0+ Breeon €)= s oxp (U0

Solution 2 — Cauchy process.

This exercise has been repurposed in exercise session 5, where compute the distribution
through its Fourier transform thanks to a martingale argument. We give here the direct
computation of the density for completeness.

(1) We have C, = Bg) = U(B®,T,) where U(4,t) = ¢ is a measurable (actually
continuous) functional C(R;) x R, — R. Then for some positive measurable H,

E[H(C,)] = E[H(¥(B®),T,))] = /R P(T, € dt) /C(R )P(B(Q) € dp)H(V(o,1))

_ /R P(T, € dt) /C L BB H) = /R P(T, € dt) /R P(B, € du)H(u)

_ /R H(u) ( /R + P(T, dte dt) P <Btdi du)dt) du.

(Fubini has been used several times). Hence the thing inside the parentesis is the
density of C, at u. Let’s compute it

dt

P(C, € du) / P(T, € dt) P(B; € du)
du R dt du
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Solution 3 — One-sided and two-sided local minima.
A (strict) local minimum of B is a time ¢ for which there exists ¢ > 0 such that By <
Biy,s€[t—e,t+¢e| (Bs < Biy,s€et—e, t+e|,s#t). Aright decrease point is a time ¢ for
which there exists ¢ > 0 such that By < By, s € [t,t + ¢].
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(1) We know that almost surely 0 is not an increase point nor a decrease point at its
right. By Markov this is also the case for any given point ¢. But now

E[Leb{t > 0,t special}] = / dt P(t special) = / 0=0
R R

Hence this positive random variable is almost surely 0.

(2) Almost surely a given time ¢ is not a point of increase at its right. By time reversal
s >t is almost surely not a point of incease at its left. Hence the global minimum
of B on [s,t] is reached in the interior (s,t¢), and forms a local minimum. Taking
the countable union for s,t € QQ gives that almost surely a density of local minima
exists.

(3) Let a < b < ¢ < d. Let us consider U = By —miny B, V = B. — By, W =
B. —min. 4 B. By Markov at b, U 1L (V,W). By Markov at ¢, W 1L V. Hence
(U, V,W) forms an independent triple.

Now we have U ~ |By_,|, V ~ Be_p, W ~ |By_.|. All those random variables
admit a density. The event that the two minima coincide is the event {U+V = W},
which then has probaility 0.

(4) Assume the existence of a non-strict local minimum. Then there exists a x and €
such that B, > B, for all y € [z — ¢,z + €¢]. Moreover, for all § > 0, we may find
z € [x — 0,z + J] such that B, = B,. Take such a z for § < e. Then we may find
a,bc, € Q,r—e<a<zxr<b<c<z<d<x+e Then the minimum value
of B on both [a,b] and [c,d] is B,. By the previous question the probability of this
event is 0.

The fact the the set of strict local minima of a function is countable is determin-
istic: each of them is the unique argmin on a rational interval.

(5) For every a € [By,maxjy) B], the time sup{t € [0,1], B, = a} is a right decrease
point. All of them are distinct for distinct a. Hence the uncountability.

Solution 4 — Quadratic and absolute variation. (1) We first try to guess what the L?

limit could be. If we have L? convergence to say X, since L? convergence implies L'
#¢(k)
i=1

convergence, we get that E[X] = lim, E[} 7 (B,w — Byw )?] = limy t = t as we

observe a telescoping series. So E[X] = t and if by any chance X was deterministic?,
we’'d have X =t. Let’s try to show convergence to t. We rewrite

#¢(F) #¢(F)

Ap = Z (Btﬁ'“) B Btﬁ’?l)Z —i= Z (Btﬁ.'“) B Btﬁ’i)l)Q — (" =),

=1 =1

IReasonable because it seems that there could be 0-1 law w.r.t. Lévy construction



Then
(k)

E[AZ] = Var(A4) = Z Var(( t<k) — Btﬁ'i)l)z _ (tl('k) _ t@(ﬁ)l))

#t(k) #¢(F)
= Z (t) — 92 Var(22 — 1) = (est) D (1 —#{7))2 < (est) |t
i=1
which goes to 0. We have moved freely between variance and second moment
because everything is centered, used the independence of increments and the de-
composition of variance over an independent sum, the fact that a standard Gaussian
Z has a fourth moment, and Holder(1, c0) at the end. We have Ay — 0 in L? which
is the claim.
If (¢®)),, is such that >3, Z#‘tl(t —t;-1)? < 00, then we get >, _ . E[AZ] < oc.
For ¢ € Q% we have P(|A;] > ¢) < e—2E[A}] which is summable. So by Borel-
Cantelli, almost surely, for large n, |A;| < e. We invert ” Ve € Q" and ”almost
surely” by countable union and we're done.
If B has bounded variation, then it is not hard to show that the quadratic variation
is 0 (once again Holder(1,00)). But this is a.s. impossible because of the previous
question.



