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Solutions for Exercise sheet 4 : Markov processes and regularity
properties

Solution 1 — The stationary Ornstein-Uhlenbeck process.
Firstly, Cov(Xt, Xs) = e−|t−s|. So at each time t, Xt is a standard Gaussian. For the
Markov property, start from the standard filtration F of B. The standard filtration of X
is then t 7→ Fe2t . Then we easily compute

P(Xt+s ∈ dy | Fe2t) = P(e−sx+B1−e−2s ∈ dy) =
1√

2π(1− e−2s)
exp

(
(y − e−sx)2

2(1− e−2s)

)
dy.

Solution 2 — Cauchy process.
This exercise has been repurposed in exercise session 5, where compute the distribution
through its Fourier transform thanks to a martingale argument. We give here the direct
computation of the density for completeness.

(1) We have Ca = B
(2)
Ta

= Ψ(B(2), Ta) where Ψ(φ, t) = φt is a measurable (actually
continuous) functional C(R+)× R+ → R. Then for some positive measurable H,

E[H(Ca)] = E[H(Ψ(B(2), Ta))] =

∫
R+

P(Ta ∈ dt)
∫
C(R+)

P(B(2) ∈ dφ)H(Ψ(φ, t))

=

∫
R+

P(Ta ∈ dt)
∫
C(R+)

P(B ∈ dφ)H(φt) =

∫
R+

P(Ta ∈ dt)
∫
R
P(Bt ∈ du)H(u)

=

∫
R
H(u)

(∫
R+

P(Ta ∈ dt)
dt

P(Bt ∈ du)

du
dt

)
du.

(Fubini has been used several times). Hence the thing inside the parentesis is the
density of Ca at u. Let’s compute it

P(Ca ∈ du)

du
=

∫
R+

P(Ta ∈ dt)
dt

P(Bt ∈ du)

du
dt

=

∫
R+

a√
2πt3/2

e−a
2/2t 1√

2πt
e−x

2/2tdt =
a

π(x2 + a2)

Solution 3 — One-sided and two-sided local minima.
A (strict) local minimum of B is a time t for which there exists ε > 0 such that Bs ≤
Bt, s ∈ [t− ε, t+ ε] (Bs < Bt, s ∈ [t− ε, t+ ε], s 6= t). A right decrease point is a time t for
which there exists ε > 0 such that Bs < Bt, s ∈ [t, t+ ε].
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(1) We know that almost surely 0 is not an increase point nor a decrease point at its
right. By Markov this is also the case for any given point t. But now

E[Leb{t ≥ 0, t special}] =

∫
R
dtP(t special) =

∫
R

0 = 0

Hence this positive random variable is almost surely 0.
(2) Almost surely a given time t is not a point of increase at its right. By time reversal

s > t is almost surely not a point of incease at its left. Hence the global minimum
of B on [s, t] is reached in the interior (s, t), and forms a local minimum. Taking
the countable union for s, t ∈ Q gives that almost surely a density of local minima
exists.

(3) Let a < b < c < d. Let us consider U = Bb − min[a,b]B, V = Bc − Bb, W =
Bc − min[c,d]B. By Markov at b, U ⊥⊥ (V,W ). By Markov at c, W ⊥⊥ V . Hence
(U, V,W ) forms an independent triple.

Now we have U ∼ |Bb−a|, V ∼ Bc−b, W ∼ |Bd−c|. All those random variables
admit a density. The event that the two minima coincide is the event {U+V = W},
which then has probaility 0.

(4) Assume the existence of a non-strict local minimum. Then there exists a x and ε
such that By ≥ Bx for all y ∈ [x − ε, x + ε]. Moreover, for all δ > 0, we may find
z ∈ [x − δ, x + δ] such that Bz = Bx. Take such a z for δ < ε. Then we may find
a, b, c, q ∈ Q, x − ε < a < x < b < c < z < d < x + ε. Then the minimum value
of B on both [a, b] and [c, d] is Bx. By the previous question the probability of this
event is 0.

The fact the the set of strict local minima of a function is countable is determin-
istic: each of them is the unique argmin on a rational interval.

(5) For every a ∈ [B1,max[0,1]B], the time sup{t ∈ [0, 1], Bt = a} is a right decrease
point. All of them are distinct for distinct a. Hence the uncountability.

Solution 4 — Quadratic and absolute variation. (1) We first try to guess what the L2

limit could be. If we have L2 convergence to say X, since L2 convergence implies L1

convergence, we get that E[X] = limk E[
∑#t(k)

i=1 (B
t
(k)
i
− B

t
(k)
i−1

)2] = limk t = t as we

observe a telescoping series. So E[X] = t and if by any chance X was deterministic1,
we’d have X = t. Let’s try to show convergence to t. We rewrite

Ak =

#t(k)∑
i=1

(B
t
(k)
i
−B

t
(k)
i−1

)2 − t =

#t(k)∑
i=1

(B
t
(k)
i
−B

t
(k)
i−1

)2 − (t
(k)
i − t

(k)
i−1).

1Reasonable because it seems that there could be 0-1 law w.r.t. Lévy construction
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Then

E[A2
k] = Var(Ak) =

#t(k)∑
i=1

Var((B
t
(k)
i
−B

t
(k)
i−1

)2 − (t
(k)
i − t

(k)
i−1))

=

#t(k)∑
i=1

(t
(k)
i − t

(k)
i−1)

2 Var(Z2 − 1) = (cst)

#t(k)∑
i=1

(t
(k)
i − t

(k)
i−1)

2. ≤ (cst) t|t(k)|

which goes to 0. We have moved freely between variance and second moment
because everything is centered, used the independence of increments and the de-
composition of variance over an independent sum, the fact that a standard Gaussian
Z has a fourth moment, and Hölder(1,∞) at the end. We have Ak → 0 in L2 which
is the claim.

(2) If (t(k))k is such that
∑∞

k=1

∑#|t|
j=1(ti − ti−1)2 < ∞, then we get

∑
k=1∞ E[A2

k] < ∞.

For ε ∈ Q∗+ we have P(|Ak| > ε) ≤ ε−2E[A2
k] which is summable. So by Borel-

Cantelli, almost surely, for large n, |Ak| < ε. We invert ” ∀ε ∈ Q∗+” and ”almost
surely” by countable union and we’re done.

(3) If B has bounded variation, then it is not hard to show that the quadratic variation
is 0 (once again Hölder(1,∞)). But this is a.s. impossible because of the previous
question.


