Exercise sheet 5 : Martingales

Exercise 1 — All hypotheses matter.

Find two stopping times S and T with $S \leq T < \infty$ a.s. and $\mathbb{E}[S] < \infty$, such that $\mathbb{E}[B_S^2] > \mathbb{E}[B_T^2]$.

Exercise 2 — Brownian gambler's ruin. For any $c \in \mathbb{R}$, we let

$$T_c := \inf\{t \ge 0 : B_t = c\}$$

be the hitting time of c by $(B_t)_{t\geq 0}$. Let $a, b \in \mathbb{R}$ such that a < 0 < b, we let $T_{a,b} := T_a \wedge T_b$ be the hitting time of $\{a, b\}$ by $(B_t)_{t\geq 0}$.

- 1. Compute $\mathbb{P}(T_{a,b} = T_a)$.
- 2. Compute $\mathbb{E}[T_{a,b}]$.

Exercise 3 — Exponential martingale and computations.

We recall that for every $\lambda \in \mathbb{R}$, the process $(e^{\lambda B_t - t\lambda^2/2})_{t\geq 0}$ is a martingale, called the exponential martingale. We let for any a > 0,

$$T_{a+} := \inf\{t \ge 0 : B_t > a\}$$

- 1. Use the exponential martingale to compute the Laplace transform of the hitting time T_{a^+} of a given level a > 0.
- 2. Let $(B^{(1)}, B^{(2)})$ be a two-dimensional Brownian motion. For every $a \ge 0$, we let

$$C_a := B_{T_{a^+}^{(1)}}^{(2)}.$$

- (a) Show that for any b > 0, the process $(C_{b+a} C_b)_{a\geq 0}$ is independent of $\mathcal{F}_{T_{b+}}$ and has the same law as $(C_a)_{a\geq 0}$. Deduce that $(C_a)_{a\geq 0}$ is a Markov process and give its transition kernel.
- (b) Is $(C_a)_{a\geq 0}$ continuous?
- (c) Show that $(C_a)_{a>0}$ is self-similar for an exponent that you will specify
- (d) Show that $(e^{\lambda(B_t^{(1)}+iB_t^{(2)})})_{t\geq 0}$ is a complex martingale, and deduce the characteristic function of C_a for a > 0 fixed.

A random process with such stationary increments and with such marginals is called a Cauchy process (the marginals are actually Cauchy distributed)

3. Show that if $(X_t)_{t\geq 0}$ is a process such that for any $\lambda \in \mathbb{R}$, $(e^{\lambda X_t - t\lambda^2/2})_{t\geq 0}$ is a continuous martingale, then $(X_t)_{t\geq 0}$ is a Brownian motion.

Exercise 4 — *Hitting time of a line.* Let $a, b \ge 0$ and $T = \inf\{t \ge 0, B_t = at + b\}$. Compute $\mathbb{P}(T < \infty)$.

Exercise 5 — Martingales derived from B.

Show that $(B_t^2 - t)_{t\geq 0}$ and $(B_t^3 - 3tB_t)_{t\geq 0}$ are martingales. Guess the other ones.