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Solutions for Exercise sheet 5: Martingales

Solution 1 — All hypotheses matter.
Take S = 3 and T to be the first zero after 3. Of course the problem is that E[T ] =∞.

Solution 2 — Brownian gambler’s ruin.
Let a < 0 < b and T be the hitting time of {a, b}.

(1) Let p = P{T = Ta}. We can apply the optional stopping theorem to B at T since
|Bt∧T | < |a| ∨ b < ∞. Hence 0 = E[BT ] = ap + (1 − p)b. Solving for p yields
p = b/(b− a).

(2) Look at the martingale B2
t∧T − (t ∧ T ) at t. By the martingale property we have

E[B2
t∧T ] = E[t ∧ T ].

We apply the dominated convergence theorem at the left and the monotone con-
vergence theorem at the right. We get E[B2

T ] = E[T ] hence E[T ] = |a|b.
Alternatively we may show that T is integrable to apply Wald’s second lemma.

Here’s a way to do it by comparison with a geometric variable.
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The probability inside depends on x and we need to bound it unifomly for x ∈
[−1, 1]. But it is clearly bounded by α = P(max[0,1] |B| < 2), which is < 1. Hence
P(T ≥ n) ≤ αn and T is integrable.

Solution 3 — Exponential martingale and computations.
We recall that for every λ ∈ R, the process eλBt−tλ2/2 is a martingale, called the exponential
martingale.
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(1) Let a, λ > 0 and Xt = eλBt−tλ2/2. Then |Xt∧T | ≤ eλa. So the optional stopping

theorem applies and 1 = E[XT ] = eλa−Tλ
2/2. Setting λ2/2 = µ, we get E[e−µT ] =

e−
√
2µ.

(2) (a) Let B = (B(1), B(2)). We have that (Ca+· − Ca) is constructed from B
T

(1)
a++· −

B
T

(1)
a+

the same way C is constructed from B. Hence by the strong Markov

property of B, (Ca+· − Ca)
d
= C, and (Ca+· − Ca) ⊥⊥ FT (1)

a+
⊃ σ(Cu, u ≤ a). As

a result the Markov transition kernel is

νt(x, dy) = P(x+ Ct ∈ dy).

(b) C is càdlàg because T·+ is. By independence of B(1) and B(2) it jumps almost
surely when T·+ jumps.

(c) Set Xt = eλ(B
(1)
t +iB

(2)
t ). We compute by Fubini E[Xt] = eλ

2t/2e−λ
2t/2 = 1.

This plus the independent increments give that X is a complex martingale.

Moreover |X
t∧T (1)

a+
| = exp(λB

(1)

T
(1)
a+

) ≤ eλa. Hence the optional stopping theorem

applies and

1 = E[X
T

(1)
a+

] = E[eiλ(−ia+Ca)] = eλa E[eiλCa ].

Hence E[eiλCa ] = e−λa for λ ≥ 0. For negative λ we use the fact that Ca
d
= −Ca,

and finally get E[eiλCa ] = e−|λ|a

(3) These hypotheses imply that E[eλ(Xt+s−Xt) | Ft] = e−sλ
2/2. So almost surely for

every λ ∈ Q,∫
eλx P((Xt+s −Xt) ∈ dx | Ft) =

∫
eλx P(Bs ∈ dx)

Hence by injectivity of the moment-generating function, almost surely P((Xt+s −
Xt) ∈ dx | Ft) = P(Bs ∈ dx), which is exactly to say that (Xt+s−Xt) is a Gaussian
of variance s, independent of Ft. This characterizes the Brownian motion.

Solution 4 — Hitting time of a line.
Let Xt = e2aBt−2a2t be the exponential martingale with λ = 2a. For n ≥ 0, Xt∧T is trivially
bounded by e2ab <∞, and the optional stopping theorem applied to n ∧ T gives

1 = E[XT∧n] = E[XT 1T<n] + E[Xn 1n≤T ]

As n→∞, the first term goes to E[XT 1T<∞] by monotone convergence. The integrand in
the second term is bounded by e2ab <∞, and goes to 0 almost surely, since Bt = o(t) almost
surely. So by dominated convergence the expectation goes to 0. We get 1 = E[XT 1T<∞] =
E[e2ab 1t<∞] so P(T <∞) = e−2ab.

Solution 5 — Martingales derived from B.
Those martingales are the derivative w.r.t λ of the exponential martingale.


