Solutions for Exercise sheet 5: Martingales

Solution 1 - All hypotheses matter.

Take S = 3 and T to be the first zero after 3. Of course the problem is that $\mathbb{E}[T] = \infty$.

Solution 2 — Brownian gambler's ruin.

Let a < 0 < b and T be the hitting time of $\{a, b\}$.

- (1) Let $p = \mathbb{P}\{T = T_a\}$. We can apply the optional stopping theorem to B at T since $|B_{t\wedge T}| < |a| \lor b < \infty$. Hence $0 = \mathbb{E}[B_T] = ap + (1-p)b$. Solving for p yields p = b/(b-a).
- (2) Look at the martingale $B_{t\wedge T}^2 (t \wedge T)$ at t. By the martingale property we have

$$\mathbb{E}[B^2_{t\wedge T}] = \mathbb{E}[t \wedge T].$$

We apply the dominated convergence theorem at the left and the monotone convergence theorem at the right. We get $\mathbb{E}[B_T^2] = \mathbb{E}[T]$ hence $\mathbb{E}[T] = |a|b$.

Alternatively we may show that T is integrable to apply Wald's second lemma. Here's a way to do it by comparison with a geometric variable.

$$\begin{split} \mathbb{P}(T \ge n) &= \prod_{k=0}^{n-1} \mathbb{P}(T \ge k+1 \mid T \ge k) \\ &= \prod_{k=0}^{n-1} \mathbb{E}\left(\frac{\mathbbm{1}[T \ge k]}{\mathbb{P}(T \ge k)} \mathbb{E}\left(\mathbbm{1}[T \ge k+1] \mid \mathcal{F}_k\right)\right) \\ &= \prod_{k=0}^{n-1} \mathbb{E}\left(\frac{\mathbbm{1}[T \ge k]}{\mathbb{P}(T \ge k)} \mathbb{E}\left(\mathbbm{1}\left[\max_{[0,1]} B^{(k)} < 1 - B_k \text{ and } \min_{[0,1]} B^{(k)} > -1 + B_k\right] \mid \mathcal{F}_k\right)\right) \\ &= \prod_{k=0}^{n-1} \mathbb{E}\left(\frac{\mathbbm{1}[T \ge k]}{\mathbb{P}(T \ge k)} \mathbb{P}\left(\max_{[0,1]} B < 1 - x \text{ and } \min_{[0,1]} B > -1 + x\right)_{x=B_k}\right) \end{split}$$

The probability inside depends on x and we need to bound it uniformly for $x \in [-1, 1]$. But it is clearly bounded by $\alpha = \mathbb{P}(\max_{[0,1]} |B| < 2)$, which is < 1. Hence $\mathbb{P}(T \ge n) \le \alpha^n$ and T is integrable.

Solution 3 — Exponential martingale and computations.

We recall that for every $\lambda \in \mathbb{R}$, the process $e^{\lambda B_t - t\lambda^2/2}$ is a martingale, called the exponential martingale.

- (1) Let $a, \lambda > 0$ and $X_t = e^{\lambda B_t t\lambda^2/2}$. Then $|X_{t \wedge T}| \leq e^{\lambda a}$. So the optional stopping theorem applies and $1 = \mathbb{E}[X_T] = e^{\lambda a T\lambda^2/2}$. Setting $\lambda^2/2 = \mu$, we get $\mathbb{E}[e^{-\mu T}] = e^{-\sqrt{2\mu}}$.
- (2) (a) Let $B = (B^{(1)}, B^{(2)})$. We have that $(C_{a+\cdot} C_a)$ is constructed from $B_{T_{a+}^{(1)}+\cdot} B_{T_{a+}^{(1)}}$ the same way C is constructed from B. Hence by the strong Markov property of B, $(C_{a+\cdot} C_a) \stackrel{d}{=} C$, and $(C_{a+\cdot} C_a) \perp \mathcal{F}_{T_{a+}^{(1)}} \supset \sigma(C_u, u \leq a)$. As a result the Markov transition kernel is

$$\nu_t(x, dy) = \mathbb{P}(x + C_t \in dy).$$

- (b) C is càdlàg because $T_{.+}$ is. By independence of $B^{(1)}$ and $B^{(2)}$ it jumps almost surely when $T_{.+}$ jumps.
- (c) Set $X_t = e^{\lambda(B_t^{(1)} + iB_t^{(2)})}$. We compute by Fubini $\mathbb{E}[X_t] = e^{\lambda^2 t/2} e^{-\lambda^2 t/2} = 1$. This plus the independent increments give that X is a complex martingale. Moreover $|X_{t \wedge T_{a+}^{(1)}}| = \exp(\lambda B_{T_{a+}^{(1)}}^{(1)}) \leq e^{\lambda a}$. Hence the optional stopping theorem applies and

$$1 = \mathbb{E}[X_{T_{a_+}^{(1)}}] = \mathbb{E}[e^{i\lambda(-ia+C_a)}] = e^{\lambda a} \mathbb{E}[e^{i\lambda C_a}].$$

Hence $\mathbb{E}[e^{i\lambda C_a}] = e^{-\lambda a}$ for $\lambda \ge 0$. For negative λ we use the fact that $C_a \stackrel{d}{=} -C_a$, and finally get $\mathbb{E}[e^{i\lambda C_a}] = e^{-|\lambda|a}$

(3) These hypotheses imply that $\mathbb{E}[e^{\lambda(X_{t+s}-X_t)} \mid \mathcal{F}_t] = e^{-s\lambda^2/2}$. So almost surely for every $\lambda \in \mathbb{Q}$,

$$\int e^{\lambda x} \mathbb{P}((X_{t+s} - X_t) \in dx \mid \mathcal{F}_t) = \int e^{\lambda x} \mathbb{P}(B_s \in dx)$$

Hence by injectivity of the moment-generating function, almost surely $\mathbb{P}((X_{t+s} - X_t) \in dx \mid \mathcal{F}_t) = \mathbb{P}(B_s \in dx)$, which is exactly to say that $(X_{t+s} - X_t)$ is a Gaussian of variance s, independent of \mathcal{F}_t . This characterizes the Brownian motion.

Solution 4 — *Hitting time of a line*.

Let $X_t = e^{2aB_t - 2a^2t}$ be the exponential martingale with $\lambda = 2a$. For $n \ge 0$, $X_{t \wedge T}$ is trivially bounded by $e^{2ab} < \infty$, and the optional stopping theorem applied to $n \wedge T$ gives

 $1 = \mathbb{E}[X_{T \wedge n}] = \mathbb{E}[X_T \mathbb{1}_{T < n}] + \mathbb{E}[X_n \mathbb{1}_{n \le T}]$

As $n \to \infty$, the first term goes to $\mathbb{E}[X_T \mathbb{1}_{T < \infty}]$ by monotone convergence. The integrand in the second term is bounded by $e^{2ab} < \infty$, and goes to 0 almost surely, since $B_t = o(t)$ almost surely. So by dominated convergence the expectation goes to 0. We get $1 = \mathbb{E}[X_T \mathbb{1}_{T < \infty}] = \mathbb{E}[e^{2ab} \mathbb{1}_{t < \infty}]$ so $\mathbb{P}(T < \infty) = e^{-2ab}$.

Solution 5 — Martingales derived from B.

Those martingales are the derivative w.r.t λ of the exponential martingale.