Exercise sheet 6: Some more martingales & Donsker's invariance principle

Exercise 1 — A weaker condition for the first Wald's lemma. We wish to show that when T is a stopping time with $\mathbb{E}[T^{1/2}] < \infty$, Wald's lemma still

applies and $\mathbb{E}[B_T] = 0$

- (1) Define $\tau := \min\{k : 4^k \ge T\}$. Set $M(t) := \max_{[0,t]} B$ and $X_k := M(4^k) 2^{k+2}$. Show that (X_k) is a supermarkingale for the filtration $(\mathcal{F}_{4^k})_k$, and that τ is a stopping time.
- (2) Show that $\mathbb{E}[M(4^{\tau})] < \infty$ and conclude.
- (3) Show that when T is the hitting time of 1, then $\mathbb{E}[T^{\alpha}] < \infty$ for all $\alpha < 1/2$, yielding that our result is in some sense optimal.

Exercise 2—An application of Donsker's invariance principle.

Let *B* be a standard Brownian motion on [0, 1], and $D = \sup\{t \in [0, 1], B_t = 0\}$ and \tilde{B} be *B* reflected at *D* (i.e. $\tilde{B}_t = B_t \mathbb{1}_{t < D} - B_t \mathbb{1}_{t \geq D}$). Show that \tilde{B} is distributed like *B*. Same question for the process reflected at $E = \inf\{t \in [0, 1], B_t = B_1\}$.

Exercise 3 — *First arcsine law.*

The goal of this exercise is to find the distribution of $P = \text{Leb}\{t \in [0, 1], B_t \ge 0\}$.

- (1) Let $n \ge 1$ and (X_1^n, \ldots, X_n^n) be independent Rademacher steps. Set $S_0^n = 0$ and $S_k^n = S_{k-1}^n + X_k$ inductively for $1 \le k \le n$. Let $Y^n = (Y_1^n, \ldots, Y_n^n)$ be constructed by taking the X_k^n for which $S_k > 0$ in decreasing order, then the Y_k^n for which $S_k^n \le 0$ in increasing order. Show that $X^n \stackrel{d}{=} Y^n$ (Hint: draw a picture).
- (2) Let \mathbb{R}^n be the walk associated with Y^n . Show that

$$A_n := \#\{k \in [\![1,n]\!] : S_k^n > 0\} = \inf\{k \in [\![0,n]\!] : R_k^n = \max_{j \in [\![0,n]\!]} R_j^n\} =: B_n$$

- (3) Show that B_n/n converges in distribution to $\inf\{t \in [0, 1], B_t = \max_{[0,1]} B\}$. You can use the fact that almost surely the maximum of B on some closed interval is reached at a unique point (Mörters-Peres Thm. 2.11)
- (4) Deduce that P is arcsine distributed.

Exercise 4 — Convergence in distribution of random continuous functions.

The criterion you were given in class for convergence in $\mathcal{C}(\mathbb{R}_+)$ is a consequence of the following celebrated theorem that gives a compactness criterion for narrow convergence of probability measures:

Theorem (Prokhorov). Let $(\mu_n)_n$ be a sequence of probability measures on a Polish (complete metric separable) space E. Suppose that it is tight, i.e. for every $\epsilon > 0$ there exists a compact K_{ϵ} such that for every n, $\mu_n(E \setminus K_{\epsilon}) < \epsilon$. Then μ_n admits a narrowly convergent subsequence.

Recall that we say that $\mu_n \to \mu$ narrowly if $\mu_n f \to \mu f$ for every $f \in \mathcal{C}_b(E)$, and vaguely if $\mu_n f \to \mu f$ for every $f \in \mathcal{C}_c(E)$ (continuous with compact support). We will first prove Prokhorov's theorem then deduce the criterion.

- (1) (a) $E = \mathbb{R}^d$, show that every sequence of probability measures admits a vaguely convergent subsequence (use standard functional analysis theorems).
 - (b) Deduce Prokhorov's theorem in the case $E = \mathbb{R}^d$ (using the fact that $\mu_n \to \mu$ narrowly $\iff (\mu_n \to \mu \text{ vaguely and } \mu(E) = 1)$).
 - (c) Use a diagonal argument to show that it is still the case when $E = \mathbb{R}^{\mathbb{N}}$ (you need to use Kolmogorov's extension theorem, which states that given a collection of probability measures $(\pi_I)_{I \subset \mathbb{N}}$ finite with the compatibility condition $(\operatorname{proj}_J)_*\pi_I = \pi_J$ for every $J \subset I$, then there exists a probability measure π on $\mathbb{R}^{\mathbb{N}}$ with $(\operatorname{proj}_I)_*\pi = \pi_I$ for every I).
 - (d) Show it for a general E, by first showing that E is then homeomorphic to a subset of $[0, 1]^{\mathbb{N}}$.
- (2) Let $X^{(n)}$ be a sequence of random variables in $\mathcal{C}(\mathbb{R}_+)$ such that
 - (a) $\sup_{n} \mathbb{P}(|X^{(n)}(0)| > M) \xrightarrow[M \to \infty]{} 0$
 - (b) for every $\eta > 0, T > 0$, we have $\sup_n \mathbb{P}(m_{[0,T]}(X^{(n)}, \delta) > \eta) \xrightarrow{\delta \to 0} 0$
 - Show that the sequence of the distributions of the $X^{(n)}$ for $n \in \mathbb{N}$ is tight.
- (3) Show that if we have conditions (a) and (b) above, and furthermore the f.d.m.s of $X^{(n)}$ converge to the f.d.m.s of X, then $X^{(n)} \to X$ in distribution.

Remark 1: Prokhorov's theorem, along with question (2) and (3), all admit a converse. Remark 2: If you don't like functional analysis, the vague sequential compactness property can be proved in \mathbb{R} (and even in \mathbb{R}^d) by showing that the cumulative distribution functions admit a convergent subsequence in the sense of convergence at limit continuity points (this is Helly's selection theorem)