ENS de Lyon — Math Department Master 1 — Spring 2019
Brownian Motion and Stochastic Processes E. Jacob & M. Maazoun

Solutions for Exercise sheet 6: Some more martingales &
Donsker’s theorem

Solution 1 — A weaker condition for the first Wald’s lemma. (1) Define 7 := min{k :
4k > T}, Set M(t) := maxjyy B and

E[Xip1 — X | Fae] = E[M (45 — M(4%) | Fue] — 4 x 28,

Since we know that almost surely M (4**1) — M(4%) < |Byu+1 — By| which is
independent of Fy and distributed like |Byr+1_4x|, then

E[Xpi1 — Xi | Fur] < E[|Bypsr_ge|] — 4 x 28 = /3 x 4*E[|By|] — 4 x 2*.

A simple application of Cauchy-Schwarz or Jensen gives E[| B[] < \/E[|B1|?] = 1,
and the expectation above is bounded by 0.

If we consider 7, we have the equality of events {7 < k} = {4¥ > T}, which
belongs to Fux. So 7 is a (Fyr )g-stopping time.

(2) Let n > 0. E[M (4" A4")] = E[X ] +E[27""+2] < E[X,] +8 E[T"/?], where we have
used the supermartingale property at the bounded stopping time 7 An and the fact
that 47 < 4T. By monotone convergence M (47) is integrable so maxy 71 B < M (47)
too. By reversal, —miny ) B is integrable also, and this provides an integrable
random variable that bounds B;,r for every ¢t. So the optional stopping theorem
applies and E[Br| = 0.

(3) If @ < 1/2, then t® x t=3/2¢71/(% is o(e~/(?)) (s0 it’s integrable) near 0, and is
O(t~1=(1/2-9)) near infinity, so is integrable too.

Solution 2 — An application of Donsker’s invariance principle.
Let @ : C([0,1]) — C(]0,1]) that reflects a continuous function after its last 0. Let S, :
[0,1] — R be a properly rescaled and linearly interpolated simple random walk, so that

S, % B in C([0,1]). Since flipping a length n random-walk at its last zero is a bijective

(involutive!) operation on the finite set of n-length random walks, we get that ®(S,,) 4 Shp.

Now if we had ®(S,,) KN ®(B), we would get ®(B) 2 B. To that end we need to show
that B is a continuity point of ®. Denote by Z(f) the position of the last zero of f, and
U={f:Z(f) <1and Z(f) is not a local extremum of f}.

e [f f €U then f is a continuity point of Z. For f € U we may find £ > 0 such that
F(Z(f) = ) (Z(F) +2) < 0. Let 0 <8 < [f(Z(f) = £)| Ainfizgsyrey |f]. Then if
If —gll <0, then Z(f) € (Z(f) —e,Z(f) +¢) (draw a picture!)

o Almost surely B € U. We have shown in previous exercise sessions that almost

surely local extrema are strict, and the minimum (resp. maximum) on a rational
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interval has an absolutely continuous distribution. Hence almost surely no local
extremum of B has value 0. This implies that B € U almost surely.

o If f is a continuity point of Z, then it is a continuity point of ®. Let f be a
continuity point of Z and f,, — f in C([0,1]). Then for x € [0, 1],

[@(fn) (@) = () ()] < [fulx) = f(2)| La(z) + | fulz) + f(2)] 1 g0 ()

Where A denotes the set of x such that ”"Z(f,) and Z(f) are on the same side
of 7. But now if z € A®, z is a distance at most |Z(f,) — Z(f)| of Z(f). So

|f@)| = [f(@) = fF(ZU)] < myoy(f, 1Z(f) = Z(fa)]). Moreover, |fu(x) — f(z)] is
always bounded by || f, — f||. We get

[(fn)(2) = ©(f)(2)] < [fulz) = f(@)[ Lal2) + | fulx) = f(2)[ D e(2) + 2[f (2)[ T 40()
< o = Fll+ fn = £+ 2mp g (f, 1Z2(f) = Z(fa)])

We know, since f is continuous and a continuity point of Z, that this last quantity
goes to 0. Since the bound is independent of z, we have shown ®(f,,) — ®(f) in
c([o,1)).

Solution 3 — First arcsine law. (1) Understand that this gives a bijective transforma-
tion of the set of length-n walks is tedious to write but can be explained with a
picture. Exercise: draw this picture.

(2) Easily seen on the picture above.

(3) Using the fact mentioned, you only need to show that the functional ® : C([0, 1]) —
0,1], ®(f) = inf{t € [0, 1], f(t) = max(oy) [}, is continuous at every f that reaches
its maximum at a unique point. Indeed B,/n = ®(t — %Rgt) (understood as

being suitably interpolated), and Donsker’s theorem says that (%Rﬁt)t — B in
distribution.
Let f be a function that reaches its maximum at a unique point m € [0, 1], and
fn — f. Let € > 0. By continuity and compactness, the maximum of f on
[0, m—e]U[m+e, 1] is reached in some point y # m, and by assumption f(y) < f(m).
Hence we can find n be such that f(m) — MaXyg(m—em+e) Jn > 21. Then for n
such that [|f, — f|| < n, we have that f,(m) > maxX,¢@m—cmte) fo- S0 P(fn) €
(m—¢e,m+¢€), and |P(f,) — P(f)| < e. This shows continuity.
So B, /n — ®(B) which is arcsine distributed.

(4) We can show that A, /n is equal to Leb{t € [0, 1], \/LESZ& > ﬁ} (Once again %Sﬁt
is understood as being suitably interpolated). Let now define ®(f) = Leb{t €
[0,1], f(t) > 0}. We have A,/n = @((%S” - ﬁﬁ)t By Slutsky’s lemma and

n nt
Donsker’s invariance principle, we have (\/LH " — ﬁ)t — B, and showing that B

almost surely is a continuity point of ® suffices to get A, /n 4 p= o(B).
Now suppose that f is such that Leb{t : | f(t)| < €} — 0. Then f is a continuity
e—

point of ®. Indeed if f, — f, fix € > 0. Then for n large enough, ||f, — f| < e.
Then |®(f) — ®(f,)] < Leb{t € [0,1] : f.(¢t)f(t) < 0}. But f,(¢t)f(t) < 0 implies
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|f(®)] < e So |P(f)— @(fn)| < Leb{t: |f(t)| < €}, which could have been taken
arbitrarily close to 0 by choosing e small enough. So ®(f,,) — ®(f).
We are left to show that almost surely, U, := Leb{t : |B;| < €} - 0. But
e—>

E[U] = follP’(—e/\/f < By < ¢/Vt)dt < \/22%[01 dt/vt < e. So U, goes to 0 in

L', hence almost surely there exists a subsequence of € that goes to 0 along which
U. — 0, but as almost surely € — U, is decreasing, we get U — 0.
So B,/n = A,/n — P and P is arcsine-distributed.

Solution 4 — Convergence in distribution of random continuous functions. (1) (a) You
know that the measure u, gives you a continuous linear form f, on the set
C.(E), of norm 1. Banach-Alaoglu’s theorem tells you that you can extract
a weak-x-convergent subsequence f,, — f € Bc,(gy(0,1), ie. such that
fa,(®) = f(@) for every ¢ € C.(F). Now f is positive (since for ¢ > 0,
f(o) = lim, f,, (¢) = lim, g, ¢ > 0, so by Riesz’ representation theorem, it
can be represented by a positive Borel measure 1, and we precisely have vague
convergence i, — p.

(b) The fact that (u, — p narrowly) <= (u, — p vaguely and u(E) = 1)

is standard and the proof is rather easy (relies only on the fact that RY is
o-compact).
Now suppose a tight sequence pu,,. It admits a vaguely convergent subsequence
Ha, — p. Now we only need to show that p(E) = 1. For every € > 0, we
can find K, so that u,(K.) > 1 — € for every n. Then we can find a function
¢ € Co(F) with 1, < ¢ < 1. We get pu(F) > po = limy, g, ¢ > 1 —€. So
u(E) =1.

(c) If (u,) is tight in RY, then it is a simple matter that the sequences of f.d.m’s
(proj;, tin)n, which are sequences of probability measures on R#/ are tight
too. So by diagonal extraction, we can find a,, and p; for each finite I so that
Proj;, fta, — f¢r narrowly. When J C I, we have

pI'Oj J*projl*:uan = pI'Oj JxMan -

The left-hand side goes to proj;, p; by continuous mapping. The right-hand
side goes to py. Hence the family of probability measures pu; verifies the
consistency condition proj;, pur = py. So there exists a probability measure
pon RN, with proj; i = p; = lim proj; pia, for every I finite. Remark that this
implies narrow convergence g, — p. Indeed we metrize RY by the distance
d(z,y) = >, 27" Y|z, — yn| A 1). For a fixed k and z € RY, the distance
between z and ¢y (x) = (21,...,2,,0,0,0,...) is less than 27%. But the finite
dimensional convergence entails that ¢p, i, — ¢p.pu. Now for h € C.(RY),
we get |drtinh — pnh| = |n(h o ¢p — h)| < m(h,27%). Similarly, |dg,puh —
ph| < m(h,27%). Since k is arbitrary, this implies pu,h — ph hence vague
convergence. And since p is a probability measure, the convergence is narrow.
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(d) Every Polish space E is homeomorphic to S C [0, 1]N through (z) = (d(z, u;)A
1,d(x,u3) A 1,...), where (u;); is a dense sequence. If (u,), € P(E)N is
tight, then ¢, u, is too, hence we can find a sequence a, and a probability
measure 7 on RY such that o,u,, — 7. Now we just need to check that
7 is supported by S, i.e w(S) = 1. But if we look at K., we have that
7(S) > 7w(e(K.)) > lim, u,(K.) > 1 —¢€ So w(S) = 1. Now we take
i = (¢p_1)«m, and p is a probability measure on FE that appears as a sub-
limit of p,,.

Let X™ be a sequence of random variables in C(R. ) such that

(a) sup, P(IX(0)] > M) —— 0

(b) for every n > 0, T > 0, we have sup, P(mj7(X™,8) > n) 7 0

Let € > 0. Let M be such that P(|X™| > M) < €/2. For every k > 1, m > 1 let
0kp > 0 be such that

sup P(m[07p}(X(”), Okp) > Q_k) < €9 k—m=100,

Then for every n, with probability over 1 —¢, we have that X ™ belongs to the set of
functions f such that |f(0)] < M and for every m > 1,k > 1, myop(f, o) < 275
This set is relatively compact thanks to Arzela-Ascoli’s theorem and a diagonal ar-
gument. So for every €, we found a compact set that contains X ™ with probability
over 1 — e and tightness is proved.

If (X™), is tight and f.d.m’s converge to those of X, then fix a subsequence a,.
By tightness and Prokhorov’s theorem you can find a further subsequence a;, and
Y so that X(®) — Y in distribution. Now by continuous mapping, the f.d.m’s of
X (@) converge to those of Y. But they also converge to those of X by assumption.

So the f.d.m’s of X and Y are equal, and X 2 Y. We have shown that for

every subsequence a further subsequence exists on which X(™ — X, proving full
convergence.



