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Solutions for Exercise sheet 7: Donsker’s invariance principle
(v3)

version 3: typo fixed thanks to Romain Durand!

Solution 1 — Recurrence and Donsker.
We cancelled this exercise but might come back to it later.

Solution 2 — Skorokhod’s embedding.
To be updated. Let X be a centered random variable with variance 1.

(1) This is done by repetetively applying Skorokhod’s embedding and the strong Markov
property.

(2) The strong LLN tells us that almost surely, for every t ∈ Q, φn(t)→ t as n→∞.
Then Dini’s theorem gives that φn converges to the identity uniformly on every
compact.

(3) Denote Bn : t 7→ n−1/2Bnt. Remark that all Bn are Brownian motions. Now if

t is a multiple of 1/n, S̃nt = n−1/2Snt = n−1/2Bnn−1Tbntc = Bn(φn(t)). Then for

0 ≤ t ≤ T , there is u ∈ [0, T ] ∩ n−1Z, |u− t| < 1/n. As a result,

|S̃nt −Bn
t | ≤ |S̃nu −Bn

u |+ |S̃nu − S̃nt |+ |Bn
u −Bn

t |
≤ |Bn ◦ φn(u)−Bn

u |+ n−1/2|Xnu|+ |Bn
u −Bn

t |

Taking the sup,

‖S̃n −Bn‖[0,T ] ≤ m2T (Bn, ‖φn − id‖[0,T ]) +∞1‖φn−id‖>1 +n−1/2 sup
1≤i≤nT

Xi +mT (Bn, n−1),

and each term indeed goes to 0 in probability. For the third one, thanks to the
second moment hypothesis, we have by Chebychev’s inequality P(X > εn1/2) =
o(n).

(4) We have Bn → B in distribution (actually the distribution is constant!) and

d(S̃n, Bn)→ 0 in probability. Then a classic generalization of Slutsky’s lemma tells

us that S̃n → B in distribution.

Solution 3 — Donsker’s theorem for bridges.
In this exercise, let b(n, p, k) denothe the probability that a binomial of parameters (n, p)
equals k, and f denote the standard Gaussian density. We will make use of the following
local limit theorem, which is a refinement of the central limit theorem.
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Theorem. (De Moivre–Laplace) As n→∞,

sup
k∈Z

∣∣∣∣∣√p(1− p)nb(n, p, k)− f

(
k − np√
p(1− p)n

)∣∣∣∣∣ = o(n−1/2).

Recall (a few sessions back) that the Brownian bridge β (from 0 to 0) has the following
property: for every integrable function H and ε > 0,

E
[
H(β|[0,1−ε])

]
= E

[
H(B|[0,1−ε])

ε−1/2f(B1−ε)

f(0)

]
.

Define the simple random walk S and its interpolated and rescaled version S̃n. Our goal is

to show that the distribution of S̃2n given that it is a bridge (i.e. S̃2n
2n = 0), converges

to that of β as n→∞.

(1) For j0, j1, . . . , j2kn fixed integers,

P(S0 = j0, . . . , S2kn = j2kn | S2n = 0)

=
P(S0 = j0, . . . , S2kn = j2kn)P(S2n = 0 | S0 = j0, . . . , S2kn = j2kn)

P(S2n = 0)

= P(S0 = j0, . . . , S2kn = j2kn)
P(S2n = 0 | S2kn = j2kn)

P(S2n = 0)

= P(S0 = j0, . . . , S2kn = j2kn)
b(1

2
, 2n− 2kn, n− kn +

j2kn
2
S̃kn/n)

b(1
2
, 2n, n)

Now since H(S̃2n
|[0,kn/n]) is a deterministic function of S0, . . . S2kn , we get the de-

sired result.
(2) It is clear that the central binomial coefficient bounds all the others. Hence the

bound of An by b(1
2
, 2n − 2kn, n − kn)/b(1

2
, 2n, n). By de Moivre-Laplace, this

sequence converges to f(0)√
εf(0)

so is bounded uniformly in n (by Cε, say). Then for

s, t with |s − t| < 1/2, we can without loss of generality assume that s < t < 3/4

(otherwise reverse everything). Then E[|S̃2n
t − S̃2n

s |4 | S̃2n = 0] ≤ C3/4 E[|S̃2n
t −

S̃2n
s |4]. You know from the proof of Donsker’s theorem that this E[|S̃2n

t − S̃2n
s |4 is

bounded by c|s− t|1+γ with c, γ > 0. We get

∀s, t, |t− s| < 1/2, E[|S̃2n
t − S̃2n

s |4 | S̃2n = 0] ≤ C3/4c|t− s|1+γ

If |t − s| ≥ 1/2, then E[|S̃2n
t − S̃2n

s |4 | S̃2n = 0] is uniformly bounded, (by the L4

triangle inequality we can reuse the case |t−s| < 1/2, and bound by some constant
D independent of n, t− s). Hence we get

∀s, t, E[|S̃2n
t − S̃2n

s |4 | S̃2n = 0] ≤ D21+γC3/4c|t− s|1+γ

proving a tightness bound for the random walk under the conditioned measure.
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(3) From now on we suppose kn/n = 1 − ε + o(1/n), for instance by taking kn =
n−1bn(1− ε)c.

An =
b(1

2
, 2n− 2kn, n− kn +

√
2n
2
S̃kn/n)

b(1
2
, 2n, n)

=
1√

1− kn
n

√
2n− 2k b(1

2
, 2n− 2kn, n− kn +

√
2n
2
S̃kn/n)

√
2n b(1

2
, 2n, n)

= (ε−1/2 + o(n−1))
f
(√

2n
2
S̃2n
kn/n
· 2√

2n−2kn

)
+ o(n−1/2)

f(0) + o(n−1/2)
=
ε−1/2f(ε−1/2S̃2n

kn/n
)

f(0)
+ o(n−1/2)

Consider some f.d.m. Without loss of generality we can always assume that it
contains 1. Hence set 0 ≤ t1 < . . . < tr = 1 and G : Rr → R continuous with
compact support. Take ε such that 1− ε > tr−1 Now consider only n large enough
so that kn/n > tr−1. where H is some continuous functional. Hence we can use
question 2. Thus

E[G(S̃2n
t1
, . . . , S̃2n

tr ) | S̃2n = 0]

= E[G(S̃2n
t1
, . . . , S̃2n

tr−1
, 0) | S̃2n = 0] (a.s. underP(· | S̃2n = 0), S2n = 0)

= E
[
G(S̃2n

t1
, . . . , S̃2n

tr−1
, 0)An

]
(question 2, the integrand is a function of S̃2n

|[0,kn/n])

= ‖G‖∞o(n−1/2) + E

[
G(S̃2n

t1
, . . . , S̃2n

tr−1
, 0)

ε−1/2f(ε−1/2S̃2n
kn/n

)

f(0)

]
(first part of the question)

= o(1) + o(1) + E
[
G(Bt1 , . . . , Btr−1 , 0)

ε−1/2f(ε−1/2B1−ε)

f(0)

]
(unconditioned Donsker)

= o(1) + E
[
G(βt1 , . . . , βtr−1 , 0)

]
(absolute continuity property of the bridge)

= o(1) + E
[
G(βt1 , . . . , βtr−1 , βtr)

]
(β1 = 0 almost surely)

(4) By the usual criterion for convergence in distribution of functions, we are done.

Solution 4 — The binary splitting martingale. (1) We write

Xn+1 −Xn = E[X −Xn | Gn]

= E[(X −Xn)1X>Xn | Gn]1X>Xn +E[(X −Xn)1X<Xn | Gn]1X<Xn .

where we used the fact that the sign of (X−Xn) is Gn-measurable. The first term is
almost surely positive, the second one is almost surely negative, and almost surely
only one of them is nonzero. Hence they almost surely they form a decomposition
of Xn+1 −Xn into a positive and negative part. Then

|Xn+1 −Xn| = E[(X −Xn)1X>Xn | Gn]1X>Xn −E[(X −Xn)1X<Xn | Gn]1X<Xn

= E[|X −Xn| | Gn].
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(2) We deduce E[|Xn − X|] = E[|Xn+1 − Xn|], and this last expression goes to 0 as
(Xn)n is L1-convergent. Thus |Xn −X| goes to 0 in L1 and by uniqueness (up to
a.s. equality) of the L1 limit we get that X∞ = X a.s. Hence Xn converges a.s.
and L1 to X.


