Exercise sheet 9: Harmonic functions and Brownian motion

Exercise 1 — Harmonic functions and martingales.

Let $D \subset \mathbb{R}^d$ be a domain and T its exit time. Let $h : \overline{D} \to \mathbb{R}$ be continuous, bounded and harmonic inside D. Fix $x \in D$.

- (1) Assume that D is bounded and verifies the Poincaré cone condition. Show that under \mathbb{P}_x , the process $(h(B_{t\wedge T}))_t$ is a closed martingale.
- (2) In the general case, show that under \mathbb{P}_x , the process $(h(B_{t\wedge T}))_t$ is a martingale. (Hint: approximate D by domains that verify the cone condition.)
- (3) Deduce that for an arbitrary domain, when a bounded solution to the Dirichlet problem exists, the Brownian expectation finds it.
- (4) Look at $\log(||B_t||)$ if d = 2 and $||B_t||^{2-d}$ if $d \ge 3$. Are those martingales ?
- (5) A converse: show that if h is defined on some domain U with the property that for every $\overline{B}(x,\epsilon) \subset U$, $t \mapsto h(B_{t \wedge T_{\partial B(x,\epsilon)}})$ is a martingale under \mathbb{P}_x , then h is harmonic.

Exercise 2— A lemma for the Poincaré cone condition.

Let C be an open cone based in 0. We wish to show that the function $\varphi(x) = \mathbb{P}_x(T_{\partial B(0,1)} < T_{\partial C})$ is bounded away from 1 on $\overline{B}(0, 1/2) \setminus C$.

- (1) Why can't we use the maximum principle for φ on $\overline{B}(0, 1/2) \setminus C$?
- (2) Bound φ by some (similarly defined) function to which the maximum principle can be applied, and conclude.

Exercise 3 - Counterexample.

Let $D = B(0,1) \setminus \{0\} \subset \mathbb{R}^2$ and consider the Laplace equation $\Delta u = 0$ with Dirichlet boundary conditions u(0) = 0 and u(x) = 1 for $x \in \partial B(0,1)$. Show that the Brownian expectation does not define a solution. Show that there can't exist a solution (you may use exercise 1 or the fact that if u(x) = g(|x|), then $\Delta u(x) = g''(|x|) + \frac{1}{x}g'(|x|)$.)

Exercise 4 — Singularity removal.

Let $d \geq 2$ and $x \in U \subset \mathbb{R}^d$ open. Suppose $h : U \setminus \{x\} \to \mathbb{R}$ is harmonic and bounded around x. Show that u can be extended to a harmonic function on the whole of U. Better yet, show the same outcome with the relaxed condition that $u(x + \cdot)$ is negligible near x compared to the fundamental solution $(\log(\|\cdot\|))$ if d = 2 and $\|\cdot\|^{2-d}$ otherwise).