Solutions for Exercise sheet 9: Harmonic functions and Brownian motion

Solution 1 — Harmonic functions and martingales. (1) Let us show that for every x, under \mathbb{P}_x , $t \mapsto h(B_{t \wedge T})$ is a martingale that is closed by $h(B_T)$. Thus we shall show that for every x, $\mathbb{E}_x[h(B_T) | \mathcal{F}_t] = h(B_{t \wedge T})$. Indeed we can compute

$$\mathbb{E}_{x}[h(B_{T}) \mid \mathcal{F}_{t}] = \mathbb{E}_{x}[h(B_{t\wedge T}) \mathbb{1}_{T < t} + h(B_{T}) \mathbb{1}_{t \le T} \mid \mathcal{F}_{t}] \\= h(B_{t\wedge T}) \mathbb{1}_{T < t} + \mathbb{E}_{x}[h(B_{T}) \mathbb{1}_{t \le T} \mid \mathcal{F}_{t}] \\= h(B_{t\wedge T}) \mathbb{1}_{T < t} + \mathbb{E}_{x}[h(B_{T^{t}}^{t}) \mathbb{1}_{t \le T} \mid \mathcal{F}_{t}] \\= h(B_{t\wedge T}) \mathbb{1}_{T < t} + \mathbb{E}_{x}[h(B_{T^{t}}^{t}) \mathbb{1}_{t \le T} \mid \mathcal{F}_{t}] \\= h(B_{t\wedge T}) \mathbb{1}_{T < t} + \mathbb{E}_{B_{t}}[h(B_{T})] \mathbb{1}_{t \le T} \\= h(B_{T\wedge t}) \mathbb{1}_{T < t} + h(B_{t}) \mathbb{1}_{T > t} = h(B_{t\wedge T})$$

Where B^t denoted the Brownian motion restricted from time t onward, and T^t the hitting time of ∂D for this process.

(2) Consider $D_{\varepsilon} = B(0, \varepsilon^{-1}) \cap \{x, d(x, D^{\complement}) > \varepsilon\}$, which is open and bounded. Then $D_{\varepsilon}^{\complement} = B(0, \varepsilon^{-1})^{\complement} \cup \bigcup_{x \in D^{\complement}} \overline{B}(0, \varepsilon)$. We can show that D_{ε} verifies the Poincaré cone condition.

Let T_{ε} be the hitting time of D^{\complement} . We can now apply question 1 and get that

$$\mathbb{E}[h(B_{t\wedge T_{\varepsilon}}) \mid \mathcal{F}_s] = h(B_{s\wedge T_{\varepsilon}})$$

We can now use continuity of paths, continuity of h, and the (conditional) dominated convergence theorem to conclude.

Solution 2 — A lemma for the Poincaré cone condition.

Let C be an open cone based in 0. We wish to show that the function $\varphi(x) = \mathbb{P}_x(T_{\partial B(0,1)} < T_{\partial C})$ is bounded away from 1 on $\overline{B}(0, 1/2) \setminus C$.

- (1) We have that φ is harmonic on the interior of $B(0,1) \setminus C$. That is because it can be rewritten as $\mathbb{E}[u(B_{T_{\partial(B(0,1)\setminus C)}})]$ for $u = \mathbb{1}_{B(0,1)^{\complement}\setminus C}$. We can't use the maximum principle for φ on $\overline{B}(0, 1/2) \setminus C$ because we don't know if φ is continuous on the boundary of this set.
- (2) Let \widetilde{C} be another open cone such that $\overline{\widetilde{C}} \subset C$ (for instance take \widetilde{C} to be C translated away from 0). Define $\psi(x) = \mathbb{P}_x(T_{\partial B(0,1)} < T_{\partial \widetilde{C}})$. It is clear from an inclusion of events, that $\psi(x) \geq \varphi(x)$. It is also clear that ψ is harmonic on $U = B(0,1) \setminus \overline{\widetilde{C}}$, for the same reasons as φ . Now $P = \overline{(B(0,1/2) \setminus C)}$ is completely included in U, so ψ is continuous on the compact P. If $\sup_P \psi = 1$, then by compactness we found

a point of $P \subset U$ where ψ reaches one. As $\psi \leq 1$, the maximum principle tells us that $\psi \equiv 1$, which seems absurd.

To see why this is absurd, take a finite union F (for *flower*) of rotations of \tilde{C} that disconnects 0 from infinity. If $\varphi(0) = 1$, then almost surely B does not touch \tilde{C} before exiting B(0, 1) and by rotation invariance and countable union, it also almost surely does not touch F before exiting B(0, 1). Hence it does not touch F, hence it stays bounded almost surely. This is clearly absurd.

Solution 3 — Counterexample.

Set $T = T_{\partial D}$ and $h(x) = \mathbb{E}_x[u(B_T)]$. This does not define a solution to the Laplace equation, because since the Brownian motion started outside of 0 almost surely does not hit 0, we have h(0) = 0 and h(x) = 1 for all $x \in \overline{D} \setminus \{0\}$. Hence h is not continuous.

Suppose a solution h exists. Then a rotation of h is still a solution, and hence equals h thanks to the maximum principle. Thus h is rotation invariant hence radial $(h(x) = g(|x|), x \in \overline{D})$, for some $g : \mathbb{R}_+ \to \mathbb{R}$ that must be twice differentiable.) We deduce that $0 = g''(x) + \frac{1}{x}g'(x)$ for all 0 < x < 1, an ODE whose solutions are of the form $x \mapsto A + B \log(x)$, none of which fits our purpose. Hence a solution cannot exist.

Solution 4 — Singularity removal. See TD10