Exercise sheet 1: Gaussian vectors, random walks, conditioning.

Exercise 1 — Gaussian vectors.

Let X be a random vector in \mathbb{R}^n . We say that it is a Gaussian vector (i.e. has a multidimensional Gaussian distribution) if for every $t \in \mathbb{R}^n$, the r.v. $\langle t, X \rangle \in \mathbb{R}$ has a (possibly degenerate) Gaussian distribution.

- (1) Recall the parameters, the characteristic function, and (when it exists) the p.d.f. of a Gaussian distribution on \mathbb{R} .
- (2) Show that $t \mapsto \mathbb{E}[\langle t, X \rangle]$ is a linear form, and $(s, t) \mapsto \operatorname{Cov}[\langle s, X \rangle, \langle t, X \rangle]$ is a positive semi-definite bilinear form. Let them be represented by $\langle \cdot, m \rangle$ and $\langle \cdot, \Sigma \cdot \rangle$. What would be the coordinates of respectively this vector and this matrix? How would you call them?
- (3) Deduce the (multidimensional) characteristic function of X, and that the distribution of X is characterized by the parameters m and Σ . Show that conversely any vector with a characteristic function of this form is Gaussian.
- (4) Show that a linear transform AX of a Gaussian vector X is Gaussian, and compute its parameters.
- (5) Let V_1 and V_2 be two subspaces of \mathbb{R}^n . Give a necessary and sufficient condition for the independence of the σ -algebras $\sigma(\langle t, X \rangle, t \in V_1)$ and $\sigma(\langle t, X \rangle, t \in V_2)$.
- (6) Build two standard Gaussian variables X and Y that are uncorrelated yet not independent (they obviously do not form a Gaussian vector !)
- (7) Show that the vector (X_1, \ldots, X_n) with X_1, \ldots, X_n independent standard Gaussian variables, is Gaussian. Use it to build a Gaussian vector with arbitrary parameters. Deduce its p.d.f. when it has one.

Exercise 2 — Limits of Gaussian variables.

Let $(X_n)_{n\geq 0}$ be a sequence of Gaussian variables.

- (1) Give a necessary and sufficient condition for convergence in distribution, show that the limit is always Gaussian, and determine its parameters.
- (2) If $X_n \to X$ in probability, show that for every $p \ge 1, X_n \to X$ in L^p .

Exercise 3 — Some estimates.

Let $(X_n)_{n>0}$ be the simple symmetric random walk.

- (1) Compute the asymptotic for the probability of $X_{2n} = 0$.
- (2) Compute the probability that the first return to zero is at time 2n. Compute its asymptotic.
- (3) Deduce the asymptotic for the probability that the first return to zero is after time n.

(4) Deduce the asymptotic of $\mathbb{E}[|X_n|]$.

Exercise 4 — Maximum and hitting times.

- Let $(X_n)_{n\geq 0}$ be the simple symmetric random walk and $M_n = \max_{1\leq i\leq n} X_i$.
 - (1) Find a limit in distribution (after suitable rescaling) for the pair (X_n, M_n) .
 - (2) For $k \ge 0$, let

$$\tau_k = \min\{n \ge 0 : X_n = k\}.$$

Show that $(\tau_k)_k$ is a random walk. What is $\mathbb{P}(\tau_k \leq n)$? Find a limit in distribution (after suitable rescaling) for τ_k .

Exercise 5 — Conditioning and independence.

Let \mathcal{G} be a σ -algebra, $X \in \mathcal{G}$ and $Y \perp \mathcal{G}$ be two random variables, and $f : \mathbb{R}^2 \to \mathbb{R}$ such that $f(X, Y) \in L^1$. Compute $\mathbb{E}[f(X, Y) \mid \mathcal{G}]$. Deduce the conditional distribution of f(X, Y) given \mathcal{G} .

Exercise 6 — Gaussian conditional distribution and Bayesian statistics 101.

Let (X, Y) be a non-degenerate centered Gaussian vector in \mathbb{R}^2 with covariance matrix $\begin{pmatrix} \sigma_x^2 & \rho \\ \rho & \sigma_y^2 \end{pmatrix}$.

- (1) Compute the conditional distribution of X given Y.
- (2) If you want, look up on Wikipedia the generalized version of this, where $X \in \mathbb{R}^n$, $Y \in \mathbb{R}^m$.
- (3) Let $\theta \sim \mathcal{N}(0, \tau^2)$ and X_1, \ldots, X_n i.i.d. of distribution $\mathcal{N}(\theta, \sigma^2)$ given θ . In other terms, $X_i = \theta + Y_i$ where Y_i are i.i.d, independent of θ , and $Y_i \sim \mathcal{N}(0, \sigma^2)$. What is the conditional distribution of θ given $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$?
- (4) Take the large σ , small σ , large τ , small τ limit of this and interpret it.
- (5) Find a "real-life" situation modelled by this.
- (6) (*) What about the conditional distribution of θ given (X_1, \ldots, X_n) ?