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Solutions for Exercise sheet 3: stopping times and Markov
property

Solution 1 — Brownian motion on the circle.

Solution 2 — The set of zeros of B is perfect.
Almost surely 0 is an accumulation point of Z (lecture). By countable union, and strong
Markov, every first 0 after a rational is an accumulation point of Z. If Z had an isolated
point, it would be a first 0 after a rational. Hence it couldn’t be isolated in Z.

Solution 3 — . (1) Denote by I = min0≤s≤1−t(Bt+s −Bt) and S = max0≤s≤1−t(Bt+s −
Bt). Both I and S are independent of Ft.

P(L < t) = P(Bt > 0 ∩ I < −Bt ∪Bt < 0 ∩ S > −Bt)

= 2P(Bt < 0 ∩ S > |Bt|)

= P(Bt 6= 0, S > |Bt|) = P(S > |Bt|) = P(|B̃1−t| > |Bt|)

= P(|Z
Z̃
| <

√
(1− t)/t)

where Z, Z̃ are two independent standard Gaussians. Then

... = P(| arg(Z̃ + iZ)| < arcsin(
√
t)) = 2 arcsin(

√
t).

(2) For now let Ã = inf{t ∈ [0, 1], Bt = min[0,1]B}. Then P(Ã > t) = P(S >
max[0,t]B−Bt). Once again S is independent of max[0,t]B−Bt ∈ Ft, whose distri-

bution is known to be equal to that of |Bt|. We end up with P(Ã > t) = P(L < t).

By symmetry of the arcsine distribution, we have shown that Ã
d
= L.

To show that A is well-defined, consider
˜̃
A = sup{t ∈ [0, 1], Bt = min[0,1]B}. By

time reversal and symmetry of the arcsine distribution,
˜̃
A

d
= Ã. At the same time,

Ã ≤ ˜̃
A almost surely. This implies that Ã =

˜̃
A almost surely.

Solution 4 — Markov processes derived from Brownian motion. (1) LetB = (B(1), B(2)).
We have that (Ca+· − Ca) is constructed from B

T
(1)
a++· − BT

(1)
a+

the same way C is

constructed from B. Hence by the strong Markov property of B, (Ca+· −Ca)
d
= C,

and (Ca+· − Ca) ⊥⊥ FT (1)
a+
⊃ σ(Cu, u ≤ a).
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(2) C is càdlàg because T·+ is. By independence of B(1) and B(2) it jumps almost surely
when T·+ jumps.

(3) Firstly, Cov(Xt, Xs) = e−|t−s|. So at each time t, Xt is a standard Gaussian.

Solution 5 — All hypotheses matter.
Take S = 3 and T to be the first zero after 3. Of course the problem is that E[T ] =∞.

Solution 6 — Brownian gambler’s ruin.
Let a < 0 < b and T be the hitting time of {a, b}.

(1) We may show that T is integrable to apply Wald’s second lemma. Here’s a way to
do it by comparison with a geometric variable. Let x ≤ |a| ∧ |b|.

P(T ≥ n) ≤ P(∀k ≤ n− 1, |Bk+1 −Bk| < 2x)

=
n−1∏
k=0

P(|B(k)
1 | < 2x) = ρn

Where ρ < 1. Hence T is integrable, and we can apply Wald’s second lemma. We
get

E[T ] = E[B2
T ] =

−a
b− a

b2 + a2
b

b− a
= −ab

(2) Let M = sup0≤t≤Ta,b Bt. Let c ∈ [0, b]. We denote B̃t = Bt+Tc −BTc .

P(M ≥ c | Ta ≤ Tb) =
P(Tc ≤ Ta ≤ Tb)

P(Ta ≤ Tb)

=
P(Tc ≤ Ta, T̃a−c ≤ T̃b−c)

P(Ta ≤ Tb)

=
P(Tc ≤ Ta)P(T̃a−c ≤ T̃b−c)

P(Ta ≤ Tb)

=
−a
c−a

b−c
b−a
b

b−a
=
−a(b− c)
b(c− a)

.

Solution 7 — Girsanov theorem and hitting times with drift.
Let B be a brownian motion, and for λ ∈ R, denote M θ

t = eθBt−θ
2t/2. You have shown that

Mλ is a (Ft)t-martingale, and used it to show that E[e−λTb ] = E[e−|b|
√
2λ].

(1) We check that

Pθ,T (Ω) := E[M θ
T ] = E[eθBT ]e−θ

2T/2 = 1.
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We use characteristic functions of fdms to characterize distribution of a process.
Let 0 ≤ t1 ≤ . . . ≤ tk ≤ T and u1, . . . uk ∈ R

Eθ,T [ei(u1Bt1+...+ukBtk )] = E[ei(u1Bt1+...+ukBtk )eθBT−θ
2T/2]

= E[ei(u1Bt1+...+ukBtk−iθBT )]eθ
2T/2

= E[e−Var(u1Bt1+...+ukBtk−iθBT )/2]eθ
2T/2

= E[e−Var(u1Bt1+...+ukBtk )/2+θ
2T/2+iθ(u1t1+...+uktk)]eθ

2T/2

= E[ei(u1Bt1+...+ukBtk )]eiθ(u1t1+...+uktk)

= E[ei(u1(Bt1+θt1)+...+uk(Btk+θtk))]

(2) No, Brownian motion with and without drift are not absolutely continuous to each
other over R+.

(3) Let T θb be the hitting time of b by (Bt + θt)t. Then using question 1 and optional
stopping,

E[e−λT
θ
b 1T θb <U

] = E[e−λTb 1Tb<U M
θ
U ]

= E[e−λTb 1Tb<U M
θ
Tb

]

= E[e−λTb 1Tb<U e
θb−θ2Tb/2]

= eθb E[e−(λ−θ
2/2)Tb 1Tb<U ]

Using dominated convergence, we get

E[e−λT
θ
b 1T θb <∞

] = eθb E[e−(λ−θ
2/2)Tb ] = e−|b|

√
θ2+2λ+bθ.

(4) Then taking λ = 0, P(T λb <∞) = e−|bθ|+bθ = e2bθ∧0. We observe, that

E[e−λT
θ
b | T θb <∞] = e−|b|

√
θ2+2λ−|bθ|.

It is independent on the sign of b. So a Brownian motion with negative drift,
conditioned on hitting a positive level, will behave as a Brownian motion with the
reverse (positive) drift.

Solution 8 — The binary splitting martingale. (1) We write

Xn+1 −Xn = E[X −Xn | Gn]

= E[(X −Xn)1X>Xn | Gn]1X>Xn +E[(X −Xn)1X<Xn | Gn]1X<Xn .

where we used the fact that the sign of (X−Xn) is Gn-measurable. The first term is
almost surely positive, the second one is almost surely negative, and almost surely
only one of them is nonzero. Hence they almost surely they form a decomposition
of Xn+1 −Xn into a positive and negative part. Then

|Xn+1 −Xn| = E[(X −Xn)1X>Xn | Gn]1X>Xn −E[(X −Xn)1X<Xn | Gn]1X<Xn

= E[|X −Xn| | Gn].
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(2) We deduce E[|Xn − X|] = E[|Xn+1 − Xn|], and this last expression goes to 0 as
(Xn)n is L1-convergent. Thus |Xn −X| goes to 0 in L1 and by uniqueness (up to
a.s. equality) of the L1 limit we get that X∞ = X a.s. Hence Xn converges a.s.
and L1 to X.

Solution 9 — Martingales derived from B.
Those martingales are the derivative w.r.t λ of the exponential martingale.


