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1 – The scaling limit of separable permutationsAfter Bassino, Bouvel, Féray, Gerin, Pierrot 2016



Permutations
A permutation σ ∈ Sn is a word (σ (1), . . . , σ (n)) whichcontains every element of {1, . . . , n}.Diagram of (4128376) ∈ S8:
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Permutation patterns
σ = (10, 6, 2, 5, 3, 9, 1, 7, 4, 8, 11) ∈ S11

1 3 4 7 912
34
56
78
91011

2 5 6 10

pat{2,5,6,10}(σ ) = (2143)

8 11 pat{8,11}(σ ) = (12)



Classes of permutation and pattern-avoidance
Permutation class: set of permutations closed under patternextraction. Can always be written as Av(B), the set ofpermutations that avoid patterns in some basis B.



Classes of permutation and pattern-avoidance

Separable permutations: Av(3142, 2413)
Permutation class: set of permutations closed under patternextraction. Can always be written as Av(B), the set ofpermutations that avoid patterns in some basis B.

(Avis-Newborn ’80, Bose-Buss-Lubiw ’93)
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Separable permutations

Separable permutationperm(τ) = (1 2 10 7 6 5 8 9 4 3)
⊕

⊕
	

	

Alternating-signs Schröder tree
Counted by large Schröder numbers1, 2, 6, 22, 90, 394, 1806, 8558, . . . � (3 +√8)nn−3/2
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PermutonsA permuton is aprobability measureon [0, 1]2 with bothmarginals uniform. 1 2
4 4

=⇒ compact metric space (with weak convergence).

1 n 0 10

1

1

n density 0
density n

σ µσ

We say that a sequence (σn) converges to µ when µσn w−−−→
n→∞

µ.

Permutations of all sizes are densely embedded in permutons.
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This notion is extended to permutons: subpermk (µ) is therandom permutation that is order-isomorphic to an i.i.d. pickaccording to µ.



Permuton convergence and subpermutations

Theorem (Hoppen et. al., 2013)The sequence (σn) converges to µ iff for every k ,subpermk (σn) d−−−→
n→∞

subpermk (µ).

For σ ∈ Sn and k ≤ n, subpermk (σ ) is a uniformsubpermutation of length k in σ .
This notion is extended to permutons: subpermk (µ) is therandom permutation that is order-isomorphic to an i.i.d. pickaccording to µ.



Sequences of random permutationsIf σn is a sequence of random permutations, we can considerthe convergence in distribution of the random permutons µσn .Let σn = uniform of size n in some class C.



Sequences of random permutationsIf σn is a sequence of random permutations, we can considerthe convergence in distribution of the random permutons µσn .Let σn = uniform of size n in some class C.

1

C = S : σn P−→ Leb[0,1]2 .



Sequences of random permutationsIf σn is a sequence of random permutations, we can considerthe convergence in distribution of the random permutons µσn .Let σn = uniform of size n in some class C.
C = Av(231) or Av(321) : σn P−→ (id, id)∗Leb[0,1].

Fluctuations: Miner-Pak, Hoffman-Rizzolo-Slivken... Pictures from thelatter.



Sequences of random permutationsIf σn is a sequence of random permutations, we can considerthe convergence in distribution of the random permutons µσn .Let σn = uniform of size n in some class C.
C = Av(2413, 3142) = {separables}:
Theorem (Bassino, Bouvel, Féray, Gerin, Pierrot 2016)
σn converges in distribution to some random permuton µ,called the Brownian separable permuton.



A portmanteau theorem for random permutons
Theorem (Bassino, Bouvel, Feray, Gerin, M., Pierrot. 2017)The following are equivalent:1. The random measure µσn converges in distribution to somerandom permuton µ.2. P((subpermk (σn))k ∈ · | σn) converges in distribution,3. subpermk (σn) d−−−→

n→∞
βk random in Sk for every kMoreover, the law of µ is characterized by

subpermk (µ) = βk , k ≥ 1.
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Idea of proofUse the bijection with signed Schröder trees: σn = perm(tn),where tn is a uniform signed Schröder tree with n leaves.Fix k(= 3). Then subpermk (σn) = patIkn (σn) = perm(tn|Ikn ),where tn|Ikn is the reduced subtree of tn induced by the leaveswith indexes in Ikn .

tn

Ikn

What does it look like as n → ∞?
⊕

tn|In patIn (σn)
⊕



Scaling limits of trees



Scaling limits of treesMany "nice" models of random trees (tn)n where n is somesize parameter, converge to (a multiple of) the Brownian CRTat √n. More precisely, if Cn is the contour function of tn, forsome constant c > 0, cn−1/2Cn converges in distribution tothe normalized Brownian excursion.
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Scaling limits of trees

0 1 t

cn−1/2Cn(t)
d−−−→

n→∞

0 1

e(t)

t

Leaf-counted Schröder trees are (critical, finite-variance)BGW trees conditioned on the number of leaves and fall inthis category (Kortchemski ’12)



Scaling limits of treesSo uniform extracted subtrees from tn converge to uniformextracted subtrees from the Brownian excursion, which areuniform binary trees (Aldous ’93, Le Gall ’93)
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Signs in extracted subtreesSince Schröder trees are alternating-signs, this boils down toparity of branches lengths in the extracted subtree.(CLT in the previous slide =⇒ lengths of order √n, but weneed microscopic information)
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• exact combinatorial formulas for trees with a marked leafat a certain height



Signs in extracted subtreesSince Schröder trees are alternating-signs, this boils down toparity of branches lengths in the extracted subtree.(CLT in the previous slide =⇒ lengths of order √n, but weneed microscopic information)We can show that signs are asymptotically balanced and
independent using
• a neat trick (as done in the 2016 paper)
• exact combinatorial formulas for trees with a marked leafat a certain height
• analytic combinatorics (used for our subsequentgeneralization, see part 2)
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Summing up...We have shown that if σn is a uniform separable permutationof size n, subpermk (σn) converges in distribution to perm(τk ),where τk is a uniform signed binary tree with k leaves.This shows convergence in distribution of σn to somepermuton µ, called the Brownian separable permutonThis random permuton is characterized in distribution by
∀k ≥ 1, subpermk (µ) d= perm(τk ).



3 – Universality of permuton limits insubstitution-closed classes.Joint work with F. Bassino, M. Bouvel, V. Féray, L. Gerin and A. Pierrot[arXiv:1706.08333]
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Substitution decompositionGeneralizing ⊕ and 	 ?For σ ∈ Sk , ρ1, . . . , ρk ∈ S, define σ [ρ1, . . . , ρk ] by replacingthe i-th dot in σ by πi.Example : 132[21, 312, 2413] = 219784635.
Given σ , either :
• We can find a proper interval mapped to an interval, andthen σ can be written as a substitution of smallerpermutations

⊕ (resp. 	) is just the substitution into(12 · · · r) (resp. (r · · · 21)).

• Or σ can’t be decomposed by a nontrivial substitution : σis a simple permutation. Ex :1, 12, 21, 2413, 3142, 31524, ... ∼ n!
e2 .
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Substitution decomposition

(8, 10, 9, 2, 11, 1, 4, 7, 3, 6, 5)

42513 2413⊕
		

Theorem (Albert, Atkinson 2005):Any permutation can bedecomposed into a substitutiontree with ⊕, 	 nodes, and simplenodes of length ≥ 4, unique aslong as adjacent ⊕ and 	 aremerged.
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Substitution-closed families
S ⊂ {simple permutations of length ≥ 4}.
〈S〉 = {permutations built by substituting •,⊕,	, and α ∈ S}.

S(z) = ∑α∈S z|α| generating function of the simples, radius R . Set
a = S′(R )− 2/(1 + R )2 + 1 and b = S′′(R )

Examples : 〈∅〉 = { separables } = Av(3142, 2413).
〈3142〉 = Av(2413, 41352, 415263, 531642).More generally, any class whose basis contains only simples is as such(substitution-closed class)
Let σn be a uniform permutation of size n in 〈S〉.
Theorem (Bassino, Bouvel, Féray, Gerin, M., Pierrot 2017)The limit in distribution of σn is
• a biased Brownian separable permuton if a > 0 or a = 0, b < ∞,
• the same limit ν as an uniform simple permutation in S if a < 0,
• a stable permuton if a = 0, b =∞.When a ≤ 0 additional regularity hypotheses on S near its singularityare needed.
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Biased Brownian separable permutonRegime where thedecomposition tree convergesto a Brownian CRT.
The signs in a uniform subtreeare biased: P(⊕) = p, and pdepends explicitely on S.Here p = 0.2.
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Biased Brownian separable permutonRegime where thedecomposition tree convergesto a Brownian CRT.
The signs in a uniform subtreeare biased: P(⊕) = p, and pdepends explicitely on S.Here p = 0.2.

The regime a > 0 covers most known substitution-closedclasses: S finite or subexponential, S rational,...

Picture by I. Kortchemski



Degenerate case a<0Regime where the decomposition tree exhibits a condensationphenomenon. Roughly, σn looks like a large uniform simplepermutation in S and converges to the same limit ν.

Picture by I. KortchemskiExample: Av(2413). We still need to understand the permutonlimit of large simples in this class (+ technical hypotheses) toapply our theorem.



Stable permutonsRegime where the decomposition tree converges to a α-stabletree, α explicit.



Stable permutonsRegime where the decomposition tree converges to a α-stabletree, α explicit.
α = 1.5 α = 1.1

Pictures by I. Kortchemski



Stable permutonsRegime where the decomposition tree converges to a α-stabletree, α explicit.
α = 1.5 α = 1.1

Branches from each infinite-degree point are reorderedaccording to an independent copy of ν (the limit of largesimples in the class)



Idea of proof (first, separable permutations)



Analytic combinatoricsLet (an)n be a nonnegative sequence and A(z) = ∑n anzn itsgenerating function of radius ρ
Transfer Theorem (Flajolet & Odlyzko) If
• A is defined on a ∆-domain at ρ > 0
• A(z) =

z→ρ
g(z) + (C + o(1))(ρ − z)δ with g analytic, δ /∈ N,then as , an =
n→∞

( CΓ(−δ) + o(1))ρ−nn−1−δ



Analytic combinatoricsLet (an)n be a nonnegative sequence and A(z) = ∑n anzn itsgenerating function of radius ρ
Transfer Theorem (Flajolet & Odlyzko) If
• A is defined on a ∆-domain at ρ > 0
• A(z) =

z→ρ
g(z) + (C + o(1))(ρ − z)δ with g analytic, δ /∈ N,then as , an =
n→∞

( CΓ(−δ) + o(1))ρ−nn−1−δ
If (an)n counts a recursive structure, equations on A are easyto obtain from which the singular behavior can be inferred.
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T (z) = z + F (T (z)) (Schröder: F (t) = ∑k≥2 tk ).
In this case, "nice" def⇐⇒
∃ 0 < u < RF , F ′(u) = 1.Then T is ∆-analytic at ρwith T (ρ) = u and asquare-root singularity(smooth implicit functionschema).
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ρ
This is the case for Schröder(F rational)
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Uniform k-subtree in large unsigned trees
T has square-root singularity at ρ and F analytic at T (ρ).Then, the g.f of trees with k marked leaves that induce the
k-tree τ is

zkT ′(z) ∏
v internal node of τ T

′(z)deg(v ) 1deg(v )!F (deg(v ))(T (z))
∼ρ Cτ (ρ − z)−#{nodes in τ}/2.Dominates when τ binary.(Then Cτ doesn’t depend on τ).Transfer: tn|Ikn converges indistribution to a uniformbinary tree.
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Uniform k-subtree in large signed treesCounting signed trees that induce a given signed tree τ:adding parity constraints on the height of the marked leaf inthe marked trees.
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where a (resp. b) is the number of edges of τ incident to twonodes of the same (resp. different) signs



Uniform k-subtree in large signed treesCounting signed trees that induce a given signed tree τ:adding parity constraints on the height of the marked leaf inthe marked trees.Replace instances of T ′ by T ′0 (even height) or T ′1 (oddheight). T ′0 + T ′1 = T ′ and T ′1 = F ′(T )T ′0, so T ′0 ∼ T ′1 ∼ 12T ′.g.f. of Trees with k marked leaves that induce the signed
k-tree τ :
zk (T ′0 + T ′1)T ′0bT ′1aT ′k ∏

v internal node of τ
1deg(v )!F (deg(v ))(T (z))

where a (resp. b) is the number of edges of τ incident to twonodes of the same (resp. different) signsHence all signed binary trees have the same asymptoticprobability, what whe needed for permuton convergence.



Idea of proof (general substitution-closed families)
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Here the trees are described by a context-free grammar withthree types:



Substitution-closed classes
T = z + T 2not⊕1− Tnot⊕ + T 2not	1− Tnot	 + S(T )

Tnot⊕ = z + T 2not⊕1− Tnot⊕ + S(T )
Tnot	 = z + T 2not	1− Tnot	 + S(T )

Here the trees are described by a context-free grammar withthree types:

Which reduces to
Tnot	 = Tnot⊕ = z + T 2not⊕1− Tnot⊕ + S

(
Tnot⊕1− Tnot⊕

) = z + Λ(Tnot⊕).
T = Tnot⊕1− Tnot⊕ .



Then
• If a > 0, then Λ′ reaches 1 before its singularity and weend up in the smooth implicit function schema (hence theBrownian behavior)
• If a = 0 then Λ′(RΛ) = 1. If δ > 1 is the singularityexponent of S and Λ then the one of Tnot⊕ is (δ ∧ 2)−1.
• If a < 0 then Λ′(RΛ) < 1. Then S, Λ and Tnot⊕ have thesame singularity exponent δ > 1.
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(g.f. of trees of type i with a marked leaf of type j)i,j∈{∅,not⊕,not	}is asymptotic to T ′not⊕ times a constant matrix of rank 1.



Then
• If a > 0, then Λ′ reaches 1 before its singularity and weend up in the smooth implicit function schema (hence theBrownian behavior)
• If a = 0 then Λ′(RΛ) = 1. If δ > 1 is the singularityexponent of S and Λ then the one of Tnot⊕ is (δ ∧ 2)−1.
• If a < 0 then Λ′(RΛ) < 1. Then S, Λ and Tnot⊕ have thesame singularity exponent δ > 1.In the first two cases, the 3× 3 matrix

(g.f. of trees of type i with a marked leaf of type j)i,j∈{∅,not⊕,not	}is asymptotic to T ′not⊕ times a constant matrix of rank 1.
This is enough to analyze the probability of uniform subtreesin a large substitution tree and prove the theorem.



2 – Construction of the Brownian Permuton[arXiv:1711.08986]
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The Brownian excursion and CRT

pe(0) = pe(1)0 x y 1

e
Tepe(x)

pe(y)

de(x, y) = e(x) + e(y)− 2 min[x,y] e Te = ([0, 1]/{de = 0}, de)
e contains more information than the metric space Te: 1) amass measure 2) a DFS ordering of the vertices, ⇐⇒ anordering of the two subtrees at each branching point.
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e Brownian excursion, Si.i.d. signs indexed by thelocal minima of e.Define a shuffledpseudo-order on [0, 1]:
x CSe y if and only if
x y⊕ y x	

or
We can interpret CSe as a DFS ordering on the tree Te,different from the one given by e.We set φ(t) = Leb({u ∈ [0, 1], uCSe t}).
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Theorem (M. 2017)A.s. φ is (CSe , ≤) increasing andLebesgue-preserving, uniquelycharacterized up to a.s. equalityby these properties.The random measure (id, φ)?Lebhas the law of the Brownianseparable permuton.
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Theorem (M. 2017)A.s. φ is (CSe , ≤) increasing andLebesgue-preserving, uniquelycharacterized up to a.s. equalityby these properties.The random measure (id, φ)?Lebhas the law of the Brownianseparable permuton.
φ is continuous at every leaf(point which is not a one-sidedlocal minimum) of e (fullLebesgue measure).
 The support of µ is ofHausdorff dimension 1



Constructing the Brownian permuton

x

e(x)

φ(x)
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Theorem (M. 2017)A.s. φ is (CSe , ≤) increasing andLebesgue-preserving, uniquelycharacterized up to a.s. equalityby these properties.The random measure (id, φ)?Lebhas the law of the Brownianseparable permuton.Discontinuities at every strictlocal minima of e (dense)
 The support of µ is totallydisconnected.



Constructing the Brownian permuton
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There exists aBrownianexcursion fdefined on thesame probabilityspace such that
f ◦ φ = e.a.s., Tf is isometricto Te.



Self-similarity

µ1
µ2µ0

µ(X0, Y0)

The Brownian permuton can be obtained by cut-and-pastingthree independent copies in distribution of itself. The firstcopy µ0 is cut according to a sample (X0, Y0) ∼ µ0.The scaling is an independent Dirichlet(1/2, 1/2, 1/2) vector.The relative position of µ1 and µ2 is chosen independentlyand uniformly between ⊕ and 	.



Expectation of the permutonAs µ is a random measure, it is natural to compute its average
Eµ, which is the limit of the permuton obtained by stackingall separable permutations of a given size.
Theorem The permuton Eµ has density function at (x, y) ∈ [0, 1]2∫ 31[max(0,x+y−1),min(x,y)](a)da
π(a(x − a)(1− x − y+ a)(y − a)) 32( 1

a + 1(x−a) + 1(1−x−y+a) + 1(y−a)
) 52 .

This should be equal to the followingformula, computed by Dokos and Pak(picture) for separable Baxterpermutations (for x ≤ y ∧ (1− y),extended by symmetry)∫ x

0
∫ x−u

0
dvdu4π[(u+ v )(y − v )(1− y − u)]3/2 ,




