Scaling limits of pattern-avoiding permutations

Mickaél Maazoun — UMPA, ENS de Lyon
Joint work with F. Bassino, M. Bouvel, V. Féray, L. Gerin and A. Pierrot

(LIPN-P13, Ziirich?, CMAP-Polytechnique, LMO-Orsay)

Journées MAS
30 aodt 2018

uunrnhsnt

=: := U\'PA

ENS DE LYON

EIR’



1 — The scaling limit of separable permutations
After Bassino, Bouvel, Féray, Gerin, Pierrot 2016



Permutations

A permutation 0 € G, is a word (o(1)
contains every element of {1,..., nt.

Diagram of (4128376) € Gg:
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Permutation patterns
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Classes of permutation and pattern-avoidance

Permutation class: set of permutations closed under pattern
extraction. Can always be written as Av(B), the set of
permutations that avoid patterns in some basis B.



Classes of permutation and pattern-avoidance

Permutation class: set of permutations closed under pattern
extraction. Can always be written as Av(B), the set of
permutations that avoid patterns in some basis B.

Separable permutations: Av(3142,2413)

(Avis-Newborn '80, Bose-Buss-Lubiw "93)
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Separable permutations

o
A o . .
lternating-signs Schrader tree Separable permutation

w(r) — (1210765894 3)

Counted by large Schroder numbers
1,2,6,22,90,394,1806,8558, ... = (3 + \/§)nn—3/2
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A large uniform separable permutation
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Permutons

A permuton is a

probability measure / 4 4
2 i 1

on [0, 1]* with both / .

marginals uniform.

—> compact metric space (with weak convergence).

Permutations of all sizes are densely embedded in permutons.

Y Ho
n ° 1 _
) % I - density 0
. m
o, ° ) e . " _ density n
Yt n "
1 * ® 0 - |
1 n 0

We say that a sequence (g,,) converges to p when pi;, —— 1.

n—oQ
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Permuton convergence and subpermutations

For 0 € G, and kK < n, subperm,(0) is a uniform
subpermutation of length k in o.

This notion is extended to permutons: subperm () is the
random permutation that is order-isomorphic to an i.i.d. pick

according to p.

Theorem (Hoppen et. al., 2013)

The sequence (o,) converges to p iff for every k,

subperm,(d,) 4, subperm, (u).
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Sequences of random permutations

It 0, is a sequence of random permutations, we can consider
the convergence in distribution of the random permutons pq .
Let g, = uniform of size n in some class C.

C = Av(231) or Av(321) : g, — (id, id).Leby ;.

10000 - . B 10000
8000/ P4 8000
6000| o . . 6000
4000 | - 4000

2000+ . 2000

1 1 1 1 1 1 1 | 1 |
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

Fluctuations: Miner-Pak, Hoffman-Rizzolo-Slivken... Pictures from the
latter.



Sequences of random permutations

It 0, is a sequence of random permutations, we can consider
the convergence in distribution of the random permutons pq .
Let g, = uniform of size n in some class C.

C = Av(2413,3142) = {separables}:
Theorem (Bassino, Bouvel, Féray, Gerin, Pierrot 2016)

g, converges in distribution to some random permuton g,
called the Brownian separable permuton.

5 X% x|
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A portmanteau theorem for random permutons

Theorem (Bassino, Bouvel, Feray, Gerin, M., Pierrot. 2017)

The following are equivalent:

1. The random measure p, converges in distribution to some
random permuton p.

2. P((subperm,(a,))x € - | g,) converges in distribution,
3. subperm,(a,) N Bk random in & for every k

Moreover, the law of y is characterized by

subperm,(y) = Bx, k > 1.
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ldea of proof

Use the bijection with signed Schroder trees: g, = perm(t,),
where t, is a uniform signed Schroder tree with n leaves.

Fix k(= 3). Then subperm,(a,) = paty(0,) = perm(t, ),
where TS the reduced subtree of t, induced by the leaves

with indexes in /X.
In tnil, pat, (0n)

What does it look like as n — o0?
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some constant ¢ > 0, cn™'"?C,, converges in distribution to
the normalized Brownian excursion.
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Many "nice" models of random trees (t,), where n is some
size parameter, converge to (a multiple of) the Brownian CRT
at v/n. More precisely, if C, is the contour function of t,, for
some constant ¢ > 0, cn™'"?C,, converges in distribution to
the normalized Brownian excursion.
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Scaling limits of trees

Leaf-counted Schroder trees are (critical, finite-variance)
BGW trees conditioned on the number of leaves and fall in
this category (Kortchemski "12)

A cn=V2C, (1) A e(t)




Scaling limits of trees

So uniform extracted subtrees from t, converge to uniform
extracted subtrees from the Brownian excursion, which are

uniform binary trees (Aldous '93, Le Gall '93)
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Signs in extracted subtrees

Since Schroder trees are alternating-signs, this boils down to
parity of branches lengths in the extracted subtree.

(CLT in the previous slide — lengths of order \/n, but we
need microscopic information)

We can show that signs are asymptotically balanced and
independent using

e a neat trick (as done in the 2016 paper)
e exact combinatorial formulas for trees with a marked leaf

at a certain height
e analytic combinatorics (used for our subsequent

generalization, see part 2)
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Summing up...

We have shown that if g, is a uniform separable permutation
of size n, subperm,(a,) converges in distribution to perm(t),
where 14 is a uniform signed binary tree with k leaves.

This shows convergence in distribution of g, to some
permuton p, called the Brownian separable permuton

This random permuton is characterized in distribution by

d
Vk > 1,subperm(y) = perm(tg).

o X% X
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3 — Universality of permuton limits in

substitution-closed classes.

Joint work with F. Bassino, M. Bouvel, V. Féray, L. Gerin and A. Pierrot
[arXiv:1706.08333]
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Substitution decomposition
Generalizing & and 6 ?

For 0 € &, p1,...,px € G, define alp1, ..., pr] by replacing
o

the i-th dot in ¢ by ;.

Example : 132[21,312,2413] = 219784635.

@ (resp. ©) is just the substitution into
(12---r) (resp. (r---21)). °

Given g, either :

e We can find a proper interval mapped to an interval, and

then o can be written as a substitution of smaller

permutations

e Or ¢ can't be decomposed by a nontrivial substitution :

s a simple permutation. Ex :
1,12,21,2413,3142,31524, ... ~ 2.
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Substitution decomposition

° . ® [
° ®
°
¢ g
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Substitution decomposition

Theorem (Albert, Atkinson 2005):
Any permutation can be
decomposed into a substitution
tree with @, © nodes, and simple
nodes of length > 4, unique as

long as adjacent & and & are
merged.
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Substitution-closed families

S C {simple permutations of length > 4}.
(§) = {permutations built by substituting ¢, ®, ©, and a € S}.

Examples : (@) = { separables } = Av(3142,2413).

(3142) = Av(2413, 41352, 415263, 531642)

More generallg, any class whose basis contains only simples is as such
(substitution-closed class)

Let g, be a uniform permutation of size n in (S).

S5(z) =) _4es zl?l generating function of the simples, radius R. Set
a=S(R)—2/(1+R)?+1and b= S5"(R)

Theorem (Bassino, Bouvel, Féray, Gerin, M., Pierrot 2017)
The limit in distribution of g, is
e a biased Brownian separable permuton if a > 0 or a =0,b < o0,
e the same limit v as an uniform simple permutation in § if a < 0,
e a stable permuton if a =0, b = 0.
When a < 0 additional reqularity hypotheses on S near its singularity
are needed.



Biased Brownian separable permuton

Regime where the
decomposition tree converges
to a Brownian CRIT.

g ot 1N
3 ! ok T
(% ) e’ = f 1

Picture by I. Kortchemski



Biased Brownian separable permuton

Regime where the

decomposition tree converges
to a Brownian CRIT.

B v k)
- y e I =

Picture by I. Kortchemski

The signs in a uniform subtree
are biased: P(®) = p, and p
depends explicitely on S.
Here p = 0.2.



Biased Brownian separable permuton

Regime where the The signs in a uniform subtree

decomposition tree converges are biased: P(®) = p, and p

to a Brownian CRT. depends explicitely on S.
Here p = 0.2.

Picture by I. Kortchemski . N




Biased Brownian separable permuton

Regime where the

decomposition tree converges
to a Brownian CRIT.

B v k)
& e e -

Picture by I. Kortchemski

The signs in a uniform subtree
are biased: P(®) = p, and p
depends explicitely on S.

Here p = 0.2.
N . _

The regime a > 0 covers most known substitution-closed
classes: S finite or subexponential, S rational,...



Degenerate case a<(

Regime where the decomposition tree exhibits a condensation
bhenomenon. Roughly, g, looks like a large uniform simple
permutation in & and converges to the same limit v.

Picture by I. Kortchemski
Example: Av(2413). We still need to understand the permuton
limit of large simples in this class (+ technical hypotheses) to
apply our theorem.
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tree, a explicit.
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Regime where the decomposition tree converges to a a-stable

tree, a explicit.
a=1.5 a=1.1
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Stable permutons

Regime where the decomposition tree converges to a a-stable

tree, a explicit.
a=1.5 a=1.1

_ N I —
R .. b N T RS
. . X R Vi e Nt e nad
% : -?w T e ' “ T e,
A ¥ ey TR
r TR
-
w e » i e
T E i T A
r} 2. hia cies g : hE L s ‘{35.5
« ; Mo { Bl
" .hu ) TS E .':'.Hﬂ.w
. > -
ool .

34

le -\ Ay
e o el
S R <R
- T z, ﬁw L
I _.F‘:? TEr ER IS b
AL e G R o
PR Y P : Poamn
x - . - .H..I Tl ak
BUoniEk gy uvidd T hend e
"( ~ 4L E

Branches from each infinite-degree point are reordered
according to an independent copy of v (the limit of large
simples in the class)



ldea of proof (first, separable permutations)



Analytic combinatorics
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generating function of radius p
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Analytic combinatorics

Let (a,), be a nonnegative sequence and A(z) =) , a,z"
generating function of radius p
Transfer Theorem (Flajolet & Odlyzko) It

e A is defined on a A-domain at p > 0

o Az) = g(2) + (C + o(1))(p — 2)° with g analytic, 0 & N,

Z—p

then as, a, = (m +0(1))p~"n=179

It (a,), counts a recursive structure, equations on A are easy
to obtain from which the singular behavior can be inferred.
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Analytic combinatorics for leaf-counted trees

-or 'nice" varieties of trees, the uniform k-leaf-subtree in a

large tree converges to the uniform binary tree with k leaves.
I'(z)

Recursive trees counted by number of leaves.
I(z) =z+ F(T(z)) (Schroder: F(t) =) s, t5). u

. W - o def
In this case, 'nice’ <

1 0<u<Rg F(u)=1.
Then T is A-analytic at p
with T(p) = u and a
square-root sinqularity
(smooth implicit function
schema).

This is the case for Schroder
(F rational)

N



Uniform k-subtree in large unsigned trees

I has square-root singularity at p and F analytic at T (p).
Then, the g.f of trees with k marked leaves that induce the
k-tree T is
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Uniform k-subtree in large unsigned trees

I has square-root singularity at p and F analytic at T (p).
Then, the g.f of trees with k marked leaves that induce the
k-tree T is

1

deq(v) /:(deg(V))(T(Z))

Zk T,(Z) |_‘ T/(Z)deg(v)

v internal node of T

~, Cr(p _ Z)—#{nodes in T}/2.

Dominates when t binary.
(Then C; doesn’t depend on T).
Transfer: t,x converges in
distribution to a uniform
binary tree.
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Replace instances of 7’ by 7, (even height) or 7] (odd
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Uniform k-subtree in large signed trees

Counting signed trees that induce a given signed tree T:
adding parity constraints on the height of the marked leaf in
the marked trees.

Replace instances of 7’ by 7, (even height) or 7] (odd

height). T{+ T{ =T"and T = F/(T)T§,so T{ ~ T{ ~ 3T".

g.f. of Trees with kK marked leaves that induce the signed
k-tree T :

’ b ra 41k 1 eq(v
NI+ THTYTT B deg(v)|F(d IN(T(2))

v internal node of T

where a (resp. b) is the number of edges of T incident to two
nodes of the same (resp. different) signs

Hence all signed binary trees have the same asymptotic
probability, what whe needed for permuton convergence.
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Substitution-closed classes

Here the trees are described by a context-free grammar with
three types:

T2 T2
T — not®d noto T
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Substitution-closed classes

Here the trees are described by a context-free grammar with
three types:

T2 T2
T — not®d noto T
2T 1 T TnotEB " 1 T Tnote N S( )

T2
Toe = 2+ —— + S(T)

1 T TnotEB
T2t9
7_no‘[e = Z —l_ 1 L Tnote _I_ S(T)
Which reduces to
T2 T,

7_no‘t — 7—no‘[ = Z _|_ — _I_ S = 4 _|_ /\ 7_no‘( .
° ? 1 T TnotEB ( 1 T Tnot@ ( EB)

T Tnot@

N 1 T Tnot@.



Then
e If a > 0, then A\’ reaches 1 before its sinqularity and we
end up in the smooth implicit function schema (hence the
Brownian behavior)
e If a =0 then A'(R\) =1. If 06 > 1 is the sinqularity
exponent of S and A then the one of T, is (0 A2)7".
o If a <0 then N'(Ry) < 1. Then S, A and T, have the

same singularity exponent 0 > 1.
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Then
e If a > 0, then A\’ reaches 1 before its sinqularity and we
end up in the smooth implicit function schema (hence the
Brownian behavior)
e If a =0 then A'(R\) =1. If 06 > 1 is the sinqularity
exponent of S and A then the one of T, is (0 A2)7".
o If a <0 then N'(Ry) < 1. Then S, A and T, have the

same singularity exponent 0 > 1.

In the first two cases, the 3 x 3 matrix
(g.t. of trees of type i with a marked leaf ot type j); ic(g roie,mte}

is asymptotic to 7'  times a constant matrix of rank 1.

This is enough to analyze the probability of uniform subtrees
in a large substitution tree and prove the theorem.



2 — Construction of the Brownian Permuton
[arXiv:1711.08986]
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The Brownian excursion and CRT

A
Pe(y)
N \
.......................... ¢ Pe(x) T,
: : T
0 x y 1 pe(0) = pe(1)

de(x,y) = e(x) + e(y) — 2miny, € T. = ([0,1]/{d. = 0}, d,)

e contains more information than the metric space 7.: 1) a
mass measure 2) a DFS ordering of the vertices, <= an
ordering of the two subtrees at each branching point.
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The signed Brownian excursion

A e Brownian excursion, S
l.i.d. signs indexed by the
local minima of e.

- €3 Define a shuffled
- nseudo-order on [0, 1]
x <2 y if and only if

0 x y 1 x @ y y © x

We can interpret <l;,S as a DFS ordering on the tree 74,
different from the one given by e.

We set ¢(t) = Leb({u € [0,1], u <12 t}).
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Constructing the Brownian permuton

Theorem (M. 2017) L Px)
As. ¢ is (<12, <) increasing and | X
Lebesque-preserving, uniquely
characterized up to a.s. equality | s

by these properties. e s

The random measure (id, ¢).Leb X'\ ,

has the law of the Brownian “‘.‘:
separable permuton. R o ",‘
Discontinuities at every strict " \’P‘.'
local minima of e (dense) - -
~ The support of p is totally _+ . T
disconnected.




Constructing the Brownian permuton

There exists a A P(x)

Brownian X

excursion f

defined on the :

same probability e s

space such that )i'\ .

fop=e. ‘)tki.'

a.s., 71r is isometric R

to 7,. o "\’P‘_

- 4 S oo

) - L




Self-similarity

The Brownian permuton can be obtained by cut-and-pasting
three independent copies in distribution of itself. The first
copy o is cut according to a sample (Xo, Yo) ~ wo.

The scaling is an independent Dirichlet(1/2,1/2,1/2) vector.
The relative position of pq and p, is chosen independently
and uniformly between & and &.

H1
HO : "\K i T,
o A IR |
f .J& ‘;}
-




Expectation of the permuton

As p is a random measure, it is natural to compute its average
Eu, which is the limit of the permuton obtained by stacking
all separable permutations of a given size.

Theorem The permuton Ep has density function at (x, y) € [0, 1)

3]1[max(0,x—|—y—1),mln(x,y)](a)da
3 2
m(a(x —a)(1—x—y+ a)ly — a))?2 (% + ﬁ + (1_X1y+a) + (yla))

/ This should be equal to the following
! i

formula, computed by Dokos and Pak
i | (picture) for separable Baxter
permutations (for x < y A (1 — y),
extended by symmetry)

// dvdu
4dal(u + v)(y —v)(1 —y — u)P/?







