The PCP theorem and the complexity of 2 prover games

A game G is described four finite nonempty sets X',), A, B, a probability distribution p : X x Y — R
(we assume that for all x, y, pu(z, y) can be represented by abitstring of length at most [log(|X||)|)]) and a
table V : X x Y x Ax B — {0,1}. To see it as the input of a computational problem which should represent
G using a finite bitstring. One way to represent such a G is by the following string:

repr(G) := bin(|X[) [bin(|V]) [bin([A]) [bin([B]) [binfiog(x|y (1(2; Y))eyex.y | (V(2,9,0,0))zy.abex.y.A5

where bin(n) is the binary representation of the integer n, bing («) for a € (0, 1) is the binary representation
of o truncated after & bits, | is a separator symbol. To represent the lists for ;z and V, we have implicitly
chosen a fixed orders on X x Y and X x)Y x A x B and the list is represented as a separated sequence of bit-
strings in the corresponding order. Note that the size of the string representing G contains O(|X'||V||.A||B|)
symbols.

Given a game G, we can define its value

val(G) = supz,u(a:, Y) Z V(x,y,a,b)p(alz)q(bly) ,

p,q z,y a,b

where p, g are such that p(.|z), ¢(.|y) are probability distributions for every z, y. As the function is linear in p
and ¢, we can restrict the optimization to p, ¢ satisfying p(a|x), ¢(bly) € {0,1}, i.e., deterministic strategies.
We can then define the promise problem p-GAPGAMEVAL as follows: for any G as above if val(G) = 1,
then repr(G) is a YES instance and if val(G) < p, then repr(G) is a NO instance

Proposition 0.1. There exists a constant p < 1 such that promise problem p-GAPGAMEVAL is NP-hard in the
sense that for any L € N P, there is a polynomial time function f such that if x € L, then f(z) is a YES instance of
p-GAPGAMEVAL and if x ¢ L, f(x) is a NO instance of p-GAPGAMEVAL.

Proof We are going to use the NP-hardness of p-GAP3SAT (see the chapter on PCP theorem in the Arora-
Barak book https:/ /theory.cs.princeton.edu/complexity /book.pdf). An instance of GAP3SAT is given by
a set of variables labeled by [n], and a set of constraints labeled by [m]. A constraint ¢ € [m] contains three
variables v; (i), v2(i),v3(i) € [n] and each variable appears with a negation or not we represent this with
wi (1), wa(7), w3(i) € {0,1}. For example, a constraint z1 VZ10V 12 is represented by v; = 1, v = 10, v3 = 12
and wy = 0,wp = 1, w3 = 0. The game we construct is as follows: X = [n],) = [m], A = {0,1},B = {0,1}3.
Then yu(v, i) = 5 if variable v € {v1(i),v2(i), v3(i)} and otherwise 0. Also we set V (v, i, a, (b1, ba, b3)) = 1
when by, by, b3 satisfies the constraint i (i.e., B;Ul(i) Y 172”2(1') v 173”3(“ = 1, where the notation b¥ refers to b if
w = 0and bif w= 1) and a = b; where v = v;(i). And V is set to 0 otherwise. Note that all the operations
take a time which is polynomial in n and m so this is a valid reduction.

Now assume that the instance of GAP3SAT is satisfiable. Then the game has a strategy than wins with
probability 1: just take a satisfying assignment and both players answer according to this. Conversely,
assume the game has a winning probability 1 —§. Then let us construct an assignment of the variables. We
may assume that the strategy achieving 1 — ¢ is deterministic. Thus, the first player’s strategy is described
by a function o : [n] — {0, 1} and we interpret this as an assignment to the variables. Then the probability
of losing the game can be written as

3
1
2= D D Lo)b 6) OR By (11 OV i)220 v 1910
jelm) =1

https://theory.cs.princeton.edu/complexity/book.pdf

We know that this quantity is < §. We are on the other hand interested in

1 1
m Z 10’(1}1(i))wl(i)VO'(UQ(i))wQ(i)Vo‘(Ug(i))u3(i):O < m Z 1131(i)wl(i)v132(i)wz(i)vEg(i)w3<i):ola(uj(i)):bj(i)v]'e{lz,?,}

i€[m] ie[m]
1 3
D D Loy)b ()
i€[m] j=1
<60 .
So the formula si (1 — 66)-satisfiable and this concludes the proof of the converse. O

Note that we can even obtain the NP-hardness for any constant p < 1. This follows immediately from
the parallel repetition theorem. In fact, we will give a reduction from p-GAPGAMEVAL to e-GAPGAMEVAL
for any € > 0. Take an instance G for p-GAPGAMEVAL and then consider the game G’ obtained by parallel
repetition G a constant ¢(p, €) number of times. Then G’ can be obtained in polynomial time from G, and
if G had a value of 1, then so does G/, and if G had a value < p, then G’ has a value < ¢ if ¢(p, €) is chosen
appropriately.

