Variants: fighting overestimation
Some algorithms
Homework
Conclusions

Computer-Assisted Proofs Introduction to Interval Arithmetic

Cours de recherche master informatique

27 November 2025

Lohner's change of basis Affine arithmetic Taylor models Modal arithmetic

Agenda

Variants: fighting overestimation

Lohner's change of basis

Affine arithmetic

Taylor models

Modal arithmetic

Some algorithms

Newton

Solving linear systems

Certifying the solution of a linear system

Global optimization wo/with constraints

Constraints programming

Homework

Conclusions

Taylor expansion of order 1

Mean value theorem:

for
$$f$$
: $\mathbb{R} \to \mathbb{R}^n$
 $x \mapsto f(x)$

for x and y, there exists $\xi_y \in (x, y)$ (or (y, x)) such that

$$f(y) = f(x) + \nabla f(\xi_y) \cdot (y - x).$$

We deduced that for $x \in x$ and $y \in x$,

$$f(y) \in f(x) + \nabla f(x) \cdot (y - x)$$

and then

$$f(\mathbf{x}) \subset f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{x} - \mathbf{x}).$$

Similarly, in several dimensions: $f: \mathbb{R}^m \to \mathbb{R}^n$

For x and y, let us consider $g: t \mapsto (1-t)x + ty$.

We have h(t) = f(g(t)) is a function from \mathbb{R} to \mathbb{R}^n such that h(0) = f(x) and h(1) = f(y).

For $t \in [0,1]$, there exists $\xi_t \in (0,t)$ such that

$$h(t) = h(0) + \nabla h(\xi_t)(t-0)$$
, which can be written as

$$f(g(t)) = f(x) + \operatorname{Jac}(f(g(\xi_t))) \cdot \nabla g(\xi_t) \cdot t = f(x) + t \operatorname{Jac}(f(g(\xi_t))) \cdot (y - x)$$

thus, with
$$t = 1$$
,

$$f(y) = f(x) + \operatorname{Jac}(f(g(\xi_1))) \cdot \nabla g(\xi_1) = f(x) + \operatorname{Jac}(f(g(\xi_1))) \cdot (y - x)$$

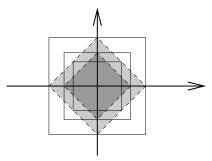
that is, for $x \in \mathbf{x}$ and $y \in \mathbf{x}$,

$$f(y) \in f(x) + \mathsf{Jac} f(x) \cdot (y - x)$$

and then, for $\tilde{x} \in \mathbf{x}$,

$$f(\mathbf{x}) \subset f(\tilde{\mathbf{x}}) + \mathsf{Jac} f(\mathbf{x}) \cdot (\mathbf{x} - \tilde{\mathbf{x}}).$$

Matrix-vector product: wrapping effect!



2 successive rotations of $\pi/4$ of the little central square

Ubiquity of the Wrapping Effect (after Lohner, 2001)

Where does the Wrapping Effect appear?

- ▶ matrix-vector iterations: $x_{n+1} = A_n x_n + b_n$, $x_0 \in I\mathbb{R}^n$;
- ▶ discrete dynamical systems: $x_{n+1} = f(x_n)$, x_0 given and f sufficiently smooth;
- continuous dynamical systems (ODEs): x'(t) = g(t, x(t)), $x(0) = x_0$, which is studied through a numerical one step method (or more) of the kind $x_{n+1} = x_n + h\Phi(x_n, t_n) + z_{n+1}$;
- ▶ difference equations: $a_0z_n + a_1z_{n+1} + ... + a_mz_{n+m} = b_n$ with $z_0, ... z_m$ given;
- automatic differentiation.

The matrix-vector iteration is archetypal of the wrapping effect in all of these cases.

Classical approach: coordinate transformations

(after Lohner, 2001)

$$\mathbf{x}_{n+1} = A_n \mathbf{x}_n + \mathbf{b}_n$$

Let's assume that A and b are constant ($A_n = A$, $b_n = b$ for all n). Well-known problem with the power method: x_n becomes aligned with the eigenvector corresponding to the largest eigenvalue (in module).

Principle: replace

$$\mathbf{x}_{n+1} = A\mathbf{x}_n + \mathbf{b}$$

by

$$x_{n+1} = By_{n+1}$$

 $y_{n+1} = B^{-1}ABy_n + B^{-1}b$

Choice of B?

better choose an orthogonal transformation.

Classical approach: *QR*-preconditioning

(after Lohner, and Nedialkov&Jackson, 2001)

Principle: Factor A as A = QR with Q orthogonal : $Q^{-1} = Q^T$, and R upper triangular.

In

$$x_{n+1} = Ax_n + b$$

replace x_n by

$$\begin{cases} x_n = Qy_n & \Leftrightarrow y_n = Q^T x_n \text{ and thus } \boldsymbol{y}_n = Q^T \boldsymbol{x}_n \\ \boldsymbol{y}_{n+1} = RQ\boldsymbol{y}_n + Q^T \boldsymbol{b} \end{cases}$$

Classical approach: *QR*-preconditioning

(after Lohner, and Nedialkov&Jackson, 2001)

Iteration:

$$\begin{cases} y_n = Q^T x_n \\ y_{n+1} = RQy_n + Q^T b \end{cases}$$

Theoretical results:

$$w(\mathbf{y}_n]) \le \operatorname{cond}(Q^T P) \rho(A)^n w(\mathbf{y}_0) + \frac{\operatorname{cond}(Q^T P) \rho(A)^{n-1} - 1}{\operatorname{cond}(Q^T P) \rho(A) - 1} w(\mathbf{b}) + |Q^T| w(\mathbf{b})$$

where A diagonalizable: $A = P\Lambda P^{-1}$.

Lohner's change of ba Affine arithmetic Taylor models Modal arithmetic

Agenda

Variants: fighting overestimation

Lohner's change of basis

Affine arithmetic

Taylor models

Modal arithmetic

Some algorithms

Newton

Solving linear systems

Certifying the solution of a linear system

Global optimization wo/with constraints

Constraints programming

Homework

Conclusions

Affine arithmetic

Comba, Stolfi and Figueiredo (1993, 2004)

Definition: each input or computed quantity *x* is represented by

$$x = x_0 + \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \dots + \alpha_n \varepsilon_n$$

where x_0 , α_1 , ... α_n are known real / floating-point numbers, and ε_1 , ε_2 ... ε_n are symbolic variables $\in [-1, +1]$.

Example: $x \in [3, 7]$ is represented by $x = 5 + 2\varepsilon$.

Operations:

Affine arithmetic: example

Comba, Stolfi and Figueiredo (1993, 2004)

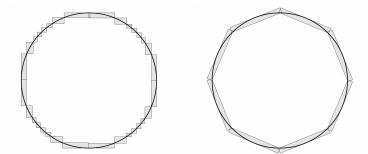


Figure 3. Rectangle approximation of a circle computed with interval arithmetic (left) and with affine arithmetic (right), using the same tolerance.

Affine arithmetic: example in 2D

for a given function f of two variables x and y, if $x = x_0 + \sum_{k=1}^n \alpha_k \varepsilon_k$ and $y = y_0 + \sum_{k=1}^n \beta_k \varepsilon_k$, we are looking for an approximation of

$$f(x,y) = f(x_0 + \sum_{k=1}^{n} \alpha_k \varepsilon_k, y_0 + \sum_{k=1}^{n} \beta_k \varepsilon_k)$$

as

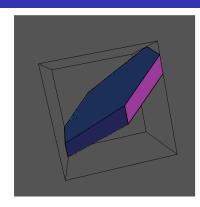
$$z_0 + \sum_{k=1}^{n} \gamma_k \varepsilon_k + \gamma_{n+1} \varepsilon_{n+1}$$

where z_0 and the γ_k are easy to compute and γ_{n+1} , which is the error, is small.

Roundoff errors: compute δ_I an upper bound of all roundoff errors and add it to γ_I .

Affine arithmetic: applications

Robex team in Brest, Cosynus team in LIX



Affine arithmetic: applications

Robex team in Brest

Lohner's change of bas Affine arithmetic Taylor models Modal arithmetic

Agenda

Variants: fighting overestimation

Lohner's change of basis

Affine arithmetic

Taylor models

Modal arithmetic

Some algorithms

Newton

Solving linear systems

Certifying the solution of a linear system

Global optimization wo/with constraints

Constraints programming

Homework

Conclusions

Taylor models

Berz, Hoefkens and Makino 1998, Nedialkov, Neher

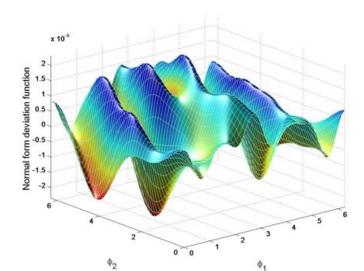
Principle: represent a function f(x) for $x \in [-1,1]$ by a polynomial part p(x) of degree d and a remainder part (a big bin) I such that $\forall x \in [-1,1], f(x) \in p(x) + I$.

Operations:

- affine operations: straigthforward;
- ▶ non-affine operations: enclose the nonlinear terms of degree higher than *d* and add this enclosure to the remainder.

Roundoff errors: determine an upper bound b on the roundoff errors and add [-b, b] to the remainder.

Taylor models: applications (HEP, beam physics)



Agenda

Variants: fighting overestimation

Lohner's change of basis

Affine arithmetic

Taylor models

Modal arithmetic

Some algorithms

Newton

Solving linear systems

Certifying the solution of a linear system

Global optimization wo/with constraints

Constraints programming

Homework

Conclusions

Modal arithmetic

Let
$$\mathbf{x} = [\underline{x}, \overline{x}]$$
, $\mathbf{y} = [\underline{y}, \overline{y}]$, $\mathbf{z} = [\underline{z}, \overline{z}]$, $\mathbf{x} + \mathbf{y} = \mathbf{z} \Leftrightarrow [\underline{x}, \overline{x}] + [\underline{y}, \overline{y}] = [\underline{x} + \underline{y}, \overline{x} + \overline{y}] = [\underline{z}, \overline{z}]$ what if $\mathbf{y}' = [\overline{y}, \underline{y}]$? but $\mathbf{z} - \mathbf{y} \neq \mathbf{x}$ $\mathbf{z} - \mathbf{y} = [\underline{z} - \overline{y}, \overline{z} - \underline{y}] \neq \mathbf{x}$ $\mathbf{z} - \mathbf{y}' = [\underline{z} - \underline{y}, \overline{z} - \underline{y}]$

$$\forall x \in x, \ \forall y \in y, \ x + y \in x + y$$

 $\forall z \in z, \ \forall y \in y, \ z - y \in z - y \supset x$

what if
$$y' = [\bar{y}, \underline{y}]$$
?
 $z - y' = x$?
 $z - y' = [\underline{z} - \underline{y}, \bar{z} - \bar{y}] = x$!

Meaning of y'?

$$\forall z \in z, \ \exists y' \in y, \ z - y \in z - y' = x$$
 true as $z = x + y$

In modal arithmetic, a proper interval is interpreted as quantified universally. an **improper** interval is interpreted as quantified existentially. \forall must precede \exists .

Modal arithmetic

Applications: compute inner approximations.

Pros and cons:

Pro recover algebraic properties (subtraction as the inverse of addition...)

Con how do you interpret an improper interval as the final result of a computation?

In practice: use of some "reverse" operations when needed.

Newton
Solving linear systems
Certifying the solution of a linear system
Global optimization wo/with constraints
Constraints programming

Agenda

Variants: fighting overestimation

Lohner's change of basis

Affine arithmetic

Taylor models

Modal arithmetic

Some algorithms

Newton

Solving linear systems

Certifying the solution of a linear system

Global optimization wo/with constraints

Constraints programming

Homework

Conclusions

Algorithm: solving a nonlinear system: Newton Why a specific iteration for interval computations?

Usual formula:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Direct interval transposition:

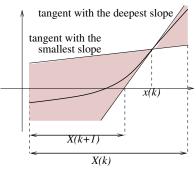
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$w(x_{k+1}) = w(x_k) + w\left(\frac{f(x_k)}{f'(x_k)}\right) > w(x_k)$$

divergence!

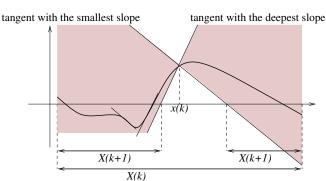
Algorithm: interval Newton principle of an iteration

(Hansen-Greenberg 83, Baker Kearfott 95-97, Mayer 95, van Hentenryck et al. 97)



$$x_{k+1} := \left(x_k - \frac{f(\{x_k\})}{f'(x_k)}\right) \bigcap x_k$$

Algorithm: interval Newton principle of an iteration



$$(x_{k+1,1},x_{k+1,2}) := \left(x_k - \frac{f(\{x_k\})}{f'(x_k)}\right) \cap x_k$$

Algorithm: interval Newton

```
Input: f, f', x_0
                         // x_0 initial search interval
   Initialization: \mathcal{L} = \{x_0\}, \ \alpha = 0.75 //any value in [0.5, 1] is suitable
   Loop: while \mathcal{L} \neq \emptyset
        Suppress (x, \mathcal{L})
        x := mid(x)
        (x_1,x_2) := \left(x - \frac{f(\lbrace x \rbrace)}{f'(x)}\right) \cap x
                                                      // x_1 and x_2 can be empty
        if w(x_1) > \alpha w(x) or w(x_2) > \alpha w(x) then (x_1, x_2) := \text{bisect}(x)
        if x_1 \neq \emptyset and f(x_1) \ni 0 then
             if w(x_1)/|\text{mid}(x_1)| \le \varepsilon_X or w(f(x_1)) \le \varepsilon_Y then Insert x_1 in Res
             else Insert x_1 in \mathcal{L}
        same handling of x_2
```

Output: Res, a list of intervals that may contain the roots.

Algorithm: interval Newton

properties

Existence and uniqueness of a root are proven:

if there is no hole and if the new iterate (before \bigcap) is contained in the interior of the previous one.

Existence of a root is proven:

- using the mean value theorem: OK if $f(\inf(x))$ and $f(\sup(x))$ have opposite signs. (Miranda theorem in higher dimensions).
- ▶ using Brouwer theorem: if the new iterate (before ∩) in contained in the previous one.

Algorithm: interval Newton *∈*-inflation

Existence and uniqueness of a root are proven:

once one has a satisfying iterate x,

- 1. inflate \mathbf{x} : $\mathbf{y} = [1 \varepsilon, 1 + \varepsilon]\mathbf{x}$
- 2. apply one iteration step to y, obtain y'
- 3. if $y' \subset \mathring{y}$ then y contains a unique root

Newton
Solving linear systems
Certifying the solution of a linear system
Global optimization wo/with constraints
Constraints programming

Agenda

Variants: fighting overestimation

Lohner's change of basis

Affine arithmetic

Taylor models

Modal arithmetic

Some algorithms

Newton

Solving linear systems

Certifying the solution of a linear system

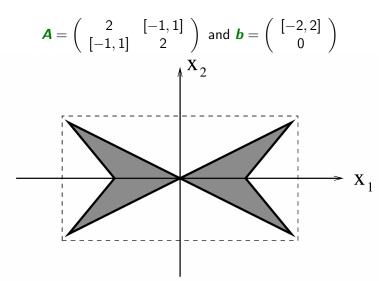
Global optimization wo/with constraints

Constraints programming

Homework

Conclusions

Linear systems solving: example



Algorithm: linear systems solving forget about LU factorization

```
Problem: solve Ax = b, i.e. determine Hull (\Sigma_{\exists\exists}(A,b)) = \text{Hull } (\{x : \exists A \in A, \exists b \in b, Ax = b\}).
```

Classical approach:

- riangular with unit diagonal, U upper triangular with L lower triangular with unit diagonal, U upper triangular
- ightharpoonup solve Ly = b
- ightharpoonup solve Ux = y

Interval approach

forget about Solving triangular linear systems forget about LU factorization: amplification of the dependency problem.

Algorithm: linear systems solving forget about LU factorization

Problem: solve Ax = b, i.e. determine Hull $(\Sigma_{\exists\exists}(A, b)) = \text{Hull } (\{x : \exists A \in A, \exists b \in b, Ax = b\}).$

Classical approach:

- riangular with unit diagonal, U upper triangular with L lower triangular with unit diagonal, U upper triangular
- ightharpoonup solve Ly = b
- ightharpoonup solve Ux = y

Interval approach:

forget about Solving triangular linear systems, forget about LU factorization: amplification of the dependency problem.

Algorithm: linear systems solving

example (Rohn, 2005)

Solve using interval arithmetic, based on floating-point arithmetic:

$$\begin{pmatrix} 1-\varepsilon & & & \\ 1 & 1 & & \\ \vdots & & \ddots & \\ 1 & \dots & \dots & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

where $\varepsilon = 2^{-53}$.

Exact solution, exact inverse:

$$\text{solution } = \left(\begin{array}{c} 1/(1-\varepsilon) \\ -\varepsilon/(1-\varepsilon) \\ 0 \\ \vdots \\ 0 \end{array} \right), \text{ inverse } = \left(\begin{array}{ccc} 1/(1-\varepsilon) \\ -1/(1-\varepsilon) & 1 \\ & -1 & 1 \\ & & \ddots & \ddots \\ & & & -1 & 1 \end{array} \right)$$

Algorithm: linear systems solving

example (Rohn, 2005)

Solve using interval arithmetic, based on floating-point arithmetic:

$$\begin{pmatrix} 1-\varepsilon & & & \\ 1 & 1 & & \\ \vdots & & \ddots & \\ 1 & \dots & \dots & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

where $\varepsilon=2^{-53}$: $1-\varepsilon$ and $1+2\varepsilon$ are FP but not $1+\varepsilon$.

Computed interval solution:

$$([1,1+2\varepsilon],[-2\varepsilon,0],[-2\varepsilon,2\varepsilon],\ldots,[-2^{i-2}\varepsilon,2^{i-2}\varepsilon],\ldots)'$$

Algorithm: linear systems solving (Hansen-Sengupta)

Problem: solve
$$Ax = b$$
, i.e. determine Hull $(\Sigma_{\exists\exists}(A,b)) = \text{Hull } (\{x : \exists A \in A, \exists b \in b, Ax = b\}).$

Pre-processing:

multiply the system by an approximate $mid(\mathbf{A})^{-1}$.

New system = $mid(\mathbf{A})^{-1}\mathbf{A}\mathbf{x} = \mathbf{b}$.

Hope: contracting iteration.

Algorithm: apply Gauss-Seidel iteration while convergence not reached loop

for
$$i=1$$
 to n do $oldsymbol{x}_i := \left(oldsymbol{b}_i - \sum_{j
eq i} oldsymbol{A}_{i,j} oldsymbol{x}_j
ight) / oldsymbol{A}_{i,i}$

Newton Solving linear systems Certifying the solution of a linear system Global optimization wo/with constraints Constraints programming

Agenda

Variants: fighting overestimation

Lohner's change of basis

Affine arithmetic

Taylor models

Modal arithmetic

Some algorithms

Newton

Solving linear systems

Certifying the solution of a linear system

Global optimization wo/with constraints

Conclusions

Algorithm: certify

Let A be a matrix, b a vector, x^* such that $Ax^* = b$ and \tilde{x} an approximate solution to Ax = b.

Problem: determine an enclosure of the error $x^* - \tilde{x}$.

Algorithm: certify

Rump (1980), Nguyen (2011)

Let A be a matrix, b a vector, x^* such that $Ax^* = b$ and \tilde{x} an approximate solution to Ax = b.

Iterative refinement:

determine an enclosure of the error $x^* - \tilde{x}$ and refine it.

while (not convergence)
$$m{r} = [b - A ilde{x}]$$
 $m{e} \supset A^{-1} m{r}$ $ilde{x} = ilde{x} + ext{mid}(m{e})$ $m{e} = m{e} - ext{mid}(m{e})$

Newton Solving linear systems Certifying the solution of a linear system Global optimization wo/with constraints Constraints programming

Algorithm: certify

in practice

Let A be a matrix, b a vector, x^* such that $Ax^* = b$ and \tilde{x} an approximate solution to Ax = b.

Iterative refinement: determine an enclosure of the error $x^* - \tilde{x}$.

- use R an approximate inverse of A (or use LU factorization of A and solve triangular systems)
- use an initial enclosure e_0 of the error (start with some guess, inflate it if needed until it works)
- replace the procedure to solve an interval linear system by a (hopefully contractant) iteration: apply [I RA].

Why? if R is close enough to A^{-1} , then RA is close to I and thus I - RA is small I has a spectral radius I thus repeatedly multiplying by it contracts I e.

Newton
Solving linear systems
Certifying the solution of a linear system
Global optimization wo/with constraints
Constraints programming

Agenda

Variants: fighting overestimation

Lohner's change of basis

Affine arithmetic

Taylor models

Modal arithmetic

Some algorithms

Newton

Solving linear systems

Certifying the solution of a linear system

Global optimization wo/with constraints

Constraints programming

Homework

Conclusions

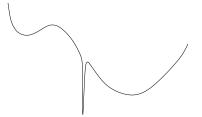
Algorithm: optimize a continuous function

Problem: $f: \mathbb{R}^n \to \mathbb{R}$, determine x^* and f^* that verify

$$f^* = f(x^*) = \min_{x} f(x)$$

Assumptions:

- \triangleright search within a box x_0
- $x^* \in \text{in the interior of } (x_0), \text{ not at the boundary}$
- f continuous enough: C^2

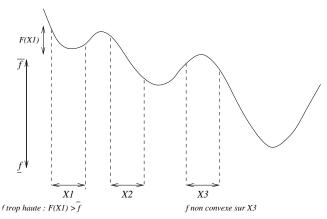


Algorithm: optimize a continuous function

```
(Ratschek and Rokne 1988, Hansen 1992, Kearfott 1996...)
```

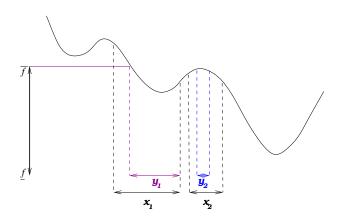
```
Goal: find the minimum of f, continuous function on a box x_0. x_0 current box \bar{f} current upper bound of f^* while there is a box in the waiting list if f(x) > \bar{f} then reject x otherwise update \bar{f}: if f(mid(x)) < \bar{f} then \bar{f} = f(mid(x)) bisect x into x_1 and x_2 examine x_1 and x_2
```

Algorithm: optimize a continuous function the rejection procedure



0 n'est pas dans G(X2)

Algorithm: optimize a continuous function the reduction procedure

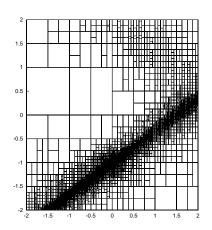


Algorithm: optimize a continuous function

Hansen algorithm Hansen 1992

```
\mathcal{L} = list of not yet examined boxes := \{x_0\}
while \mathcal{L} \neq \emptyset loop
         remove x from \mathcal{L}
         reject x?
                 ves if f(x) > \bar{f}
                 ves if Grad f(x) \not\ni 0
                 yes if Hf(x) has its diagonal non > 0
         reduce x
                  Newton applied to the gradient
                 solve \mathbf{y} \subset \mathbf{x} such that f(\mathbf{y}) < \bar{f}
         bisect y: insert the resulting y_1 and y_2 in \mathcal{L}
```

Exemple de découpage d'un pavé $[-2,2]^2$



Algorithm: constrained optimization

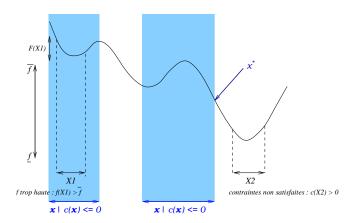
Problem: $f: \mathbb{R}^n \to \mathbb{R}$ and $c: \mathbb{R}^n \to \mathbb{R}^m$, determine x^* and f^* that verify

$$f^* = f(x^*) = \min_{\{x \mid c(x) \le 0\}} f(x)$$

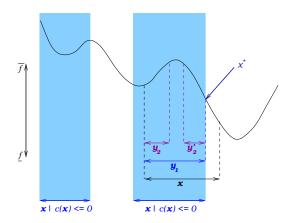
Assumptions:

- \triangleright search within a box x_0
- ▶ f continuous enough: C^2
- ightharpoonup c continuous enough: \mathcal{C}^1

Algorithm: constrained optimization $c(x) \le 0$ the rejection procedure



Algorithm: constrained optimization $c(x) \le 0$ the reduction procedure



Algorithm: constrained optimization $c(x) \le 0$

```
\mathcal{L} := \{ x_0 \}
                                                             \mathcal{L} := \{ x_0 \}
while \mathcal{L} \neq \emptyset loop
                                                              while \mathcal{L} \neq \emptyset loop
      remove x from \mathcal{L}
                                                                    remove x from \mathcal{L}
      reject x?
                                                                   reject x?
           ves if f(x) > \bar{f}
                                                                         ves if f(x) > \overline{f}
                                                                         ves if c(x) > 0
           ves if Grad f(x) \not\ni 0
           yes if f not convex on x
      reduce x
                                                                    reduce x
           solve \mathbf{v} \subset \mathbf{x} \mid f(\mathbf{v}) < \bar{f}
                                                                         solve \mathbf{y} \subset \mathbf{x} such that c(\mathbf{y}) \leq 0
           Newton applied to the gradient
                                                                         Newton applied to the Lagrangian
      bisect y into y_1 and y_2
                                                                    bisect y into y_1 and y_2
                                                                         insert y_1 and y_2 in \mathcal{L}
           insert y_1 and y_2 in \mathcal{L}
```

Newton Solving linear systems Certifying the solution of a linear system Global optimization wo/with constraints Constraints programming

Agenda

Variants: fighting overestimation

Lohner's change of basis

Affine arithmetic

Taylor models

Modal arithmetic

Some algorithms

Newton

Solving linear systems

Certifying the solution of a linear system

Global optimization wo/with constraints

Constraints programming

Homework

Conclusions

Algorithm: constraints programming

Cleary 1987, Benhamou et al. 1999, Jaulin et al. 2001

Problem:

$$\begin{cases}
c_1(x_1,\ldots,x_n) = 0 \\
\vdots \\
c_p(x_1,\ldots,x_n) = 0
\end{cases}$$

expressed as:

$$\begin{array}{rcl} y_i &=& x_i & \text{ for } 1 \leq i \leq n \\ y_k &=& y_i \diamond y_j & \text{ for } n+1 \leq k \leq m \text{ and } i,j < k \\ && y_k \text{ auxiliary variable} \\ \text{where} && y_k &=& \varphi(y_i) & \text{ for } n+1 \leq k \leq m \text{ and } i < k \end{array}$$

Newton Solving linear systems Certifying the solution of a linear systen Global optimization wo/with constraints Constraints programming

Algorithm: constraints programming

Initializations:
$$y_1 := x_1, \dots, y_n := x_n$$

Propagation: forward mode

for
$$k = n + 1$$
 to m loop $\mathbf{y}_k := \mathbf{y}_i \diamond \mathbf{y}_j$ or $\mathbf{y}_k := \varphi(\mathbf{y}_i)$

Propagation: backward mode

for
$$k=m$$
 to n loop if \mathbf{y}_k is defined as $\mathbf{y}_i \diamond \mathbf{y}_j$ then
$$\mathbf{y}_i := \left(\mathbf{y}_k \diamond^{-r} \mathbf{y}_i\right) \cap \mathbf{y}_i$$

$$\mathbf{y}_j := \left(\mathbf{y}_i \diamond^{-l} \mathbf{y}_k\right) \cap \mathbf{y}_j$$
 else if \mathbf{y}_k is defined as $\varphi(\mathbf{y}_i)$ then
$$\mathbf{y}_i := \varphi^{-1}(\mathbf{y}_k) \cap \mathbf{y}_i$$

using **reverse** ("modal-like") operations.

Agenda

Variants: fighting overestimation

Lohner's change of basis

Affine arithmetic

Taylor models

Modal arithmetic

Some algorithms

Newton

Solving linear systems

Certifying the solution of a linear system

Global optimization wo/with constraints

Constraints programming

Homework

Conclusions

Exercise 1

Test the interval Newton method for these two functions f and g,

$$f: x \mapsto x^2 - 2 \text{ or } x \mapsto \prod_{i=1}^5 (x - i)$$

starting from different intervals x_0 , and

$$g: x \mapsto x^2 - 2x + 1$$

starting from different intervals x_0 .

For both cases, observe the speed of convergence, that is, the evolution of the widths of the iterates.

intersect_interval, isinterior: may be useful

Exercise 1: useful commands

```
extended_div: division by an interval possibly containing 0, returns 2
results
return x1, x2: to return 2 results
Always return 2 results even if empty, it is easier to handle
isempty_interval(I): true if I is empty
interval(4.5): transforms 4.5 into an interval, for subsequent
evaluation
```

Exercise 2

Create random matrices A, badly scaled (pre-multiply by D, a diagonal matrix with largely varying coefficients), and/or badly conditioned ($A = Q \cdot D \cdot Q'$ where D as above and Q orthogonal).

Create random vectors x and right-hand side b = Ax.

Pretend you do not know *x*.

Solve (i.e. determine x) such that Ax = b and certify the solution.

using LinearAlgebra: to have access to useful functionalities

A=rand(10,10): creates a random matrix of dims 10×10

 $A[5,5]: A_{5,5}$

D=diagm([1,2,3,4,5]): creates a diagonal matrix having 1, 2, 3, 4 and 5 as diagonal elements

(Q,R)=qr(A): to obtain the QR factorization of A, Q is orthogonal

(L,U)=lu(A): to obtain the LU factorization of A

inv(A): to obtain an approximate inverse of A

A*B: to multiply two matrices A and B

Homework

Choose one of the exercises.

Send your Julia files including your results, and your comments (in any form: text file, legibly handwritten document)

to Nathalie.Revol@ens-lyon.fr at latest Thursday, December 4 at 10h15.

Agenda

Variants: fighting overestimation

Lohner's change of basis

Affine arithmetic

Taylor models

Modal arithmetic

Some algorithms

Newton

Solving linear systems

Certifying the solution of a linear system

Global optimization wo/with constraints

Constraints programming

Homework

Conclusions

Conclusions

Interval algorithms

- can solve problems that other techniques are not able to solve
- is a simple version of set computing
- give effective versions of theorems which did not seem to be effective (Brouwer)
- can determine all zeros or all extrema of a continuous function
- overestimate the result
- ▶ is less efficient than floating-point arithmetic (theoretical factor: 4, practical factor: 2 to 15 or worse)
 - \Rightarrow solve "small" problems.

Philosophical conclusion

Morale

- forget one's biases:
 - do not use without thinking algorithms which are supposed to be good ones (Newton)
 - do not reject without thinking algorithm which are supposed to be bad ones (Gauss-Seidel)
- prefer contracting iterations whenever possible

Teaser

In relation with formal proof:

- compute your result using interval arithmetic
- clean and simplify the computing path: avoid bisection when not useful, put first the most promising branch...
- give this "neat" computing path to your favorite proof assistant.

Magical conclusion

Magical conclusion

```
22 6 24 31
28 27 11 17
12 20 25 26
21 30 23 9
```

References on interval arithmetic

- R. Moore: *Interval Analysis*, Prentice Hall, Englewood Cliffs, 1966.
- ► A. Neumaier: Interval methods for systems of equations, CUP, 1990.
- R. Moore, R.B. Kearfott, M.J. Cloud: Introduction to interval analysis, SIAM, 2009.
- ▶ W. Tucker: *Validated numerics*, Princeton U. Press, 2011.
- S.M. Rump: Computer-assisted proofs and Self-Validating Methods. In B. Einarsson ed., Handbook on Accuracy and Reliability in Scientific Computation, pp. 195-240. SIAM, 2005.
- S.M. Rump: Verification methods: Rigorous results using floating-point arithmetic, Acta Numerica, vol. 19, pp. 287-449, 2010.

References on interval arithmetic

- ▶ J. Rohn: A Handbook of Results on Interval Linear Problems, http://www.cs.cas.cz/rohn/handbook 2006.
- ► E. Hansen and W. Walster: Global optimization using interval analysis, MIT Press, 2004.
- ▶ R.B. Kearfott: *Rigorous global search: continuous problems*, Kluwer, 1996.
- V. Kreinovich, A. Lakeyev, J. Rohn, P. Kahl: Computational Complexity and Feasibility of Data Processing and Interval Computations, Dordrecht, 1997.
- ► L.H. Figueiredo, J. Stolfi: Affine arithmetic http://www.ic.unicamp.br/~stolfi/EXPORT/projects/affine-arith/.
- Taylor models arith.: M. Berz and K. Makino, N. Nedialkov, M. Neher.