
Data processing and networks optimization

Part I: Introduction

Pierre Borgnat1, Jean-Christophe Pesquet2, Nelly Pustelnik1

1 ENS Lyon – Laboratoire de Physique – CNRS UMR 5672
pierre.borgnat@ens-lyon.fr, nelly.pustelnik@ens-lyon.fr

2 LIGM – Univ. Paris-Est – CNRS UMR 8049
jean-christophe.pesquet@univ-paris-est.fr

2/22

Optimization ?

Whatever people do, at some point they get a craving to organize things in
a best possible way. This intention, converted in a mathematical form,

turns out to be an optimization problem of certain type.
(Yurii Nesterov)

3/22

Valued graphs

I V =
{
v (i)

∣∣ i ∈ {1, . . . ,M}}
 set of vertices = objects
v (i) ∈ V ↔ i ∈ {1, . . . ,M}

I E =
{
e(i ,j)

∣∣ (i , j) ∈ E
}

 set of edges = object relationships

e(i ,j) ∈ E ↔ (i , j) ∈ E

I directed reflexive graph: |E| ≤ M2

directed nonreflexive graph: |E| ≤ M(M − 1)
undirected nonreflexive graph: |E| ≤ M(M − 1)/2

I (x (i))1≤i≤M : weights on vertices (scalars or vectors)

I (x(i ,j))(i ,j)∈E: weights on edges (scalars or vectors)

3/22

Valued graphs

I V =
{
v (i)

∣∣ i ∈ {1, . . . ,M}}
 set of vertices = objects
v (i) ∈ V ↔ i ∈ {1, . . . ,M}

I E =
{
e(i ,j)

∣∣ (i , j) ∈ E
}

 set of edges = object relationships

e(i ,j) ∈ E ↔ (i , j) ∈ E

I directed reflexive graph: |E| ≤ M2

directed nonreflexive graph: |E| ≤ M(M − 1)
undirected nonreflexive graph: |E| ≤ M(M − 1)/2

I (x (i))1≤i≤M : weights on vertices (scalars or vectors)

I (x(i ,j))(i ,j)∈E: weights on edges (scalars or vectors)

3/22

Valued graphs

I V =
{
v (i)

∣∣ i ∈ {1, . . . ,M}}
 set of vertices = objects
v (i) ∈ V ↔ i ∈ {1, . . . ,M}

I E =
{
e(i ,j)

∣∣ (i , j) ∈ E
}

 set of edges = object relationships

e(i ,j) ∈ E ↔ (i , j) ∈ E

I directed reflexive graph: |E| ≤ M2

directed nonreflexive graph: |E| ≤ M(M − 1)
undirected nonreflexive graph: |E| ≤ M(M − 1)/2

I (x (i))1≤i≤M : weights on vertices (scalars or vectors)

I (x(i ,j))(i ,j)∈E: weights on edges (scalars or vectors)

3/22

Valued graphs

I V =
{
v (i)

∣∣ i ∈ {1, . . . ,M}}
 set of vertices = objects
v (i) ∈ V ↔ i ∈ {1, . . . ,M}

I E =
{
e(i ,j)

∣∣ (i , j) ∈ E
}

 set of edges = object relationships

e(i ,j) ∈ E ↔ (i , j) ∈ E

I directed reflexive graph: |E| ≤ M2

directed nonreflexive graph: |E| ≤ M(M − 1)

undirected nonreflexive graph: |E| ≤ M(M − 1)/2

I (x (i))1≤i≤M : weights on vertices (scalars or vectors)

I (x(i ,j))(i ,j)∈E: weights on edges (scalars or vectors)

3/22

Valued graphs

I V =
{
v (i)

∣∣ i ∈ {1, . . . ,M}}
 set of vertices = objects
v (i) ∈ V ↔ i ∈ {1, . . . ,M}

I E =
{
e(i ,j)

∣∣ (i , j) ∈ E
}

 set of edges = object relationships

e(i ,j) ∈ E ↔ (i , j) ∈ E

I directed reflexive graph: |E| ≤ M2

directed nonreflexive graph: |E| ≤ M(M − 1)

undirected nonreflexive graph: |E| ≤ M(M − 1)/2

I (x (i))1≤i≤M : weights on vertices (scalars or vectors)

I (x(i ,j))(i ,j)∈E: weights on edges (scalars or vectors)

3/22

Valued graphs

I V =
{
v (i)

∣∣ i ∈ {1, . . . ,M}}
 set of vertices = objects
v (i) ∈ V ↔ i ∈ {1, . . . ,M}

I E =
{
e(i ,j)

∣∣ (i , j) ∈ E
}

 set of edges = object relationships

e(i ,j) ∈ E ↔ (i , j) ∈ E

I directed reflexive graph: |E| ≤ M2

directed nonreflexive graph: |E| ≤ M(M − 1)

undirected nonreflexive graph: |E| ≤ M(M − 1)/2

I (x (i))1≤i≤M : weights on vertices (scalars or vectors)

I (x(i ,j))(i ,j)∈E: weights on edges (scalars or vectors)

3/22

Valued graphs

I V =
{
v (i)

∣∣ i ∈ {1, . . . ,M}}
 set of vertices = objects
v (i) ∈ V ↔ i ∈ {1, . . . ,M}

I E =
{
e(i ,j)

∣∣ (i , j) ∈ E
}

 set of edges = object relationships

e(i ,j) ∈ E ↔ (i , j) ∈ E

I directed reflexive graph: |E| ≤ M2

directed nonreflexive graph: |E| ≤ M(M − 1)

undirected nonreflexive graph: |E| ≤ M(M − 1)/2

I (x (i))1≤i≤M : weights on vertices (scalars or vectors)

I (x(i ,j))(i ,j)∈E: weights on edges (scalars or vectors)

4/22

Quantitative analysis

I Objective function
The merits of a given choice of the weights is evaluated by

f
(
(x (i))1≤i≤M , (x(i ,j))(i ,j)∈E

)

4/22

Quantitative analysis

I Objective function
The merits of a given choice of the weights is evaluated by

f
(

(x (i))1≤i≤M , (x(i ,j))(i ,j)∈E︸ ︷︷ ︸
x

)
where

x =

[
(x (i))1≤i≤M
(x(i ,j))(i ,j)∈E

]
∈ D ⊂ RN

and f : D 7→ [−∞,+∞].

Example: scalar weights ⇒ N = M + |E|

The number of variables can often be reduced.

5/22

Optimization over graphs

I Minimization problems
f : cost function
We want to

Find x̂ ∈ D such that (∀x ∈ D) f (x̂) ≤ f (x)

⇔ Find x̂ ∈ D such that f (x̂) = inf
x∈D

f (x)

that is

Find x̂ ∈ Argmin
x∈D

f (x).

5/22

Optimization over graphs

I Maximization problems
f : reward function
We want to

Find x̂ ∈ D such that (∀x ∈ D) f (x̂) ≥ f (x)

⇔ Find x̂ ∈ D such that (∀x ∈ D) − f (x̂) ≤ −f (x)

⇔ Find x̂ ∈ Argmin
x∈D

(
− f (x)

)
.

Without loss of generality, we can
focus on minimization problems
with f : D →]−∞,+∞].

6/22

Various types of minimization problems

I D = RN : unconstrained problem

I D countable: discrete optimization problem

I D finite: combinatorial optimization problem
I D ⊂ ZN : integer optimization problem

6/22

Various types of minimization problems

I D = RN : unconstrained problem
I D countable: discrete optimization problem

I D finite: combinatorial optimization problem
I D ⊂ ZN : integer optimization problem

6/22

Various types of minimization problems

I D = RN : unconstrained problem
I D countable: discrete optimization problem

I D finite: combinatorial optimization problem

I D ⊂ ZN : integer optimization problem

6/22

Various types of minimization problems

I D = RN : unconstrained problem
I D countable: discrete optimization problem

I D finite: combinatorial optimization problem
I D ⊂ ZN : integer optimization problem

7/22

Various types of minimization problems

I D uncountable: continuous optimization problem

I Optimization problem with P equality constraints and Q inequality
constraints:

D = {x ∈ RN | (∀i ∈ {1, . . . ,P}) ϕi (x) = δi

and (∀j ∈ {1, . . . ,Q}) ψj(x) ≤ ηj}

where (∀i ∈ {1, . . . ,P}) δi ∈ R and ϕi : RN →]−∞,+∞],
(∀j ∈ {1, . . . ,Q}) ηj ∈ R and ψj : RN →]−∞,+∞].

If ϕi : x 7→ 〈x | ui 〉 with i ∈ {1, . . . ,P} and ui ∈ RN , then linear (or
affine) equality constraint.
If ψj : x 7→ 〈x | uj〉 with j ∈ {1, . . . ,Q} and uj ∈ RN , then linear (or
affine) inequality constraint.

7/22

Various types of minimization problems

Remark:

Find x̂ ∈ Argmin
x∈D

f (x)

⇔ Find x̂ ∈ Argmin
x∈RN

f̃ (x)

where

(∀x ∈ RN) f̃ (x) =

{
f (x) if x ∈ D

+∞ otherwise.

Allowing non finite valued functions leads to a unifying view of constrained
and unconstrained minimization problems.

8/22

Main questions to be addressed

1. Existence/uniqueness of a solution x̂ ?

2. Characterization of solutions: necessary/sufficient conditions for x̂ to
be a solution.

3. Designing an algorithm to approximate a solution in the frequent case
when no closed form solution is available, i.e. building a sequence
(xn)n∈N of RN such that

lim
n→+∞

xn = x̂ .

4. Evaluation of the performance of the optimization algorithm:
I Convergence speed

Example: If there exists ρ ∈]0, 1[and n∗ ∈ N such that (∀n ≥ n∗)
‖xn+1 − x̂‖ ≤ ρ‖xn − x̂‖, then Q-linear convergence rate.

If limn→+∞
‖xn+1−x̂‖
‖xn−x̂‖ = 0, then Q-superlinear convergence rate.

I Robustness to numerical errors
I Amenability to parallel/distributed implementations.

8/22

Main questions to be addressed

1. Existence/uniqueness of a solution x̂ ?
2. Characterization of solutions: necessary/sufficient conditions for x̂ to

be a solution.

3. Designing an algorithm to approximate a solution in the frequent case
when no closed form solution is available, i.e. building a sequence
(xn)n∈N of RN such that

lim
n→+∞

xn = x̂ .

4. Evaluation of the performance of the optimization algorithm:
I Convergence speed

Example: If there exists ρ ∈]0, 1[and n∗ ∈ N such that (∀n ≥ n∗)
‖xn+1 − x̂‖ ≤ ρ‖xn − x̂‖, then Q-linear convergence rate.

If limn→+∞
‖xn+1−x̂‖
‖xn−x̂‖ = 0, then Q-superlinear convergence rate.

I Robustness to numerical errors
I Amenability to parallel/distributed implementations.

8/22

Main questions to be addressed

1. Existence/uniqueness of a solution x̂ ?
2. Characterization of solutions: necessary/sufficient conditions for x̂ to

be a solution.
3. Designing an algorithm to approximate a solution in the frequent case

when no closed form solution is available, i.e. building a sequence
(xn)n∈N of RN such that

lim
n→+∞

xn = x̂ .

4. Evaluation of the performance of the optimization algorithm:
I Convergence speed

Example: If there exists ρ ∈]0, 1[and n∗ ∈ N such that (∀n ≥ n∗)
‖xn+1 − x̂‖ ≤ ρ‖xn − x̂‖, then Q-linear convergence rate.

If limn→+∞
‖xn+1−x̂‖
‖xn−x̂‖ = 0, then Q-superlinear convergence rate.

I Robustness to numerical errors
I Amenability to parallel/distributed implementations.

8/22

Main questions to be addressed

1. Existence/uniqueness of a solution x̂ ?
2. Characterization of solutions: necessary/sufficient conditions for x̂ to

be a solution.
3. Designing an algorithm to approximate a solution in the frequent case

when no closed form solution is available, i.e. building a sequence
(xn)n∈N of RN such that

lim
n→+∞

xn = x̂ .

4. Evaluation of the performance of the optimization algorithm:
I Convergence speed

Example: If there exists ρ ∈]0, 1[and n∗ ∈ N such that (∀n ≥ n∗)
‖xn+1 − x̂‖ ≤ ρ‖xn − x̂‖, then Q-linear convergence rate.

If limn→+∞
‖xn+1−x̂‖
‖xn−x̂‖ = 0, then Q-superlinear convergence rate.

I Robustness to numerical errors
I Amenability to parallel/distributed implementations.

9/22

Example: Traveling salesman problem

I Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly once
and returns to the origin city?

10/22

Example: Traveling salesman problem

I Directed nonreflexive graph

V: set of the cities

E : set of roads

x = (x(i,j))(i,j)∈E where, for every (i , j) ∈ E, x(i,j) = 1 if the path goes from
the city i to the city j and 0 otherwise,

N = |E|.
I Cost function

f (x) =
∑

(i,j)∈E

ci,jx
(i,j) to be minimized subject to


(∀(i , j) ∈ E) x(i,j) ∈ {0, 1}, ci,j : distance between i and j

(∀j ∈ {1, . . . ,M})
∑M

i=1,(i,j)∈E x(i,j) = 1 ← There is 1 arrival to each city.

(∀i ∈ {1, . . . ,M})
∑M

j=1,(i,j)∈E x(i,j) = 1 ← From each city, there is 1 departure.

 D ⊂ {0, 1}N

11/22

Example: Mesh denoising problem

I Remove uncertainties in mesh measurements

12/22

Example: Mesh denoising problem

I Undirected nonreflexive graph
V: set of vertices of the mesh
E : set of edges of the mesh
x = (x (i))1≤i≤M where, for every i ∈ {1, . . . ,M},
x (i) ∈ R3: 3D coordinates of the i-th vertex of the true object
N = 3M and D = RN .

I Cost function

f (x) =
M∑
i=1

(
‖x (i) − y (i)‖2 +

(∑
j∈Ni

ωi ,j‖x (j) − x (i)‖2
)1/2)

where, for every i ∈ {1, . . . ,M},
I y (i): 3D measured coordinates of the i-th vertex
I Ni : neighborhood of i-th vertex
I (ωi,j)j∈Ni : nonnegative regularization constants.

13/22

Example: Segmentation problem

I Assign a label to every pixel in an image so that pixels with the same
label share certain characteristics.

14/22

Example: Segmentation problem

I Undirected nonreflexive regular graph
V: Set of pixels
E : Set of neighborhood relationships between pixels
x = (x (i))1≤i≤M where, for every i ∈ {1, . . . ,M}, x (i) ∈ L: label of
pixel i
L ⊂ R: finite set of labels
N = M and D = LM .

I Cost function

f (x) =
M∑
i=1

αq
i |x

(i) − y (i)|q +
∑

(i ,j)∈E

ωq
i ,j |x

(j) − x (i)|q

where, for every i ∈ {1, . . . ,M},
I y (i): intensity value of pixel i
I (αi)1≤i≤M and (ωi,j)(i,j)∈E: nonnegative constants
I (p, q) ∈ [1,+∞[2.

15/22

Example: Inpainting

I Given an incomplete image, fill its missing part in a visually plausible
way

16/22

Example: Inpainting

I Undirected nonreflexive graph

V: Set of patches intersecting the target region (black area)

E : Set of neighborhood relationships between these patches

x = (x (i))1≤i≤M where, for every i ∈ {1, . . . ,M}, x (i) ∈ L: patch i

L: Set of complete patches from the source image (blue boxes)

N = M and D = LN .

I Cost function

f (x) =
M∑
i=1

Ui (x
(i)) +

∑
(i,j)∈E

Vi,j(x
(i), x (j))

I (Ui)1≤i≤M : measure the similarity between
the target patch and the source patches

I (Vi,j)1≤i,j≤N : measure the similarity on
overlapping regions.

17/22

Example: Neural networks

I Mimic biological neural networks

17/22

Example: Neural networks

I Mimic biological neural networks

17/22

Example: Neural networks

I Mimic biological neural networks

x⁽¹⁾

x⁽²⁾

x⁽⁵⁾ x⁽¹⁰⁾
+

g

(2,5)

(1,5)

(5,10)

(5,5)

18/22

Example: Neural networks

I Directed reflexive graph
V: Set of neurons in the network
E : Set of synaptic connections
x = (x(i ,j))(i ,j)∈E where, for every (i , j) ∈ E, if i 6= j , x(i ,j) is a

weighting input factor, and if i = j , x(i ,i) is a bias parameter.
N = |E| and D = RN .

I Cost function

f (x) =
∑
i∈VO

|x (i) − s(i)|p, p ∈ [1,+∞]

where (∀i ∈ {1, . . . ,M}) x (i) = g(
∑

j∈Ni
x(j ,i)x (j) + x(i ,i)) with

g : R→ R activation function (ex: sigmoid g = tanh), Ni set of
neurons exciting neuron i , s(i) desired response when the neuron is
trained with an element (x (j))j∈VI

of an input training sequence,
{1, . . . ,M} = VI ∪ VT ∪ VO with VI input layer, VT intermediate
layers, and VO output layer.
 deep learning requiring a large training sequence for the parameters
to be estimated in a reliable manner.

19/22

Example: Multiagent consensus problem

I Each agent process local data and cooperate with its neighbors to
estimate global parameters.

Examples: Trajectory planning, distributed clustering, Internet traffic
anomalies, ...

20/22

Example: Multiagent consensus problem

I Directed nonreflexive graph

V: Set of agents

E : Set of relationships between agents

x = (x (i))1≤i≤M vector of estimates in RP at each node

N = MP and

D =
{

(x (i))1≤i≤M ∈ (RP)M
∣∣ x (1) = . . . = x (M)

}
.

I Cost function

f (x) =
M∑
i=1

gi (x
(i), y (i))

where (∀i ∈ {1, . . . ,M}) −gi : RP ×RQ →]−∞,+∞] utility function
at node i and y (i) ∈ RQ : observations available at node i .

21/22

Optimization ?

I Convex optimization (∼ 8 hours)
I Fundamentals
I Dual formulation
I Non-smooth optimization
I Algorithms

I Discrete optimization (∼ 3 hours)
I Graph-cut problem
I Alpha expansion

I Distributed algorithms (∼ 3 hours)

22/22

Reference books

I D. Bertsekas, Nonlinear programming, Athena Scientic, Belmont,
Massachussets, 1995.

I Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, Springer, 2004.

I S. Boyd and L. Vandenberghe, Convex optimization, Cambridge
University Press, 2004.

I H. H. Bauschke and P. L. Combettes, Convex Analysis and
Monotone Operator Theory in Hilbert Spaces, Springer, New York,
2011.

