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Optimization ?

Whatever people do, at some point they get a craving to organize things in
a best possible way. This intention, converted in a mathematical form,
turns out to be an optimization problem of certain type.

(Yurii Nesterov)




3/22

Valued graphs

sV ={v) |ie{1,...,M}} ve
~- set of vertices = objects v
vilev oie{l,....M}

v

v(®)

v



3/22

Valued graphs

-

Y ={v]ie{1,...,M}} ve
e(t.2)

~ set of vertices = objects v() /
el32)
\ v

vilev sie{l,.... M}
6(511)\\ e“2)
- £ = {9 | () € B} : U
~ set of edges = object relationships Y EN 069
e e & o (i,j)eE v



3/22

Valued graphs

-

Y ={v]ie{1,...,M}} ve

e(1.2)

~ set of vertices = objects v() /
e(3.2)
\ v

vilev sie{l,.... M}
6(511)\\ e2)

> 5:{e(iJ) ’ (i,j)e]E} O
v(®) \\
e

~ set of edges = object relationships 069
e e & o (i,j)eE v

» directed reflexive graph: |E| < M?



3/22

Valued graphs

sV ={v) |ie{1,...,M}}
~ set of vertices = objects e(12)

viDev eie{l,...,M} v /Y@
v©3)

v@

o 6(5’1)\ e2)
> E={el) | (i,j) e E}

~> set of edges = object relationships Vi) \\
.. (54)
el e € & (i,j) €E ‘

v

» directed reflexive graph: |E| < M?
directed nonreflexive graph: |E| < M(M —1)



3/22

Valued graphs

sV ={v) |ie{1,...,M}} |
~ set of vertices = objects e(12)

. (1)
viDev eie{l,...,M} P |
v®d

v

B 8(51)\ e2)
- & ={e) | (i,j) € E}

~ set of edges = object relationships Ve \
el € € & (i,j) €E o
v
» directed reflexive graph: |E| < M?
directed nonreflexive graph: |E| < M(M —1)
undirected nonreflexive graph: |E| < M(M —1)/2



3/22

Valued graphs

sV ={v) |ie{1,...,M}} |
~ set of vertices = objects e(12)

. (1)
viDev eie{l,...,M} P |
v®d

v

B 8(51)\ e2)
- & ={e) | (i,j) € E}

~> set of edges = object relationships e \
el € € & (i,j) €E o
v
» directed reflexive graph: |E| < M?
directed nonreflexive graph: |E| < M(M —1)
undirected nonreflexive graph: |E| < M(M —1)/2
> (x1)1<i<m: weights on vertices (scalars or vectors)



3/22

Valued graphs

>

v

v

v={|ie{1,..., M} |
~ set of vertices = objects e(12)

. (1)
viDev eie{l,...,M} P |
v®d

v

5,1 e
£ = {elid) | (i.j) € E} ° \

~ set of edges = object relationships Ve \
.. e4)
el e € < (i,j) €E

v

directed reflexive graph: |E| < M?
directed nonreflexive graph: |E| < M(M —1)
undirected nonreflexive graph: |E| < M(M —1)/2

(x))1<i<m: weights on vertices (scalars or vectors)

(xU4)); jyer: weights on edges (scalars or vectors)
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Quantitative analysis

» Objective function
The merits of a given choice of the weights is evaluated by

f((x(i))lgigm, (X(iJ))(iJ)EE)
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Quantitative analysis

» Objective function
The merits of a given choice of the weights is evaluated by

f(Sx(i))lgng, (X(ilj))(ili)elE )

N
X

where 0

x = [(X(I.J))lg’f"”] eDcRV
(x )(i,j)e]E

and f: D — [—o0, +00].

Example: scalar weights = N = M + |E|

The number of variables can often be reduced.
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Optimization over graphs

» Minimization problems
f: cost function
We want to

Find X € D such that (Vx € D) f(x) < f(x)
< Findx € D suchthat f(Xx) = im; f(x)
X€e

f(x)
that is \/
Find X € Argmin f(x). \\/
xeD o i
- —
X D
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Optimization over graphs

» Maximization problems
f: reward function
We want to

Find X € D such that (Vx € D) f(x) > f(x)
< Findx €D suchthat (Vxe D) —f(x) < —f(x)

& Find X € Argmin (— f(x)).
xeD

\ f(x)

Without loss of generality, we can

focus on minimization problems \\/\—/

with f: D — ]—o0, +00].

X D
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Various types of minimization problems

» D =RN: unconstrained problem

f(x)
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Various types of minimization problems

» D =RN: unconstrained problem

» D countable: discrete optimization problem
» D finite: combinatorial optimization problem
» D C ZN: integer optimization problem

f(x)
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Various types of minimization problems

» D uncountable: continuous optimization problem

» Optimization problem with P equality constraints and @ inequality
constraints:

D={xeRN|(Vie{l,...,P}) pix) =20
and (Vj € {1,..., Q}) ¢j(x) < nj}

where (Vi € {1,...,P}) §; € R and ¢;: RN — |—o0, +x],
(Vje{l,...,Q}) nj € Rand 9;: RN — ]—o0, +00].

If ;i1 x > (x| u;) with i € {1,..., P} and u; € RV, then linear (or

affine) equality constraint.

If 12 x = (x| uj) with j € {1,...,Q} and u; € RN, then linear (or

affine) inequality constraint.
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Various types of minimization problems

Remark:
Find X € Argmin f(x)
xeD
& Find X € Argmin f(x)
xRN
where

f(x) ifxeD
+o00o otherwise.

(vx e RV) f(x) = {

Allowing non finite valued functions leads to a unifying view of constrained
and unconstrained minimization problems.



8/22

Main questions to be addressed

1. Existence/uniqueness of a solution X ?
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2. Characterization of solutions: necessary/sufficient conditions for X to
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3. Designing an algorithm to approximate a solution in the frequent case
when no closed form solution is available, i.e. building a sequence
(Xn)nen of RN such that

lim x, =X.
n—+00
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Main questions to be addressed

1. Existence/uniqueness of a solution X ?

2. Characterization of solutions: necessary/sufficient conditions for X to
be a solution.

3. Designing an algorithm to approximate a solution in the frequent case
when no closed form solution is available, i.e. building a sequence
(Xn)nen of RN such that

lim x, =X.
n—+00

4. Evaluation of the performance of the optimization algorithm:
» Convergence speed
Example: If there exists p €]0,1[ and n* € N such that (Vn > n*)
[IXnt1 — X|| < pllxn — X||, then Q-linear convergence rate.
If limp—s 400 ”ﬁ:;l_;ﬁ =0, then Q-superlinear convergence rate.
» Robustness to numerical errors
» Amenability to parallel/distributed implementations.
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Example: Traveling salesman problem

» Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly once
and returns to the origin city?
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Example: Traveling salesman problem

» Directed nonreflexive graph
V: set of the cities
&: set of roads
x = (xU)); jyer where, for every (i, ) € E, x")) = 1 if the path goes from
the city / to the city j and O otherwise,
N = |E|.
» Cost function

f(x) = Z i ¥ to be minimized subject to
(i)EE
(V(i,j) € E) xU") € {0,1}, ¢ distance between i and j
(Vje{1,...,M}) Zil\il,(i,j)e]E xU) =1 < There is 1 arrival to each city.
(Vi € {1, EERR) M}) Zj{‘il,(i,j)e]E x() =1 < From each city, there is 1 departure.

~ D C {0,1}N
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Example: Mesh denoising problem

» Remove uncertainties in mesh measurements




12/22

Example: Mesh denoising problem

» Undirected nonreflexive graph
V: set of vertices of the mesh
E: set of edges of the mesh
x = (x)1<j<m where, for every i € {1,..., M},
x() € R3: 3D coordinates of the i-th vertex of the true object
N =3M and D = RV,

» Cost function

F) = 3 (I =y D2+ (37 wiglix® = xO2) %)
i=1 JEN;
where, for every i € {1,..., M},
> y(i): 3D measured coordinates of the i-th vertex
» N;: neighborhood of i-th vertex
» (wij)jen;: nonnegative regularization constants.
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Example: Segmentation problem

» Assign a label to every pixel in an image so that pixels with the same
label share certain characteristics.
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Example: Segmentation problem

» Undirected nonreflexive regular graph
V: Set of pixels
&: Set of neighborhood relationships between pixels
x = (x(0)1<;<p where, for every i € {1,...,M}, x{) € L: label of
pixel i
L C R: finite set of labels
N=Mand D= LM.

» Cost function

M
o) = adlx — yDja 1 37w x0) - <0}
i=1

(iJ)€E

where, for every i € {1,..., M},
» y: intensity value of pixel i
» (ai)i<i<m and (w;ij)(ij)ee: nonnegative constants
> (p,q) € [1,+oo%
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Example: Inpainting

Given an incomplete image, fill its missing part in a visually plausible
way
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Example: Inpainting

» Undirected nonreflexive graph
V: Set of patches intersecting the target region (black area)
&: Set of neighborhood relationships between these patches
x = (xX)1<i<m where, for every i € {1,..., M}, x) € L: patch i
L: Set of complete patches from the source image (blue boxes)
N=Mand D=_N.

» Cost function

M
Fx) = UMy + > V(D x0)
i=1 (i,j)EE

» (Ui)1<i<m: measure the similarity between
the target patch and the source patches

» (Vij)i<ij<n: measure the similarity on
overlapping regions.
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Example: Neural networks

» Mimic biological neural networks

O

2
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Example: Neural networks

» Mimic biological neural networks
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Example: Neural networks

» Directed reflexive graph
V: Set of neurons in the network
&: Set of synaptic connections
x = (x(’J))(;J)eE where, for every (i,j) € E, if i # j, xXU4) is a
weighting input factor, and if i = j, x(") is a bias parameter.
N = |E| and D =RV,

» Cost function

Fx) = 30 X0 = 0P, pe[1,400)
i€eVo

where (Vi € {1,..., M}) x() = g(3;cp; xU)xU) + x() with

g: R — R activation function (ex: sigmoid g = tanh), A\; set of
neurons exciting neuron i, s(/) desired response when the neuron is
trained with an element (XU))j€v, of an input training sequence,
{1,...,M} =V, UVTUVq with V; input layer, V1 intermediate
layers, and Vo output layer.

~ deep learning requiring a large training sequence for the parameters
to be estimated in a reliable manner.
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Example: Multiagent consensus problem

» Each agent process local data and cooperate with its neighbors to
estimate global parameters.
Examples: Trajectory planning, distributed clustering, Internet traffic
anomalies, ...
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Example: Multiagent consensus problem

» Directed nonreflexive graph
V: Set of agents
E: Set of relationships between agents
X = (X(i))lgigM vector of estimates in RP at each node
N = MP and

D = {(X(i))lg,’SM S (RP)M ‘ X(l) =...= X(M)}.
» Cost function "
f(x) = ng(x(i)=y(i))
i=1

where (Vi € {1,...,M}) —g;: RP x R? —] — 00, +00] utility function
at node i and y() € RQ: observations available at node i.
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Optimization ?

» Convex optimization (~ 8 hours)
» Fundamentals

Dual formulation

Non-smooth optimization

Algorithms

v vy

» Discrete optimization (~ 3 hours)

» Graph-cut problem
» Alpha expansion

» Distributed algorithms (~ 3 hours)
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