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Towards deep learning: Plug-and-play

~

( Deep learning — General framework
e Database : S = {(X;,2z;) € RN xRM | i € IUJ such that z =%;+¢ }
e Prediction function : dg(z;) = nEN (WKl pMl(Wltlz, + bty .. 4 plE])

\. J

Variational formulation versus Plug and play

e Forward-Backward: x/¥1 = ProX. g op ( x[kl — TAT(AX[’C] —7))

e FB-PnP: xIFH1] = ldg (xI¥ — 7AT (AxIF — 7))

\. J

Remark

e Principle that can be applied to other algorithmic schemes
PnP-ADMM, PnP-DR, HQS,...



Towards deep learning: Plug-and-play
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e FB-PnP: xlF1 = dg ( xIF — 7AT (AxIF — 7))

\. J

' )

Build a denoiser: MAP denoiser
e Defining the estimate dg(z) of X from z as the maximum of 7(x|z):

de(z) € Argmin — log 7(z|x) — log w(x).

For white Gaussian noise, — log 7(z|x) = #Hz —x||3.

Assume that —log 7(x) = g(x). Then,

de(z) = prox,2,(z).

Remark
e ¢ often unknown. This can explain the desire of replacing

proximity operator by more powerful denoisers.
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' )

Build a denoiser: MAP denoiser
e Defining the estimate dg(z) of X from z as the maximum of 7(x|z):

de(z) = Argmin — log 7(z|x) — log m(x).

For white Gaussian noise, — log 7(z|x) = #Hz —x||3.

Assume that —log 7(x) = g(x). Then,

de(z) = prox,2,(z).

Remark
e ¢ often unknown. This can exmplain the desire of replacing

proximity operator by more powerful denoisers.
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FB-PnP: xl-H1) = [dg ( x — 7AT (AxF] — 7))

\. J

' )

Build a denoiser: MMSE denoiser dg(z) = E(x|z)

\. J

e 7(z) x exp(—g,2(z)) : probability distribution for the noisy signal.
e Tweedie's formula: Hi# = Vi,2(2),
e Vg,2: score of this distribution.

e 7(z) # m(x): the former is the convolution of the latter with a
Gaussian smoothing kernel of bandwidth o.

(Gradient)-FB-PnP

k] PIOXz||A g2 (<] — 7o72(xlF] — dg (x[H1)) )
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e FB-PnP: xlF1 = dg ( xIF — 7AT (AxIF — 7))

\. J

Build a denoiser

e If dg = prox,,, with f convex and 7 < 2/||A||?, then convergence to X €
Argmin $[|Ax — z[|3 + 0f(x).



https://arxiv.org/pdf/2012.13247.pdf
https://proceedings.mlr.press/v162/hurault22a/hurault22a.pdf
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e FB-PnP: xF1 = g (x — 7AT(AxIF] — 7))
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Build a denoiser

"
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e If dg = prox,,, with f convex and 7 < 2/||[A||?, then convergence to X
Argmin $[|Ax — z[|3 + 0f(x).

o If dg = prox_4; with f nonconvex and 7 < 1/||A||?, then convergence to X €
Argmin $||Ax — z||3 + 6 f(x).[Bolte, Sabach, Teboulle, 2014]
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e FB-PnP: xF1 = g (x — 7AT(AxIF] — 7))
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Build a denoiser
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e If dg = prox,,, with f convex and 7 < 2/||[A||?, then convergence to X
Argmin $[|Ax — z[|3 + 0f(x).

o If dg = prox_4; with f nonconvex and 7 < 1/||A||?, then convergence to X €

Argmin $||Ax — z||3 + 6 f(x).[Bolte, Sabach, Teboulle, 2014]
e If dg is built to be firmly non-expansive by regularizing the training loss. For instance
de = % with ) a non-expansive operator, then convergence to an inclusion problem

[Pesquet, Repetti, Terris, Wiaux, 2021].
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e FB-PnP: xlFH1 = [dg (xI* — 7AT (AxIF] — 2))

\.
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Build a denoiser

"
m

e If dg = prox,,, with f convex and 7 < 2/||[A||?, then convergence to X
Argmin $[|Ax — z[|3 + 0f(x).

o If dg = prox_4; with f nonconvex and 7 < 1/||A||?, then convergence to X €

Argmin $||Ax — z||3 + 6 f(x).[Bolte, Sabach, Teboulle, 2014]
e If dg is built to be firmly non-expansive by regularizing the training loss. For instance
de = % with ) a non-expansive operator, then convergence to an inclusion problem

[Pesquet, Repetti, Terris, Wiaux, 2021].

e If do is built to be the proximal operator of a nonconvex (weakly convex) functional,
then convergence to a minimization problem. [Hurault, Leclaire, Papadakis, 2022]
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e If dg = prox,,, with f convex and 7 < 2/||[A||?, then convergence to X
Argmin $[|Ax — z[|3 + 0f(x).

o If dg = prox_4; with f nonconvex and 7 < 1/||A||?, then convergence to X €

Argmin $||Ax — z||3 + 6 f(x).[Bolte, Sabach, Teboulle, 2014]
e If dg is built to be firmly non-expansive by regularizing the training loss. For instance
de = % with ) a non-expansive operator, then convergence to an inclusion problem

[Pesquet, Repetti, Terris, Wiaux, 2021].

e If do is built to be the proximal operator of a nonconvex (weakly convex) functional,
then convergence to a minimization problem. [Hurault, Leclaire, Papadakis, 2022]

e If de is built from an unfolded strategy to compute prox,.|, 4,,-

\.
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Stability

@ Given an input z and a perturbation ¢, the error on the output

can be upper bounded :
[de(z + €) — de(z)[| < xlle]|.
where y certificated of the robustness.

@ [Combettes, Pesquet, 2020]: x can be upper bounded by:
K

x < [T IWells.
k=1
@ [Pesquet, Repetti, Terris, Wiaux, 2020]: tighter bound by Lipschitz
continuity:
X ~ max || Jde(zs)]s-

Zs)sel

where J denotes the Jacobian operator.


 https://pcombet.math.ncsu.edu/simods1.pdf
 https://arxiv.org/abs/2012.13247

Stability
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Upper bound Hle IWp||s for different unfolded neural network
configurations.



Stability
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PnP based on unfolded denoiser

Ground truth Noisy (o = 0.015) — 20.11 dB BM3D - 27.10 dB

s

DScCP-LNO - 26.48 dB

s
> S

Restoration performance.
Restoration example for o = 0.015, with parameters v = 1.99 and [ chosen optimally
for each scheme.




PnP based on unfolded denoiser

DDFB-LNO - 27.23

e o]

DRUnet - 25.09 dB
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PnP based on unfolded denoiser
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Restoration performance.
Best PSNR values obtained with DDFB-LNO, DScCP-LNO,
DRUnet and BM3D, on 12 images from BSDS500 validation set
degraded, with o = 0.03.
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Conclusions for part 1

@ Unified framework for several proximal unfolded NN schemes.

@ Faster provides better unfolded strategy in this denoising
framework.

@ Proximal unfolded NN schemes: good compromise between
number of parameters and performance.

@ Proximal unfolded schemes may help to design stable neural
networks.
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2- Avoid new training with an
equivariant strategy




Equivariant network

~

Equivariant network

e dy is invariant to a transformation D if the output remains unchanged:
do(Dz) = de(2)

e dy is equivariant to a transformation D if the output changes in a
corresponding way: do(Dz) = D'de(7)

Particular case: If G acts on the same way in the output and input spaces, dg(Dz) = Ddg(z)
\ v

[ Make de G-equivariant

e Averaging over a group G of unitary matrix {Dg}geg:

dgg(2) |g‘ ZD lde(D ¢z) — can be computationally demanding
L 9€9 1




Equivariant Plug-and-play

~

[« FB-PnP:
xFH = [dg (M — AT (AxH — 7))

e Equivariant FB-PnP [Terris, Moreau, Pustelnik, Tachella, 2024]

Sample g, € G
xF1 = D;kl de (D, xFl — yAT(Ax[F] — 7))

14


https://arxiv.org/abs/2012.13247

Equivariant Plug-and-play

~

r

Proposition

dez = Wz be a linear denoiser with singular value decomposition W =
Yo Nuv] and A\p > Ay > ... >\, > 0. If the principal component
ulvlT is not G-equivariant, the averaged denoiser dg g has a strictly smaller

Lipschitz constant than dg.

Lipschitz . DRUNet

DnCNN DnCNN SCUNet SwinlR (04=0.01)
Standard dg 1.06 1.44 5.78 6.28 1.57
Equivariant dg g 0.92 1.18 4.19 4.05 1.26

Lipschitz constant (i.e., the spectral norm of the Jacobian) of various denoisers
averaged over 10 different patches of 64 x 64 pixels. Equivariant denoisers are

obtained by averaging over the group of 90 degree rotations and reflections. 15



Numerical experiments Gaussian debluring
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Numerical experiments debluring
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Conclusions and perspectives

e Different types of convergence guarantees: convergence of the
iterates, convergence rate for f or the sequence.

e Numerous proximal algorithms depending of the applicative
context.

e Strong convexity: key tool to accelerate algorithms and prove

convergence rates on iterates.

e Some algorithms stay difficult to analyze : FISTA, primal-dual
schemes.

e Large scales stay difficult to handle : block, multilevel,...
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Conclusions and perspectives

Figure 3: (Left) Regimes where PRS or FBS or DRS achieves a better rate according to Proposition 7 when oo = 1

as a function of (B, p). (Right) Optimal numerical rates and associated regions.
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Conclusions and perspectives

e Unfolded = truncated iterations.

e Unfolded is certainly the best compromise between end-to-end
NN and variational approaches but theoretical guarantees still
lack.
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Conclusions and perspectives

Table 2.1: Reconstruction performances on the LoDoPaB-CT dataset, with best to medium ,
low and worst results highlighted. We compare state-of-the-art approaches and vary the
number of views. £/m is the normalized data-fidelity.

LoDoPaB-CT - 2D [TEST] |SSIM + PSNR 1 £/m. | (.10°)|[train] VRAM | time/epoch (s)| | [test] VRAM | time/sample (s)]
FBP | 0392 2405 5.930 X X 0.0482 0.0035
TV | 0814 3303 6.174 X x 0.0492 22.3596
Post-processing 0793 3341 6.156 45 50 0.1199 0.0159
cDiffusion [T=1000] 0735  32.46 6.089 4.6 66 0.1339 13.71
InDI [T=100] 0793 3333 6.171 4.5 50 0.1312 1.3368
RED [0 = 10.] 0.759  30.55 6.181 3.5/14.8 14/ 272 0.0842 16.0887
PnP-PGD [0 = 10]] 0759  30.57 6.181 3.5/14.8 14/ 272 0.0842 20.2022
LPN [0 = 10/ 0782 32.26 6.169 4.2 120 0.8547 16.9200
DiffPIR 0747  32.50 6.176 4.6 66 0.1344 19.2262
Adversarial Regularizer [ 0778 3121 6.170 5.6 323 0.2355 20.1532
Adversarial Convex Regularizer| 0.786 ~ 31.53 6.172 6.0 253 0.1455 52.4104
ItNet 0.845  36.05 6.175 322 918 0.1232 0.2632
LPGD 0.844  36.04 6.175 322 923 0.1243 0.2573
LPD 0.851  36.39 6.174 150 2910 04566 0.5888

@ Extracted from Romain Vo PhD

22



Conclusions and perspectives
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Conclusions and perspectives

e Unfolded = truncated iterations.

e Unfolded is certainly the best compromise between end-to-end
NN and variational approaches but theoretical guarantees still
lack.

e Bilevel framework to derive learning schemes.

e Applied to other problems such as edges detection.
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Conclusions and perspectives

Clean image Ground-truth edges BZ
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Conclusions and perspectives

e PnP: good solution to avoid training on new dataset.

e Stronger convergence guarantees than unfolded schems but
still very sensitive. Equivariant-PnP, Multilevel-PnP are
solution to improve it.
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