
Algorithms and Arithmetic Operators for
Computing the �T Pairing in

Characteristic Three
Jean-Luc Beuchat, Nicolas Brisebarre, Jérémie Detrey, Member, IEEE,

Eiji Okamoto, Senior Member, IEEE, Masaaki Shirase, and Tsuyoshi Takagi

Abstract—Since their introduction in constructive cryptographic applications, pairings over (hyper)elliptic curves are at the heart of
an ever increasing number of protocols. With software implementations being rather slow, the study of hardware architectures became
an active research area. In this paper, we discuss several algorithms to compute the �T pairing in characteristic three and suggest
further improvements. These algorithms involve addition, multiplication, cubing, inversion, and sometimes cube root extraction
over IF3m . We propose a hardware accelerator based on a unified arithmetic operator able to perform the operations required by a
given algorithm. We describe the implementation of a compact coprocessor for the field IF397 given by IF3½x�=ðx97 þ x12 þ 2Þ, which
compares favorably with other solutions described in the open literature.

Index Terms—�T pairing, finite field arithmetic, elliptic curve, hardware accelerator, FPGA.

Ç

1 INTRODUCTION

IN 2001, Boneh et al. [1] proposed the BLS scheme, a
remarkable short signature scheme whose principle is the

following. They consider an additive group G1 ¼ hP i of
prime order q and a map-to-point hash function
H : f0; 1g� ! G1. The secret key is an element x of
f1; 2; . . . ; q � 1g and the public key is xP 2 G1 for a signer.
Let m 2 f0; 1g� be a message, they compute the signature
xHðmÞ. To do the verification, they use a map called
bilinear pairing that we now define.

Let G1 ¼ hP i be an additive group and G2 a multi-
plicative group with identity 1. We assume that the discrete
logarithm problem is hard in both G1 and G2. A bilinear
pairing on ðG1; G2Þ is a map e : G1 �G1 ! G2 that satisfies
the following conditions:

1. Bilinearity. For all Q, R, S 2 G1,

eðQþR;SÞ ¼ eðQ;SÞeðR;SÞ;
eðQ;Rþ SÞ ¼ eðQ;RÞeðQ; SÞ:

2. Nondegeneracy. eðP; P Þ 6¼ 1.

3. Computability. e can be efficiently computed.

Modifications of the Weil and Tate pairings provide such
maps.

The verification in the BLS scheme is done by checking if
the values eðP; xHðmÞÞ and eðxP;HðmÞÞ coincide. Actually,
if x0 2 f1; 2; . . . ; q � 1g satisfies eðxP;HðmÞÞ ¼ eðP; x0HðmÞÞ,
then we obtain eðP;HðmÞÞx ¼ eðP;HðmÞÞx

0
due to the

bilinearity property of the pairing. From the nondegeneracy
of the pairing, we know that eðP;HðmÞÞx ¼ eðP;HðmÞÞx

0

implies x ¼ x0. The total cost is one hashing operation, one
modular exponentiation, and two pairing computations,
and the signature is twice as short as the one in DSA for
similar level of security.

1.1 Pairings in Cryptology

Pairings were first introduced in cryptology by
Menezes et al. [2] and Frey and Rück [3] for code-
breaking purposes. Mitsunari et al. [4] and Sakai et al. [5]
seem to be the first to have discovered their constructive
properties. Since the foundational work of Joux [6], an
already large and ever increasing number of pairing-
based protocols has been found. Most of them are
described in the survey by Dutta et al. [7]. As noticed
in that survey, such protocols rely critically on efficient
algorithms and implementations of pairing primitives.

According to [8], [9], when dealing with general curves
providing common levels of security, the Tate pairing
seems to be more efficient for computation than the Weil
pairing and we now describe it.

Let E be a supersingular1 elliptic curve over IFpm , where p

is a prime and m is a positive integer, and let EðIFpmÞ denote

the group of its points. Let ‘ > 0 be an integer relatively

prime to p. The embedding degree (or security multiplier) is the

least positive integer k satisfying pkm � 1 ðmod ‘Þ. Let

1454 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

. J.-L. Beuchat and E. Okamoto are with the Graduate School of Systems
and Information Engineering, Laboratory of Cryptography and Informa-
tion Security, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki
305-8573, Japan. E-mail: {beuchat, okamoto}@risk.tsukuba.ac.jp.

. N. Brisebarre is with Projet Arénaire, LIP, �Ecole Normale Supérieure de
Lyon, 46, Allée d’Italie, F-69364 Lyon Cedex 07, France.
E-mail: Nicolas.Brisebarre@ens-lyon.fr.

. J. Detrey is with the Cosec Group, Bonn-Aachen International Center for
Information Technology (B-IT), Dahlmannstraße 2, D-53113 Bonn,
Germany. E-mail: jdetrey@bit.uni-bonn.de.

. M. Shirase and T. Takagi are with the School of Systems Information
Science, Future University-Hakodate, 116-2 Kamedanakano-cho, Hakodate,
Hokkaido 041-8655, Japan. E-mail: {shirase, takagi}@fun.ac.jp.

Manuscript received 1 Nov. 2007; revised 4 Mar. 2008; accepted 19 Mar.
2008; published online 27 June 2008.
Recommended for acceptance by R. Steinwandt, W. Geiselmann, and Ç.K. Koç.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2007-11-0556.
Digital Object Identifier no. 10.1109/TC.2008.103. 1. See [10, Theorem V.3.1] for a definition.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

EðIFpmÞ½‘� denote the ‘-torsion subgroup of EðIFpmÞ, i.e., the

set of elements P of EðIFpmÞ that satisfy ½‘�P ¼ O, where O is

the point at infinity of the elliptic curve. Let P 2 EðIFpmÞ½‘�
and Q 2 EðIFpkmÞ½‘�, let f‘;P be a rational function on the

curve with divisor ‘ðP Þ � ‘ðOÞ (see [10] for an account of

divisors), there exists a divisor DQ equivalent to ðQÞ � ðOÞ,
with a support disjoint from the support of f‘;P . Then, the

Tate pairing2 of order ‘ is the map e : EðIFpmÞ½‘� �
EðIFpkmÞ½‘� ! IF�pkm defined by eðP;QÞ ¼ f‘;P ðDQÞðp

km�1Þ=‘.

The kind of powering that occurs in this definition is called

the final exponentiation; it makes it possible to get values in

a multiplicative subgroup of IF�pkm (which is required by

most of the cryptographic applications) instead of a multi-

plicative subgroup of a quotient of IF�pkm .

In [11], Barreto et al. proved that this pairing can be

computed as eðP;QÞ ¼ f‘;P ðQÞ
pkm�1

‘ , where f‘;P is evaluated

on a point rather than on a divisor. Due to a distortion

map : EðIFpmÞ½‘� ! EðIFpkmÞ½‘� (the concept of a distor-

tion map was introduced in [12]), one can define the

modified Tate pairing ê by êðP;QÞ ¼ eðP; ðQÞÞ for all

P;Q 2 EðIFpmÞ½‘�.
Miller [13], [14] proposed in 1986 the first algorithm for

computing Weil and Tate pairings. Different ways for
computing the Tate pairing can be found in [11], [15],
[16], and [17]. In [18], Barreto et al. introduced the �T
pairing, which extended and improved the Duursma-Lee
techniques [16]. It makes it possible to efficiently compute
the Tate pairing. The �T pairing is presented in Section 2
in which we recall the relation between it and the
modified Tate pairing.

1.2 Implementation Challenges

With the software implementations of these successive
algorithmic improvements being rather slow, the need for
fine hardware implementations is strong. This is a critical
issue to make pairings popular and of common use in
cryptography and in particular in view of a successful
industrial transfer. The papers [19], [20], [21], [22], [23], [24],
[25], [26], and [27] address that problem.

In this paper, we deal with the characteristic three case,
and given a positive integer m coprime to 6, we consider E,
a supersingular elliptic curve over IF3m , defined by the
equation y2 ¼ x3 � xþ b, with b 2 f�1; 1g. Following the
discussion at the beginning of [18, Section 5], there is no
loss of generality from considering this case since these
curves offer the same level of security for pairing applica-
tions as any supersingular elliptic curve over IF3m . The
considered curve has an embedding degree of 6, which is
the maximum value possible for supersingular elliptic
curves and, hence, seems to be an attractive choice for
pairing implementation.

1.3 Our Contribution

The algorithm given in [18] for computing the �T pairing
halves the number of iterations used in the approach by

Duursma and Lee [16] but has the drawback of using
inverse Frobenius maps. In [25], Beuchat et al. proposed a
modified �T pairing algorithm in characteristic three that
does not require any inverse Frobenius map. Moreover, they
designed a novel arithmetic operator implementing addi-
tion, cubing, and multiplication over IF397 , which performs
in a fast and cheap way the step of final exponentiation [26].
Then, they extended in [27] this approach to the computa-
tion of the reduced �T pairing (i.e., the combination of the �T
pairing and the final exponentiation).

In this paper, we present a synthesis and an improvement
of the results in [25], [26], and [27]. The outline of this paper
is given as follows: In Section 2, we define the �T pairing and
its reduced form, we give different algorithms to compute
them, and we provide exact cost evaluations for these
algorithms. Section 3 is dedicated to the presentation of a
reduced �T pairing coprocessor that is based on a unified
arithmetic operator that implements the various required
elementary operations over IF3m . We want to mention that all
the material (i.e., algorithms and architectures) presented in
this section can be easily adapted to work on any field
IFp½x�=ðfðxÞÞ for any prime p and any polynomial f
irreducible over IFp. We implemented our coprocessor on
several Field-Programmable Gate Array (FPGA) families
for the field IF397 given by IF3½x�=ðx97 þ x12 þ 2Þ. We
provide the reader with a comprehensive comparison
against state-of-the-art �T pairing accelerators in Section 4
and conclude this paper in Section 5.

The appendices mentioned in the rest of the paper can be
found in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109.TC.2008.103.

2 COMPUTATION OF THE �T PAIRING IN

CHARACTERISTIC THREE

2.1 Preliminary Definitions

We use here the definition of the �T pairing as introduced
by Barreto et al. [18]. The interested reader shall find in that
paper all the details related to the mathematical construc-
tion of the pairing, which we will deliberately not mention
here for clarity’s sake.

Let E be the supersingular elliptic curve defined by the
equation E : y2 ¼ x3 � xþ b, where b 2 f�1; 1g. Consider-
ing a positive integer m coprime to 6, the number of rational
points of E over the finite field IF3m is given by
N ¼ #EðIF3mÞ ¼ 3m þ 1þ �b3mþ1

2 , with

� ¼ þ1; if m � 1; 11 ðmod12Þ;
�1; if m � 5; 7 ðmod12Þ:

�

The embedding degree k of E is then 6.
Choosing T ¼ 3m �N ¼ ��b3mþ1

2 � 1 and an integer ‘
dividing N , we define the �T pairing of two points P and Q
of the ‘-torsion EðIF3mÞ½‘� as

�T ðP;QÞ ¼
fT;P ðQÞð Þ; if T > 0 ði:e:; �b ¼ �1Þ;
f�T;�P ðQÞð Þ; if T < 0 ði:e:; �b ¼ 1Þ;

�

where

. is a distortion map from EðIF3mÞ½‘� to EðIF36mÞ½‘�
defined as ðx; yÞ¼ð��x; y�Þ for all ðx; yÞ2EðIF3mÞ½‘�,

BEUCHAT ET AL.: ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE �T PAIRING IN CHARACTERISTIC THREE 1455

2. We give here the definition from [11], slightly different from the initial
one given in [3].

as given in [11], where � and � are elements of IF36m

satisfying the equations �3���b¼0 and �2þ1¼0.
As already remarked in [20], this allows for

representing IF36m as an extension of IF3m using
the basis ð1; �; �; ��; �2; ��2Þ: IF36m ¼ IF3m ½�; �� ffi
IF3m ½X;Y �=ðX2 þ 1; Y 3 � Y � bÞ. Hence, all the
computations over IF36m can be replaced by
computations over IF3m , as explicitly shown in
Appendices E and F.

. fn;P , for n 2 IN and P 2 EðIF3mÞ½‘�, is a rational
function defined over EðIF36mÞ½‘� with divisor
ðfn;P Þ ¼ nðP Þ � ð½n�P Þ � ðn� 1ÞðOÞ.

In order to ensure that the obtained pairing values

belong to the group of the ‘th roots of unity of IF�36m , we

actually have to compute the reduced �T pairing, defined as

�T ðP;QÞM , where

M ¼ 36m � 1

N
¼ ð33m � 1Þð3m þ 1Þ 3m þ 1� �b3mþ1

2

� �
:

In the following, we will refer to this additional step as final
exponentiation.

One should also note that, in characteristic 3, we have the
following relation between the reduced �T and modified
Tate pairings:

�T ðP;QÞM
� �3T 2

¼ êðP;QÞM
� �L

;

with L ¼ ��b3mþ3
2 . Using v as a shorthand for �T ðP;QÞM , we

can compute the modified Tate pairing according to the
following formula:

êðP;QÞM ¼ v�2 v3
mþ1

2

ffiffiffiffiffiffiffiffiffiffi
v3

m�1
2

3m
q !��b

:

Noting T 0 ¼ ��bT ¼ 3
mþ1

2 þ �b and P 0 ¼ ½��b�P , we now

have to compute �T ðP;QÞM ¼ fT 0;P 0 ð ðQÞÞM . Using the

Duursma-Lee techniques [16] to simplify the computation

of fn;P in Miller’s algorithm, we obtain

fT 0;P 0 ðQÞð Þ ¼
Ym�1

2

i¼0

g½3i�P 0 ðQÞð Þ3
m�1

2
�i

0
@

1
AlP 0 ðQÞð Þ;

where

. gV , for all V ¼ ðxV ; yV Þ 2 EðIF3mÞ½‘�, is the rational

function introduced by Duursma and Lee [16],

defined over EðIF36mÞ½‘� and having divisor ðgV Þ ¼
3ðV Þ þ ð½�3�V Þ � 4ðOÞ. For all ðx; yÞ 2 EðIF36mÞ½‘�,
we have

gV ðx; yÞ ¼ y3
V y� x3

V � xþ b
� �2

:

. lV , for all V ¼ ðxV ; yV Þ 2 EðIF3mÞ½‘�, is the equation of

the line corresponding to the addition of ½3mþ1
2 �V with

½�b�V , defined for all ðx; yÞ 2 EðIF36mÞ½‘�:

lV ðx; yÞ ¼ y� �yV ðx� xV Þ � �byV ;

with

� ¼ ð�1Þ
mþ1

2 ¼ þ1; if m � 7; 11 ðmod12Þ;
�1; if m � 1; 5 ðmod12Þ:

�

We can also rewrite the equation of lV as

lV ðx; yÞ ¼ yþ �yV ðxV � x� �bÞ;

introducing

� ¼ �� ¼ þ1; if m � 5; 11 ðmod12Þ;
�1; if m � 1; 7 ðmod12Þ:

�

The remaining part of this section will present and
discuss various algorithms that can be used to effectively
compute the reduced �T pairing. The next three sections
will focus on the computation of �T ðP;QÞ only, the details
of the final exponentiation being given in Section 2.5.
Finally, cost evaluations and comparisons will be presented
in Section 2.6.

2.2 Direct Approaches

2.2.1 Direct Algorithm

From the expression of fT 0;P 0 , noting ~Q ¼ ðQÞ, we can write

fT 0;P 0 ð ~QÞ ¼ � � � gP 0 ð ~QÞ3 � g½3�P 0 ð ~QÞ
� �3

� � �
� 	3

g
3
m�1

2

 �
P 0
ð ~QÞ

� lP 0 ð ~QÞ:

Noting P 0 ¼ ðxP 0 ; yP 0 Þ and Q ¼ ðxQ; yQÞ, we have ½3i�P 0 ¼
ðx32i

P 0 � ib; ð�1Þiy32i

P 0 Þ and ~Q ¼ ðQÞ ¼ ð�� xQ; yQ�Þ. Injecting

these in the expressions of g½3i�P 0 and lP 0 and defining

m0 ¼ m�1
2 , we obtain

g½3i�P 0 ð ~QÞ ¼ ð�1Þiy32iþ1

P 0 yQ�� x32iþ1

P 0 þxQþð1�iÞb��
� �2

;

lP 0 ð ~QÞ ¼ yQ��ð�1Þm
0
y32m0þ1

P 0 x32m0þ1

P 0 þxQþð1�m0Þb��
� �

:

An iterative implementation of the �T pairing follow-
ing this construction is given in Algorithm 1. The cost of
each pseudo-code instruction is given as comments in
terms of additions/subtractions (A), multiplications (M),
and cubings (C) over the underlying field IF3m .

Algorithm 1 Direct algorithm for computing the �T pairing.

Input: P;Q 2 EðIF3mÞ½‘�.
Output: �T ðP;QÞ 2 IF�36m .

1. yP ��byP ;
2. xP x3

P ; yP y3
P ; (2C)

3. t xP þ xQ þ b; u yPyQ; (1M, 2A)

4. R ð�t2 þ u�� t�� �2Þ3; (1M, 2C, 3A)

5. xP x9
P ; yP �y9

P ; (4C)

6. t xP þ xQ; u yPyQ; (1M, 1A)

7. S �t2 þ u�� t�� �2; (1M)

8. R R � S; (6M, 21A)

9. for i 2 to m�1
2 do

10. R R3; (6C, 6A)

11. xP x9
P � b; yP �y9

P ; (4C, 1A)

12. t xP þ xQ; u yPyQ; (1M, 1A)

13. S �t2 þ u�� t�� �2; (1M)

14. R R � S; (12M, 59A)

1456 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

15. end for

16. S �yP tþ yQ�þ yP�; (1M)

17. R R � S; (12M, 51A)

18. return R;

A few remarks concerning this algorithm:

. The multiplication by ��b on line 1 is for free.
Indeed, ��b being a constant (1 or �1) for fixed m
and b, one can just compute the value of ��b
when those parameters are chosen, and propagate
sign corrections on yP throughout the whole
algorithm.

. Similarly, multiplications by �, �, and b do not
have any impact on the cost of the algorithm. The
values of these constants are known in advance
and actually only represent sign changes in the
algorithm.

. Since the representation of �t2 þ u�� t�� �2 as an
element of the tower field IF36m is sparse, the
cubing on line 4 involves only one multiplication,
two cubings, and three additions over IF3m , as
detailed in Appendix E.2.

. Additionally, ð�t2 þ u�� t�� �2Þ3 has the same
sparsity, and therefore, the product of R and S on
line 8 can be computed by means of only six
multiplications and 21 additions over IF3m , as per
Appendix F.3.

. Inside the loop, the cubing of R on line 10 is
computed in six cubings and six additions over
IF3m (Appendix E.1).

. The multiplication of R by S on line 14 involves
only 12 multiplications and 59 additions over IF3m ,
as S is sparse (Appendix F.2,).

. The final product on line 17 is in turn computed
by means of 12 multiplications and 51 additions,
also due to the sparsity of S, as detailed in
Appendix F.2.

2.2.2 Simplification Using Cube Roots

Cubing the intermediate result R 2 IF�36m at each iteration of

Algorithm 1 is quite expensive. But, one can use the fact

that, due to the bilinearity of the reduced �T pairing,

�T ðP;QÞM ¼ �T P; 3�
m�1

2

h i
Q

� �3
m�1

2

 !M

;

to compute instead

fT 0;P 0 ð ~QÞ3
m�1

2 ¼
Ym�1

2

i¼0

g½3i�P 0 ð ~QÞ3
m�1�i

0
@

1
AlP 0 ð ~QÞ3

m�1
2
;

with ~Q ¼ ð½3�m�1
2 �QÞ ¼ ð�� x3

Q � ð� þ 1Þb;��y3
Q�Þ.

Expanding everything, we obtain the following expres-

sions, again with m0 ¼ m�1
2 :

g½3i�P 0 ð ~QÞ3
m�1�i

¼ ��y3i

P 0y
3�i

Q �� x3i

P 0 þ x3�i

Q � �b� �
� �2

;

lP 0 ð ~QÞ3
m�1

2 ¼ y3�m
0

Q �þ �y3m
0

P 0 x3m
0

P 0 þ x3�m
0

Q � �b� �
� �

:

This naturally gives another iterative method to compute

�T ðP;QÞ, presented in Algorithm 2. Here, the cubings over

IF36m are traded for cube roots (noted R) over IF3m , which

can be efficiently computed by means of a specific operator

(see Section 3.5 for further details).

Algorithm 2 Simplified algorithm for computing the

�T pairing, with cube roots.

Input: P;Q 2 EðIF3mÞ½‘�.
Output: �T ðP;QÞ 2 IF�36m .

1. xP xP � �b; (1A)

2. yP ��byP ;

3. t xP þ xQ; u yPyQ; (1M, 1A)

4. R �t2 � �u�� t�� �2; (1M)

5. xP x3
P ; yP y3

P ; (2C)

6. xQ
ffiffiffiffiffiffi
xQ3
p

; yQ
ffiffiffiffiffiffi
yQ3
p

; (2R)

7. t xP þ xQ; u yPyQ; (1M, 1A)
8. S �t2 � �u�� t�� �2; (1M)

9. R R � S; (6M, 21A)

10. for i 2 to m�1
2 do

11. xP x3
P ; yP y3

P ; (2C)

12. xQ
ffiffiffiffiffiffi
xQ3
p

; yQ
ffiffiffiffiffiffi
yQ3
p

; (2R)

13. t xP þ xQ; u yPyQ; (1M, 1A)

14. S �t2 � �u�� t�� �2; (1M)

15. R R � S; (12M, 59A)
16. end for

17. S �yP tþ yQ�� �yP�; (1M)

18. R R � S; (12M, 51A)

19. return R;

2.2.3 Tabulating the Cube Roots

Even if cube roots can be computed with only a slight

hardware overhead, it is sometimes advisable to restrict the

hardware complexity of the arithmetic unit in order to

achieve higher clock frequencies. The previous algorithm

can easily be adapted to cube-root-free coprocessors by

simply noticing that, as xQ and yQ 2 IF3m , x3�i

Q ¼ x3m�i

Q and

y3�i

Q ¼ y3m�i

Q .
Therefore, computing the m� 1 successive cubings of

xQ and yQ, it is possible to tabulate the precomputed

values of x3�i

Q and y3�i

Q , which will be looked up on lines 6

and 12 of Algorithm 2 instead of computing the actual

cube roots.
The m� 1 cube roots of Algorithm 2 are hence traded for

2m� 2 cubings, at the expense of extra registers required to

store the tabulated values as m� 1 elements of IF3m .
This idea, originally suggested by Barreto et al. [18] was

for instance applied by Ronan et al. [23] in the case

m � 1 ðmod 12Þ, although they curiously do not compute

the actual �T pairing, but the value

�T P; ½3�m�Qð Þ3
m�1

2 ¼ �T ðP;QÞ3
�mþ1

2
:

2.3 Reversed-Loop Approaches

In [18], Barreto et al. suggest reversing the loop to compute

the �T pairing. To that purpose, they introduce a new index

j ¼ 3
m�1

2 � i for the loop. Taking ~Q ¼ ðQÞ, we find

BEUCHAT ET AL.: ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE �T PAIRING IN CHARACTERISTIC THREE 1457

fT 0;P 0 ð ~QÞ ¼ lP 0 ð ~QÞ
Ym�1

2

j¼0

g
3
m�1

2
�j

 �
P 0
ð ~QÞ3

j

0
@

1
A:

2.3.1 Reversed-Loop Algorithm

Directly injecting the expression of ½3m�1
2 �j�P 0 ¼ ðx3�2j�1

P 0 �
ð� þ 1� jÞb;��ð�1Þjy3�2j�1

P 0 Þ into the formulas, we obtain

lP 0 ð ~QÞ ¼ yQ�þ �yP 0 xP 0 þ xQ � �b� �
� �

;

g
3
m�1

2
�j

 �
P 0
ð ~QÞ3

j

¼ ��y3�j

P 0 y
3j

Q�� x3�j

P 0 þ x3j

Q � �b� �
� �2

:

Following this expression, a third iterative scheme for

computing the �T pairing can be directly devised, as

detailed in Algorithm 3. In the case m � 1 ðmod 12Þ, this is

the exact same algorithm as described by Barreto et al. [18].

Algorithm 3 Reversed-loop algorithm for computing the

�T pairing, with cube roots.

Input: P;Q 2 EðIF3mÞ½‘�.
Output: �T ðP;QÞ 2 IF�36m .

1. xP xP � �b; (1A)

2. yP ��byP ;

3. t xP þ xQ; (1A)

4. R ð�yP tþ yQ�� �yP�Þ � ð�t2 � �yPyQ�� t�� �2Þ;
(6M, 1C, 6A)

5. for j 1 to m�1
2 do

6. xP
ffiffiffiffiffiffi
xP3
p

; yP
ffiffiffiffiffiffi
yP3
p

; (2R)

7. xQ x3
Q; yQ y3

Q; (2C)

8. t xP þ xQ; u yPyQ; (1M, 1A)

9. S �t2 � �u�� t�� �2; (1M)

10. R R � S; (12M, 59A)

11. end for

12. return R;

It is to be noted that given the expression of its

operands, the multiplication on line 4 is computed by

means of only six multiplications, one cubing, and six

additions over IF3m , as described in Appendix F.4.
As for Algorithm 2, Algorithm 3 also requires the

computation of cube roots. A similar technique of pre-

computation and tabulation of the cube roots due to

successive cubings of xP and yP can also be used, although

we will not detail it here.

2.3.2 Eliminating the Cube Roots

The apparent duality between Algorithms 2 and 3 can be

exploited to find another cube-free algorithm, still based on

the reversed loop but similar to Algorithm 1.
For that purpose, we once again compute the reduced

�T pairing of P and Q as

�T ðP;QÞM ¼ �T P; 3�
m�1

2

h i
Q

� �3
m�1

2

 !M

:

Noting ~Q ¼ ð½3�m�1
2 �QÞ, the reversed loop becomes

fT 0;P 0 ð ~QÞ3
m�1

2 ¼ lP 0 ð ~QÞ3
m�1

2
Ym�1

2

j¼0

g
3
m�1

2
�j

 �
P 0
ð ~QÞ3

m�1
2
þj

0
@

1
A

¼ lP 0 ð ~QÞ3
m�1

2
Ym�1

2

j¼0

hj;P 0 ð ~QÞ3
m�1

2
�j

0
@

1
A

¼ � � � lP 0 ð ~QÞ � h0;P 0 ð ~QÞ
� �3

h1;P 0 ð ~QÞ
� �3

� � �
� 	3

� hm�1
2 ;P 0 ð ~QÞ;

with the rational function hj;P 0 ð ~QÞ defined as

hj;P 0 ð ~QÞ ¼ g
3
m�1

2
�j

 �
P 0
ð ~QÞ3

2j

:

We then compute the explicit expressions of lP ð ~QÞ and

hj;P 0 ð ~QÞ:

lP 0 ð ~QÞ ¼ ��y3
Q�þ �yP 0 xP 0 þ x3

Q þ b� �
� �

;

hj;P 0 ð ~QÞ ¼ ð�1ÞjyP 0y32jþ1

Q �� xP 0 þ x32jþ1

Q þ ð1� jÞb� �
� �2

:

Algorithm 4 is a direct implementation of the previous

computation of �T ðP;QÞ. Similarly to Algorithm 1, it uses

cubings over IF36m in order to avoid the cube roots of

Algorithm 3. In the case m � 1 ðmod 12Þ, this algorithm

corresponds to the �T pairing computation described by

Beuchat et al. [25].

Algorithm 4 Cube-root-free reversed-loop algorithm for

computing the �T pairing.

Input: P;Q 2 EðIF3mÞ½‘�.
Output: �T ðP;QÞ 2 IF�36m .

1. xP xP þ b; (1A)
2. yP ��byP ;

3. xQ x3
Q; yQ y3

Q; (2C)

4. t xP þ xQ; (1A)

5. R ð�yP t� �yQ�� �yP�Þ � ð�t2 þ yPyQ�� t�� �2Þ;
(6M, 1C, 6A)

6. for j 1 to m�1
2 do

7. R R3; (6C, 6A)

8. xQ x9
Q � b; yQ �y9

Q; (4C, 1A)
9. t xP þ xQ; u yPyQ; (1M, 1A)

10. S �t2 þ u�� t�� �2; (1M)

11. R R � S; (12M, 59A)

12. end for

13. return R;

2.4 Loop Unrolling

Granger et al. [28] proposed a loop unrolling technique for

the Duursma-Lee algorithm. They exploit the sparsity of gV

in order to reduce the number of multiplications over IF3m ,

exactly in the same way as we reduced the first two

iterations of Algorithms 1 and 2.
By noting that hj;P 0 ð ~QÞ3 is also as sparse as hj;P 0 ð ~QÞ

(for details, see Appendix E.2), we can apply the same

approach to Algorithm 4.
In two successive iterations 2j0 � 1 and 2j0 of the loop, for

1 	 j0 	 bm�1
4 c, we compute the new value of R as

1458 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

R R3 � h2j0�1;P 0 ð ~QÞ
� �3� h2j0;P 0 ð ~QÞ

¼ R9 � h2j0�1;P 0 ð ~QÞ3 � h2j0;P 0 ð ~QÞ:

The values of h2j0�1;P 0 ð ~QÞ and h2j0;P 0 ð ~QÞ, computed at
iterations 2j0 � 1 and 2j0, respectively, are both of the form
�t2 þ u�� t�� �2. Therefore, given t and u, the computa-
tion of h2j0�1;P 0 ð ~QÞ3 requires only one multiplication, two
cubings, and three additions over IF3m , as per Appendix E.2.
Similarly, the product of h2j0�1;P 0 ð ~QÞ3 and h2j0;P 0 ð ~QÞ can be
computed by means of only six multiplications and
21 additions, as explained in Appendix F.3. Finally, multi-
plying this product by R9 requires a full IF36m multi-
plication, which can be performed with 15 multiplications
and 67 additions over IF3m (see Appendix F.1).

Hence, the cost of such a double iteration would be of
25 multiplications (neglecting the other operations), whereas
two iterations of the original loop from Algorithm 4 cost
2� 14 ¼ 28 multiplications.

Following this, we can unroll the main loop of
Algorithm 4 in order to save multiplications by comput-
ing two iterations at a time. The resulting scheme is
shown in Algorithm 5, for the case where m�1

2 is even. If
m�1

2 is actually odd, one just has to restrict the loop on j0

from 1 to m�3
4 and compute the last product by an extra

iteration of the original loop, for the additional cost of
14 multiplications, 10 cubings, and 68 additions over IF3m .

Algorithm 5 Unrolled loop for the computation of the

�T pairing when m�1
2 is even.

Input: P;Q 2 EðIF3mÞ½‘�.
Output: �T ðP;QÞ 2 IF�36m .

1. xP xP þ b; (1A)

2. yP ��byP ;

3. xQ x3
Q; yQ y3

Q; (2C)

4. t xP þ xQ; (1A)

5. R ð�yP t� �yQ�� �yP�Þ � ð�t2 þ yPyQ�� t�� �2Þ;
(6M, 1C, 6A)

6. for j0 1 to m�1
4 do

7. R R9; (12C, 12A)

8. xQ x9
Q � b; yQ y9

Q; (4C, 1A)

9. t xP þ xQ; u yPyQ; (1M, 1A)

10. S ð�t2 � u�� t�� �2Þ3; (1M, 2C, 3A)

11. xQ x9
Q � b; yQ y9

Q; (4C, 1A)

12. t xP þ xQ; u yPyQ; (1M, 1A)

13. S0 �t2 þ u�� t�� �2; (1M)

14. S S � S0; (6M, 21A)
15. R R � S; (15M, 67A)

16. end for

17. return R;

It is to be noted that one could also straightforwardly
apply a similar loop unrolling technique to Algorithm 1.
However, we will not detail this point any further, for it is
rigorously identical to the previous case.

2.5 Final Exponentiation

As already stated in Section 2.1, the �T pairing has to be
reduced in order to be uniquely defined and not only up
to ‘th powers. This reduction is achieved by means of a
final exponentiation, in which �T ðP;QÞ is raised to the
Mth power, with

M ¼ ð33m � 1Þð3m þ 1Þ 3m þ 1� �b3mþ1
2

� �
:

For this particular exponentiation, we use the scheme
presented by Shirase et al. [29].

Taking U ¼ �T ðP;QÞ 2 IF�36m , we first compute U33m�1.

Writing U as U0 þ U1�, where U0 and U1 2 IF�33m , and
seeing that

U33m ¼U0 � U1�;

U�1 ¼ U0 � U1�

U2
0 þ U2

1

;

we obtain the following expression for U33m�1:

U33m�1 ¼
U2

0 � U2
1

� �
þ U0U1�

U2
0 þ U2

1

:

This computation is directly implemented in Algorithm 6,
where the multiplication (line 3), the squarings (lines 1

and 2), and the inversion (line 5) over IF33m are performed
following the algorithms presented in Appendices B, C,

and D (which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TC.2008.103), respectively.

Algorithm 6 Computation of U33m�1 in IF�36m .

Input: U ¼ u0 þ u1�þ u2�þ u3��þ u4�
2 þ u5��

2 2 IF�36m .

Output: V ¼ U33m�1 2 T2ðIF33mÞ.
1. m0 ðu0 þ u2�þ u4�

2Þ2; (5M, 7A)

2. m1 ðu1 þ u3�þ u5�
2Þ2; (5M, 7A)

3. m2 ðu0 þ u2�þ u4�
2Þ � ðu1 þ u3�þ u5�

2Þ; 6M, 12A)

4. a0 m0 �m1; a1 m0 þm1; (6A)

5. i a�1
1 ; (12M, 11A, 1I)

6. V0 a0 � i; (6M, 12A)

7. V1 m2 � i; (6M, 12A)

8. return V0 þ V1�;

One can then remark that

U2
0 � U2

1

� �2þðU0U1Þ2

U2
0 þ U2

1

� �2
¼ 1;

which means that U33m�1 is in fact an element of T2ðIF33mÞ,
where T2ðIF33mÞ ¼ fX0 þX1� 2 IF�36m : X2

0 þX2
1 ¼ 1g is the

torus as introduced by Granger et al. for the case of the Tate
pairing in [28].

This is a crucial point here, since arithmetic on the torus

T2ðIF33mÞ is much simpler than arithmetic on IF�36m . Thus,
given U 2 T2ðIF33mÞ, Algorithm 7 computes U3mþ1 in only
nine multiplications and 18 or 19 (depending on the value

of m modulo 6) additions over IF3m .

Algorithm 7 Computation of U3mþ1 in the torus T2ðIF33mÞ.
Input: U¼u0þu1�þu2�þu3��þu4�

2þu5��
22T2ðIF33mÞ.

Output: V ¼ U3mþ1 2 T2ðIF33mÞ.
1. a0 u0 þ u1; a1 u2 þ u3; a2 u4 � u5; (3A)

2. m0 u0 � u4; m1 u1 � u5; m2 u2 � u4; (3M)
3. m3 u3 � u5; m4 a0 � a2; m5 u1 � u2; (3M)

4. m6 u0 � u3; m7 a0 � a1; m8 a1 � a2; (3M)

5. a3 m5 þm6 �m7; a4 �m2 �m3; (3A)

6. a5 �m2 þm3; a6 �m0 þm1 þm4; (3A)

7. if m � 1 ðmod 6Þ then

BEUCHAT ET AL.: ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE �T PAIRING IN CHARACTERISTIC THREE 1459

8. v0 1þm0 þm1 þ ba4; (3A)

9. v1 bm5 � bm6 þ a6; (2A)

10. v2 �a3 þ a4; (1A)

11. v3 m8 þ a5 � ba6; (2A)
12. v4 �ba3 � ba4; (1A)

13. v5 bm8 þ ba5; (1A)

14. else if m � 5 ðmod 6Þ then

15. v0 1þm0 þm1 � ba4; (3A)

16. v1 �bm5 þ bm6 þ a6; (2A)

17. v2 a3;

18. v3 m8 þ a5 þ ba6; (2A)

19. v4 �ba3 � ba4; (1A)
20. v5 �bm8 � ba5; (1A)

21. end if

22. return v0 þ v1�þ v2�þ v3��þ v4�
2 þ v5��

2;

Finally, Algorithm 8 implements the complete final

exponentiation. Given U 2 IF�36m as input, it first computes

U33m�1 due to Algorithm 6, then calls Algorithm 7 to obtain

U ð3
3m�1Þð3mþ1Þ. Then, W ¼ U ð33m�1Þð3mþ1Þ3ðmþ1Þ=2

is computed by

successive cubings over IF36m , while V ¼ Uð33m�1Þð3mþ1Þð3mþ1Þ

is obtained by a second call to Algorithm 7. The value to be

computed is then

UM ¼ V �W�1; when �b ¼ 1;
V �W; when �b ¼ �1;

�

hence, the computation of W 0 ¼W��b on line 8. When

�b ¼ �1, this is just a dummy operation, but it is an actual

inversion when �b ¼ 1. However, as W 2 T2ðIF33mÞ, writing

W ¼W0 þW1�, we have

W�1 ¼W0 �W1�

W 2
0 þW 2

1

¼W0 �W1�:

Inversion over T2ðIF33mÞ is therefore completely free, as it

suffices to propagate the sign corrections in the final product

V �W 0, implemented as a full multiplication over IF�36m .

Algorithm 8 Final exponentiation of the reduced
�T pairing [29].

Input: U ¼ u0 þ u1�þ u2�þ u3��þ u4�
2 þ u5��

2 2 IF�36m .

Output: UM 2 T2ðIF33mÞ
 IF�36m , with the exponent

M ¼ ð33m � 1Þð3m þ 1Þð3m þ 1� �b3mþ1
2 Þ.

1. V U33m�1; (40M, 67A, 1I)

2. V V 3mþ1; (9M, 18 or 19A)

3. W V ;

4. for i 1 to mþ1
2 do

5. W W 3; (6C, 6A)
6. end for

7. V V 3mþ1; (9M, 18 or 19A)

8. W 0 W��b;

9. return V �W 0; (15M, 67A)

2.6 Overall Cost Evaluations and Comparisons

The costs of all the previously detailed algorithms
are summarized in Table 1, in terms of additions
(or subtractions), multiplications, cubings, cube roots, and
inversions over IF3m .

From this table, we can see that the additional cost for
cube-root-free algorithms is approximately 4m extra cub-
ings and 7m=2 extra additions, when compared to the
equivalent algorithms with cube roots. The choice of a type
of algorithm instead of the other will therefore depend on
the practicality of the computation of cube roots in the given
finite field IF3m (see the discussion in Section 3.5).

This table also shows a slight superiority of reversed-
loop algorithms versus direct-loop approaches. This is the
reason why we chose to apply the loop unrolling technique
to Algorithm 4.

The advantage of such a loop unrolling becomes also
clearer when looking at Table 1. From Algorithm 4 to
Algorithm 5, we trade approximately 27m=4 additions and
3m=4 multiplications for m=2 cubings over IF3m .

The costs of these algorithms for m ¼ 97, on which we
focus more closely in this paper, is given in Table 2. As
detailed in Section 3.2, we can compute the inversion over
IF397 according to Fermat’s little theorem in nine multi-
plications and 96 cubings, which allows us to express these
costs in terms of additions, multiplications, cubings, and
cube roots only. The total number of operations for the
complete computation of the reduced �T pairing, using
Algorithm 5 for the �T pairing and Algorithm 5 for the final
exponentiation, is also given.

3 A COPROCESSOR FOR ARITHMETIC OVER IF3m

The �T pairing calculation in characteristic three requires
addition, multiplication, cubing, inversion, and sometimes

1460 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

TABLE 1
Cost of the Presented Algorithms for Computing the �T Pairing and the Final Exponentiation,

in Terms of Operations over the Underlying Field IF3m

cube root extraction over IF3m . We propose here a unified
arithmetic operator that implements the required opera-
tions and describe a hardware accelerator for pairing-based
cryptography.

In the following, elements of the field extension IF3m

will be represented using a polynomial basis. Given a
degree-m irreducible polynomial fðxÞ 2 IF3½x�, we have
IF3m ffi IF3½x�=ðfðxÞÞ. Each element of IF3m will then be
represented as a polynomial pðxÞ of degree ðm� 1Þ and
coefficients in IF3:

pðxÞ ¼ pm�1x
m�1 þ � � � þ p1xþ p0:

Several researchers reported implementations of the Tate
and �T pairings on a supersingular curve defined on the
field IF397 . Therefore, we discuss the implementation of
Algorithm 5 for the field IF3½x�=ðx97 þ x12 þ 2Þ and the curve
y2 ¼ x3 � xþ 1 (i.e., b ¼ 1) on our coprocessor.

It is nonetheless important to note that the architectures
and algorithms presented here can be easily adapted to
different parameters. For instance, a different irreducible
polynomial fðxÞ, a different field extension degree m, or
even a different characteristic p (cubing and cube root
extraction, being, respectively, Frobenius and inverse
Frobenius maps in characteristic three, then replaced by
raising to the pth power and pth root extraction).

3.1 Multiplication over IF3m

Three families of algorithms allow one to compute d0ðxÞ �
d1ðxÞmod fðxÞ (see, for instance, [30], [31], and [32] for an
account of modular multiplication). In parallel-serial
schemes, a single coefficient of the multiplier d0ðxÞ is
processed at each step. This leads to small operators
performing a multiplication in m clock cycles. Parallel
multipliers compute a degree-ð2m� 2Þ polynomial and
carry out a final modular reduction. They achieve a higher
throughput at the price of a larger circuit area. By
processing D coefficients of an operand at each clock cycle,
array multipliers, introduced by Song and Parhi [33], offer a
good trade-off between computation time and circuit area
and are at the heart of several pairing coprocessors (see, for
instance, [19], [20], [22], [23], [25], and [34]).

Depending on the order in which coefficients of d0ðxÞ are
processed, array multipliers can be implemented according
to two schemes: most significant element (MSE) first and
least significant element (LSE) first. Algorithm 9 sum-
marizes the MSE-first scheme proposed by Shu et al. [22].
Fig. 1a illustrates the architecture of this operator for D ¼ 3.
It mainly consists of three Partial Product Generators (PPGs),

three modulo fðxÞ reduction units, a multioperand adder,
and registers to store operands and intermediate results. Five
bits allow for the control of the multiplier. If the irreducible
polynomial over IF3m is a trinomial or a pentanomial, modulo
fðxÞ operations are easy to implement. Consider for instance
fðxÞ ¼ x97 þ x12 þ 2 and let uðxÞ ¼ x � d1ðxÞ be a degree-97
polynomial. It suffices to remove u97 � fðxÞ ¼ u97x

97 þ
u97x

12 þ 2u97 from uðxÞ to get uðxÞmod fðxÞ. This involves
only two multiplications and two subtractions over IF3,
namely u12 � 1 � u97 and u0 � 2 � u97.

Algorithm 9 Multiplication over IF3m [22].

Input: A degree-m monic polynomial

fðxÞ¼xmþfm�1x
m�1þ� � �þf1xþf0 and two

degree-ðm�1Þ polynomials d0ðxÞ and d1ðxÞ. A
parameter D that defines the number of coefficients of

d0ðxÞ processed at each clock cycle. The algorithm

requires a degree-ðm� 1Þ polynomial aðxÞ for inter

mediate computations.

Output: pðxÞ ¼ d0ðxÞd1ðxÞmod fðxÞ
1. pðxÞ 0;

2. for i dm=De � 1 downto 0 do

3. aðxÞ
PD�1

j¼0 ðd0Diþj � d1ðxÞ � xjÞmod fðxÞ;
4. pðxÞ aðxÞ þ ðpðxÞ � xD mod fðxÞÞ;
5. end for

6. return pðxÞ;
Elements of IF3 are often represented as 2-bit unsigned

integers. Let d0i ¼ 2d0Hi þ d0Li and d1j ¼ 2d1Hj þ d1Lj . Multi-
plication over IF3 ¼ f0; 1; 2g is then defined as follows:

d0i � d1j ¼ 2 d0Hi d1Lj _ d0Li d1Hj

� �
þ d0Li d1Lj _ d0Hi d1Hj

� �
;

and can be implemented by means of two 4-input Lookup
Tables (LUTs). Since d0i multiplies all coefficients of d1, the
fan-out of our array multiplier is equal to 2m.

However, a careful encoding of the elements of IF3

can reduce the fan-out of the operator [35]. Since
2 � �1ðmod 3Þ, we take advantage of the borrow-save
system [36] in order to represent the elements of
IF3 ¼ f0; 1;�1g: d0i is encoded by a positive bit d0þi and a
negative bit d0�i such that d0i ¼ d0þi � d0�i . Multiplication
over IF3 is now defined by

d0i � d1j ¼ 1� d1�j

� �
d1þj d0þi _ d1�j 1� d1þj

� �
1� d0þi
� �� �

� 1� d1�j

� �
d1þj d0�i _ d1�j 1� d1þj

� �
1� d0�i
� �� �

;

and requires two 3-input LUTs: the first one depends on
d0þi , and the second one on d0�i . Thus, the fan-out of the
array multiplier is now equal to m. Since it is performed
component-wise, addition over IF3m is also a rather
straightforward operation. If elements of IF3 are represented
by 2 bits, addition modulo 3 is, for instance, carried out by
means of two 4-input LUTs.

3.2 Inversion over IF3m

The final exponentiation of the �T pairing involves a single
inversion over IF3m . Instead of designing a specific operator
based on the Extended Euclidean Algorithm (EEA), we
suggest to keep the circuit area as small as possible by
performing this inversion according to Fermat’s little

BEUCHAT ET AL.: ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE �T PAIRING IN CHARACTERISTIC THREE 1461

TABLE 2
Cost Evaluations of the Reduced �T Pairing for m ¼ 97

Inversion over IF397 is carried out according to Fermat’s little theorem in
nine multiplications and 96 cubings.

theorem and Itoh and Tsujii’s work [37] (Algorithm 10).
Since this scheme requires only multiplications and cubings
over IF3m , we do not have to include dedicated hardware for
inversion in our coprocessor.

Starting with an element d of IF3m , d 6¼ 0, we first raise
it to the power of the base-3 repunit ð3m�1 � 1Þ=2 to obtain
r. This particular powering can be achieved using only
m� 2 cubings over IF3m and a few multiplications over IF3m

as detailed below. By cubing r and then multiplying the
result by d, we successively obtain

u ¼ dð3m�3Þ=2;

v ¼ dð3m�1Þ=2:

A final product gives us the result

u � v ¼ dð3m�3Þ=2 � dð3m�1Þ=2 ¼ d3m�2 ¼ d�1:

Since v 6¼ 0 and v2 ¼ d3m�1 ¼ 1, v 2 IF3 and this operation
could be performed in a single clock cycle at the price of a
modification of our MSE-first multiplier: adding an extra
control bit and a multiplexer allows one to select the value
of the coefficient d03i between its normal value (the D most
significant coefficients of the multiplier) and the D least
significant coefficients of the multiplier. Indeed, as v 2 IF3,
its coefficients vi are zero for all i 6¼ 0. Therefore, we only
need v0 to compute the final multiplication u � v ¼ u � v0. As
our multiplier operates in a most-significant-coefficient-first
fashion, instead of performing the full multiplication
over IF3m , this multiplexer would allow us to bypass the
whole shift register mechanism and compute the product
u � v in a single iteration of the multiplier. Since we
consider m ¼ 97 for our implementation, this trick would
allow us to save only dm=De � 1 ¼ d97=3e � 1 ¼ 32 clock
cycles at the price of a longer critical path and a larger
control word. Thus, we do not include this modification in
our coprocessor.

Algorithm 10 Inversion over IF3m .
Input: A positive integer m, and d 2 IF3m , d 6¼ 0.

Output: d�1 2 IF3m .

1. r dð3
m�1�1Þ=2; (see Algorithm 11)

2. u r3; (1C)

3. v u � d; (1M)

4. return u � v; (1M)

As already shown in [38] and [39], addition chains can

prove to be perfectly suited to raise elements of IF3m to

particular powers, such as the radix-3 repunit ð3m�1 � 1Þ=2
required by our inversion algorithm. In the following, we

will restrict ourselves to Brauer-type addition chains,3

whose definition follows.

A Brauer-type addition chain C of length l is a

sequence of l integers S ¼ ðj1; . . . ; jlÞ such that 0 	 ji < i

for all 1 	 i 	 l. We can then construct another sequence

ðn0; . . . ; nlÞ satisfying

n0 ¼ 1;
ni ¼ ni�1 þ nji ; for all 1 	 i 	 l:

�

C is said to compute nl, the last element of the sequence.
From [40], we also have the following additional property,
for all 1 	 l0 	 l:

Xl0
i¼1

nji ¼ nl0 � 1:

Moreover, we can see that we have, for n 	 n0,

d 3nþn
0 �1ð Þ=2 ¼ dð3n�1Þ=2 � d 3n

0 �1ð Þ=2
� �3n

:

Consequently, given a Brauer-type addition chain C of

length l for m� 1, we can compute the required dð3
m�1�1Þ=2

as shown in Algorithm 11. This algorithm simply ensures

that, for each iteration i, we have zi ¼ dð3
ni�1Þ=2, where

ðn0; . . . ; nlÞ is the integer sequence associated with the

addition chain C, verifying nl ¼ m� 1. It requires l multi-

plications and nj1
þ � � � þ njl ¼ m� 2 cubings over IF3m .

Algorithm 11 Computation of dð3
m�1�1Þ=2 over IF3m .

Input: A positive integer m, d 2 IF3m , d 6¼ 0, a Brauer-type

addition chain S ¼ ðj1; . . . ; jlÞ for m� 1, and the integer

sequence ðn0; . . . ; nlÞ associated with C.

Output: dð3
m�1�1Þ=2 2 IF3m .

1. z0 d;

2. for i 1 to l do

3. zi zji � z3
nji

i�1 ; (1M, njiC)
4. end for

5. return zl;

Therefore, our inversion scheme requires a total of lþ 2

multiplications and m� 1 cubings over IF3m . For m ¼ 97, an

addition chain of length l ¼ 7 allows us to compute

dð3
96�1Þ=2, and the overall cost of inversion is equal to nine

multiplications and 96 cubings over IF397 .

3.3 Cubing over IF3m

Cubing over IF3m consists in reducing the following
expression modulo fðxÞ:

cðxÞ ¼ dðxÞ3 mod fðxÞ ¼
Xm�1

i¼0

dix
3i mod fðxÞ:

This general expression can be seen as a sum of
D0 elements of IF3m . The coefficients of those polynomials
can be directly matched to the coefficients of the operand,
possibly multiplied by 2. Thus, cubing requires a multi-
operand adder and some extra wiring for the permutation
of the coefficients. Multiplication by 2 consists in swapping
the positive and negative bits of an element of IF3. For
instance, if fðxÞ ¼ x97 þ x12 þ 2, we have to compute a sum
of D0 ¼ 3 operands:

�0ðxÞ ¼ d32x
96 þ 2d60x

95 þ d88x
94 þ � � �

þ d1x
3 þ d33x

2 þ 2d61xþ d0;

�1ðxÞ ¼ d64x
95 þ d92x

94 þ � � � þ d90x
3 þ d65xþ d89;

�2ðxÞ ¼ d96x
94 þ � � � þ d94x

3 þ d93;

1462 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

3. Brauer-type addition chains are proved to be optimal for all numbers
up to and including 12,508 [40], which is more than enough for our needs.

where �iðxÞ 2 IF397 , 0 	 i 	 2, and

cðxÞ ¼ dðxÞ3 ¼ �0ðxÞ þ �1ðxÞ þ �2ðxÞ:

Recall that our inversion algorithm involves successive
cubings. Since storing intermediate results in memory
would be too time consuming, our cubing unit should
include a feedback mechanism to efficiently implement
Algorithm 11. Furthermore, cubing over IF36m requires the
computation of �u3

5, where u5 2 IF3m (for details, see
Appendix E.1). These considerations suggest the design of
the operator depicted in Fig. 1b.

If we have a closer look at the scheduling of the reduced
�T pairing algorithm, we note that there is no parallelism
between multiplications and cubings over IF3m . If the array
multiplier processes D � D0 coefficients at each clock cycle,
we could take advantage of its multioperand adder to
perform cubing. Fig. 2 describes how to modify the
multiplier when D ¼ D0 ¼ 3:

. The feedback loop responsible for the accumulation
of partial products must be deactivated while
cubing. An array of m AND gates performs this task
and allows one to carry out the initialization step of
the modular multiplication (instruction pðxÞ 0 in
Algorithm 9).

. Multiplexers select the input of the multioperand
adders between modulo fðxÞ reduced partial pro-
ducts and the �iðxÞ’s.

. The shift register of the multiplier and the PPGs
allow for the control of cubing operations. If we store
a control word in register R0 such that d03i ¼
d03iþ1 ¼ d03iþ2 ¼ �1, the operator returns �d1ðxÞ3.
If d03i ¼ d03iþ1 ¼ d03iþ2 ¼ 1, we obtain d1ðxÞ3.

3.4 Addition over IF3m

The reduced �T pairing algorithms discussed in this paper

involve additions, subtractions, and accumulations over

IF3m . Fig. 1c describes an operator implementing these

functionalities. Again, a closer look at the reduced

�T pairing algorithms as well as at the algorithms for

arithmetic over IF33m and IF36m indicates that there is almost

no parallelism between additions and multiplications over

IF3m . We suggest to further modify our array multiplier to

include addition, subtraction, and accumulation (Fig. 3):

. An additional register is needed to store the second

operand of an addition. Again, the shift register
stores a control word to control additions. Assume

for instance that we have to compute �d2ðxÞ þ d1ðxÞ.
We, respectively, load d2ðxÞ and d1ðxÞ in registers R2

and R1 and define a control word stored in R0 so

that d03i¼1, d03iþ1 ¼ 2, and d03iþ2 ¼ 0. We will thus

compute ðd1ðxÞ þ 2 � d2ðxÞ þ 0 � d1ðxÞÞmod fðxÞ ¼
ðd1ðxÞ � d2ðxÞÞmod fðxÞ. Since the reduced �T pair-

ing algorithm involves successive additions and
cubings, each control word loaded in the shift

register manages a sequence of operations. Note that

- while performing a multiplication or a cubing,
registers R1 and R2 must store the same value;

- d03iþ2 is always equal to zero in the case of
addition.

. A multiplexer in the accumulation loop allows one
to select between the content of register R3
(accumulation) or the content of R3 shifted and
reduced modulo fðxÞ (multiplication).

BEUCHAT ET AL.: ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE �T PAIRING IN CHARACTERISTIC THREE 1463

Fig. 1. Arithmetic operators over IF3m . (a) Multiplication (D ¼ 3 coefficients of d0ðxÞ are processed at each clock cycle) [22]. (b) Cubing. (c) Addition/

subtraction of two operands and accumulation. Boxes with rounded corners involve only wiring. The cis denote control bits.

. An additional multiplexer is required to select the
second input of the multioperand adder: d2ðxÞ
(addition), ðd2ðxÞ � d03iþ1 � xÞmod fðxÞ (multiplica-
tion), or �1ðxÞ (cubing).

3.5 Cube Root over IF3m

Some of the �T pairing algorithms in characteristic three
described in Section 2 involve cube roots over IF3m . This
function is computed exactly in the same way as cubing:

first, the normal form of
ffiffiffiffiffiffiffiffiffi
dðxÞ3

p
mod fðxÞ is obtained by

solving the m-dimensional linear system given by the

equation ð
ffiffiffiffiffiffiffiffiffi
dðxÞ3

p
Þ3 mod fðxÞ ¼ dðxÞ. The result is then

expressed as a sum of polynomials, each one being a

permutation of the coefficients of the operand dðxÞ
multiplied by a constant. The number of polynomials we

have to add depends on fðxÞ. Barreto gives a list of
irreducible polynomials leading to efficient cube root

operators in [41].

3.6 Architecture of the Coprocessor

Fig. 4 describes the architecture of our �T pairing

coprocessor. It consists of a single processing element
(unified operator for addition, multiplication, and cubing),

registers implemented by means of a dual-port RAM (six
Virtex-II Pro SelectRAM+ blocks or 13 Cyclone II M4K

memory blocks), and a control unit that consists of a Finite
State Machine (FSM) and an instruction memory (ROM).

Each instruction consists of four fields: an 11-bit word that
specifies the functionality of the processing element,

address and write enable signal for port B of the dual-port
RAM, address for port A of the dual-port RAM, and a 6-bit

control word that manages jump instructions and indicates

how many times an instruction must be repeated. This

approach makes it possible for instance to execute the

consecutive steps appearing in the multiplication over IF3m

with a single instruction.
The architecture described in Fig. 4 was captured in the

VHDL language and prototyped on several Altera and

Xilinx FPGAs. We selected the following parameters:

m ¼ 97, b ¼ 1, and fðxÞ ¼ x97 þ x12 þ 2. Both synthesis and

place-and-route steps were performed with Quartus II 7.1

Web Edition and ISE WebPACK 9.2i. The implementation

on this coprocessor of the reduced �T pairing (using

Algorithm 5 for the �T pairing and Algorithm 8 for the

final exponentiation) takes 900 instructions, which are

executed in 27,800 clock cycles. Table 3 summarizes the

area (in slices on Xilinx FPGAs and Logic Elements (LEs) on

the Altera device) and the calculation time.
It is worth noticing that an operator for inversion over

IF397 based on the EEA occupies 3,422 LEs on a Cyclone-II

device [42] and 2,210 slices on a Virtex-II FPGA [43]. The

implementation of the algorithm based on Itoh and Tsujii’s

work requires 394 clock cycles on our coprocessor for

m ¼ 97. The EEA needs 2m ¼ 194 clock cycles to return the

inverse. Therefore, introducing specific hardware for inver-

sion would double the circuit area while reducing the

calculation time by less than 1 percent.

1464 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

Fig. 3. Operator for addition, multiplication, and cubing over

IF3½x�=ðx97 þ x12 þ 2Þ. Boxes with rounded corners involve only wiring.

The cis denote control bits. Gray boxes outline the modifications of the

operator in Fig. 2.

Fig. 2. Operator for multiplication and cubing over IF3½x�=ðx97 þ x12 þ 2Þ.
Boxes with rounded corners involve only wiring. The cis denote control

bits. Gray boxes outline the modifications of the array multiplier in

Fig. 1a.

We also described a naive coprocessor embedding the
multiplier, the cubing unit, and the adder depicted in Fig. 1.
The outputs of these operators are connected to the register
file by means of a three-input multiplexer controlled by two
additional bits. Place-and-route results indicate that such a
coprocessor (without control unit) occupies 2,199 slices on a
Spartan-3 FPGA and 3,345 LEs on a Cyclone-II device.
Furthermore, we need 17 bits to control this ALU. Thus, our
unified operator reduces both the area of the coprocessor
and the width of the control words.

In order to guarantee the security of pairing-based
cryptosystems in a near future, larger extension degrees
will probably have to be considered, thus raising the
question of designing such a unified operator for other
extension fields. For this purpose, we wrote a C++ program
that automatically generates a synthesizable VHDL descrip-
tion of a unified operator according to the characteristic and
the irreducible polynomial fðxÞ.

4 COMPARISONS

Grabher and Page designed a coprocessor dealing with
arithmetic over IF3m , which is controlled by a general
purpose processor [19]. The ALU embeds an adder, a
subtracter, a multiplier (with D ¼ 4), a cubing unit, and a
cube root operator based on the method highlighted by

Barreto [41]. This architecture occupies 4,481 slices and
allows one to perform the Duursma-Lee algorithm and its
final exponentiation in 432.3 �s. The main advantage is that
the control can be compiled using a retargeted GCC tool
chain and other algorithms should easily be implemented
on this architecture. Our approach leads however to a much
simpler control unit and allows us to divide the number of
slices by 2.4.

Another implementation of the Duursma-Lee algorithm
was proposed by Kerins et al. [20]. It features a parallel
multiplier over IF36m based on Karatsuba-Ofman’s scheme.
Since the final exponentiation requires a general multi-
plication over IF36m , the authors cannot take advantage of
the optimizations described in this paper and in [21] for
the pairing calculation. Therefore, the hardware architec-
ture consists of 18 multipliers and six cubing circuits over
IF397 , along with, quoting [20], “a suitable amount of
simpler IF3m arithmetic circuits for performing addition,
subtraction, and negation.” Since the authors claim that
roughly 100 percent of available resources are required to
implement their pairing accelerator, the cost can be
estimated as 55,616 slices [22]. The approach proposed
in this paper reduces the area and the computation time
by 30 and 4.4, respectively. Note that a multiplier over
IF36m based on the fast Fourier transform [44] would save
three multipliers over IF3m . Since all multiplications over

BEUCHAT ET AL.: ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE �T PAIRING IN CHARACTERISTIC THREE 1465

Fig. 4. Architecture of the coprocessor for arithmetic over IF3m .

TABLE 3
Area and Calculation Time of an IF397 Reduced �T Pairing Coprocessor

IF3m are performed in parallel, this approach would only
slightly reduce the circuit area without decreasing the
calculation time.

Beuchat et al. described a fast architecture for the
computation of the �T pairing [25]. The authors introduced
a novel multiplication algorithm over IF36m , which takes
advantage of the constant coefficients of S. Thus, this design
must be supplemented with a coprocessor for final
exponentiation and the full pairing accelerator requires
around 18,000 LEs on a Cyclone II FPGA [26]. The
computation of the pairing and the final exponentiation
require 4,849 and 4,082 clock cycles, respectively. Since both
steps are pipelined, we can consider that a new result is
returned after 4,849 clock cycles if we perform a sufficient
amount of consecutive full �T pairings. In order to compare
our accelerator against this architecture, we implemented it
on an Altera Cyclone II 5 FPGA with Quartus II 7.1 Web
Edition. Our design occupies 3,216 LEs and the maximal
clock frequency of 152 MHz allows one to compute a
pairing in 183 �s. The architecture proposed in this paper is
therefore 6 times slower but 5.6 times smaller.

In order to study the trade-off between circuit area and
calculation time of the �T pairing, Ronan et al. wrote a
C program that automatically generates a VHDL description
of a coprocessor and its control unit according to the number
of multipliers over IF3m to be included and the parameter D
[23]. An architecture embedding five multipliers processing
D ¼ 4 coefficients at each clock cycle computes for instance a
full pairing in 187 �s. Though slightly faster, this design
requires five times the amount of slices of our pairing
accelerator. Our approach offers a better compromise
between area and calculation time (Table 4).

To our best knowledge, the fastest �T pairing processor
described in the open literature was designed by Jiang [24].
Unfortunately, Jiang does not give any detail about his
architecture. Since a pairing is computed in 1,627 clock

cycles and that multiplication over IF3m is based on an LSE
array multiplier processing D ¼ 7 coefficients at each clock
cycle, we can however guess that the design includes a
hardwired multiplier over IF36m . Though 6.5 faster than the
coprocessor based on our unified arithmetic operator, the
design by Jiang requires 40 times more slices.

5 CONCLUSION

We have discussed several algorithms to compute the �T
pairing and its final exponentiation in characteristic
three. We proposed a compact implementation of the
reduced �T pairing in characteristic three over
IF3½x�=ðx97 þ x12 þ 2Þ. Our architecture is based on a
unified arithmetic operator that leads to the smallest
circuit proposed in the open literature while demonstrat-
ing competitive performances.

Future works should include studies of the �T pairing
in characteristic two, where the wired multipliers em-
bedded in most of the current FPGAs should allow for
cheaper and faster array—and even fully parallel multi-
pliers over IF2m . Such more efficient architectures would
then allow us to investigate the �T pairing over hyper-
elliptic curves.

The study of the Ate pairing [45] would also be of interest,
for it presents a large speedup when compared to the Tate
pairing and also supports nonsupersingular curves.

ACKNOWLEDGMENTS

This work was supported by the New Energy and
Industrial Technology Development Organization (NEDO),
Japan. The authors would like to thank Guillaume Hanrot,
Francisco Rodrı́guez-Henrı́quez, Guerric Meurice de
Dormale, and the anonymous referees for their valuable
comments.

1466 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

TABLE 4
FPGA-Based Accelerators over IF397 in the Literature

The parameter D refers to the number of coefficients processed at each clock cycle by a multiplier.

REFERENCES

[1] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from
the Weil Pairing,” Advances in Cryptology—Proc. ASIACRYPT
’01, C. Boyd, ed., pp. 514-532, 2001.

[2] A. Menezes, T. Okamoto, and S.A. Vanstone, “Reducing Elliptic
Curves Logarithms to Logarithms in a Finite Field,” IEEE Trans.
Information Theory, vol. 39, no. 5, pp. 1639-1646, Sept. 1993.

[3] G. Frey and H.-G. Rück, “A Remark Concerning m-Divisibility and
the Discrete Logarithm in the Divisor Class Group of Curves,”
Math. Computation, vol. 62, no. 206, pp. 865-874, Apr. 1994.

[4] S. Mitsunari, R. Sakai, and M. Kasahara, “A New Traitor Tracing,”
IEICE Trans. Fundamentals, vol. E85-A, no. 2, pp. 481-484,
Feb. 2002.

[5] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems Based
on Pairing,” Proc. Symp. Cryptography and Information Security
(SCIS ’00), pp. 26-28, Jan. 2000.

[6] A. Joux, “A One Round Protocol for Tripartite Diffie-Hellman,”
Proc. Algorithmic Number Theory—ANTS IV, W. Bosma, ed.,
pp. 385-394, 2000.

[7] R. Dutta, R. Barua, and P. Sarkar, Pairing-Based Cryptographic
Protocols: A Survey, cryptology ePrint Archive, Report 2004/64,
2004.

[8] R. Granger, D. Page, and N.P. Smart, “High Security Pairing-
Based Cryptography Revisited,” Proc. Algorithmic Number Theory
—ANTS VII, F. Hess, S. Pauli, and M. Pohst, eds., pp. 480-494,
2006.

[9] N. Koblitz and A. Menezes, “Pairing-Based Cryptography at
High Security Levels,” Cryptography and Coding, N.P. Smart,
ed., pp. 13-36, Springer, 2005.

[10] J.H. Silverman, The Arithmetic of Elliptic Curves. Springer-Verlag,
1986.

[11] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott, “Efficient
Algorithms for Pairing-Based Cryptosystems,” Advances in
Cryptology—Proc. CRYPTO ’02, M. Yung, ed., pp. 354-368, 2002.

[12] E.R. Verheul, “Evidence that XTR Is More Secure than Super-
singular Elliptic Curve Cryptosystems,” J. Cryptology, vol. 17,
no. 4, pp. 277-296, 2004.

[13] V.S. Miller, Short Programs for Functions on Curves, http://crypto.
stanford.edu/miller, 1986.

[14] V.S. Miller, “The Weil Pairing, and Its Efficient Calculation,”
J. Cryptology, vol. 17, no. 4, pp. 235-261, 2004.

[15] S.D. Galbraith, K. Harrison, and D. Soldera, “Implementing the
Tate Pairing,” Algorithmic Number Theory—Proc. ANTS V, C. Fieker
and D. Kohel, eds., pp. 324-337, 2002.

[16] I. Duursma and H.S. Lee, “Tate Pairing Implementation for
Hyperelliptic Curves y2 ¼ xp � xþ d,” Advances in Cryptology—
Proc. ASIACRYPT ’03, C.S. Laih, ed., pp. 111-123, 2003.

[17] S. Kwon, “Efficient Tate Pairing Computation for Elliptic Curves
over Binary Fields,” Information Security and Privacy—Proc. ACISP
’05, C. Boyd and J.M. González Nieto, eds., pp. 134-145, 2005.

[18] P.S.L.M. Barreto, S.D. Galbraith, C. �O h�Eigeartaigh, and M. Scott,
“Efficient Pairing Computation on Supersingular Abelian Vari-
eties,” Designs, Codes and Cryptography, vol. 42, no. 3, pp. 239-271,
Mar. 2007

[19] P. Grabher and D. Page, “Hardware Acceleration of the
Tate Pairing in Characteristic Three,” Cryptographic Hardware
and Embedded Systems—Proc. CHES ’05, J.R. Rao and
B. Sunar, eds., pp. 398-411, 2005.

[20] T. Kerins, W.P. Marnane, E.M. Popovici, and P. Barreto,
“Efficient Hardware for the Tate Pairing Calculation in Char-
acteristic Three,” Cryptographic Hardware and Embedded Systems—
Proc. CHES ’05, J.R. Rao and B. Sunar, eds., pp. 412-426, 2005.

[21] G. Bertoni, L. Breveglieri, P. Fragneto, and G. Pelosi, “Parallel
Hardware Architectures for the Cryptographic Tate Pairing,” Proc.
Third Int’l Conf. Information Technology: New Generations (ITNG),
2006.

[22] C. Shu, S. Kwon, and K. Gaj, “FPGA Accelerated Tate Pairing
Based Cryptosystem over Binary Fields,” Proc. IEEE Int’l Conf.
Field Programmable Technology (FPT ’06), pp. 173-180, 2006.

[23] R. Ronan, C. Murphy, T. Kerins, C. �O h�Eigeartaigh, and
P.S.L.M. Barreto, “A Flexible Processor for the Characteristic
3 �T Pairing,” Int’l J. High Performance Systems Architecture,
vol. 1, no. 2, pp. 79-88, 2007.

[24] J. Jiang, “Bilinear Pairing (�T Pairing) IP Core,” technical report,
Dept. of Computer Science, City Univ. of Hong Kong, May 2007.

[25] J.-L. Beuchat, M. Shirase, T. Takagi, and E. Okamoto, “An
Algorithm for the �T Pairing Calculation in Characteristic Three
and Its Hardware Implementation,” Proc. 18th IEEE Symp.
Computer Arithmetic (ARITH ’07), P. Kornerup and J.-M. Muller,
eds., pp. 97-104, 2007.

[26] J.-L. Beuchat, N. Brisebarre, M. Shirase, T. Takagi, and
E. Okamoto, “A Coprocessor for the Final Exponentiation of
the �T Pairing in Characteristic Three,” Proc. First Int’l
Workshop Arithmetic of Finite Fields (WAIFI ’07), C. Carlet and
B. Sunar, eds., pp. 25-39, 2007.

[27] J.-L. Beuchat, N. Brisebarre, J. Detrey, and E. Okamoto, “Arith-
metic Operators for Pairing-Based Cryptography,” Cryptographic
Hardware and Embedded Systems—Proc. CHES ’07, P. Paillier and
I. Verbauwhede, eds., pp. 239-255, 2007.

[28] R. Granger, D. Page, and M. Stam, “On Small Characteristic
Algebraic Tori in Pairing-Based Cryptography,” LMS J. Computa-
tion and Math., vol. 9, pp. 64-85, Mar. 2006.

[29] M. Shirase, T. Takagi, and E. Okamoto, “Some Efficient
Algorithms for the Final Exponentiation of �T Pairing,” Proc.
Third Int’l Information Security Practice and Experience Conf.
(ISPEC ’07), E. Dawson and D.S. Wong, eds., pp. 254-268,
May 2007.

[30] J.-L. Beuchat, T. Miyoshi, J.-M. Muller, and E. Okamoto, “Horner’s
Rule-Based Multiplication over GFðpÞ and GFðpnÞ: A Survey,”
Int’l J. Electronics, to appear.

[31] S.E. Erdem, T. Yamk, and Ç.K. Koç, “Polynomial Basis Multi-
plication over GFð2mÞ,” Acta Applicandae Math., vol. 93, nos. 1-3,
pp. 33-55, Sept. 2006.

[32] J. Guajardo, T. Güneysu, S. Kumar, C. Paar, and J. Pelzl, “Efficient
Hardware Implementation of Finite Fields with Applications to
Cryptography,” Acta Applicandae Math., vol. 93, nos. 1-3, pp. 75-
118, Sept. 2006.

[33] L. Song and K.K. Parhi, “Low Energy Digit-Serial/Parallel
Finite Field Multipliers,” J. VLSI Signal Processing, vol. 19, no. 2,
pp. 149-166, July 1998.

[34] R. Ronan, C. �O h�Eigeartaigh, C. Murphy, M. Scott, T. Kerins, and
W. Marnane, “An Embedded Processor for a Pairing-Based
Cryptosystem,” Proc. Third Int’l Conf. Information Technology: New
Generations (ITNG), 2006.

[35] G. Meurice de Dormale, personal communication.
[36] J.-C. Bajard, J. Duprat, S. Kla, and J.-M. Muller, “Some Operators

for On-Line Radix-2 Computations,” J. Parallel and Distributed
Computing, vol. 22, pp. 336-345, 1994.

[37] T. Itoh and S. Tsujii, “A Fast Algorithm for Computing Multi-
plicative Inverses in GFð2mÞ Using Normal Bases,” Information and
Computation, vol. 78, pp. 171-177, 1988.

[38] J. von zur Gathen and M. Nöcker, “Computing Special Powers in
Finite Fields,” Math. Computation, vol. 73, no. 247, pp. 1499-1523,
2003.

[39] F. Rodrı́guez-Henrı́quez, G. Morales-Luna, N.A. Saqib, and
N. Cruz-Cortés, “A Parallel Version of the Itoh-Tsujii Multi-
plicative Inversion Algorithm,” Reconfigurable Computing: Architec-
tures, Tools and Applications—Proc. ARC ’07, P.C. Diniz, E. Marques,
K. Bertels, M.M. Fernandes, and J.M.P. Cardoso, eds., pp. 226-237,
2007.

[40] D.E. Knuth, The Art of Computer Programming, third ed. Addison-
Wesley, 1998.

[41] P.S.L.M. Barreto, A Note on Efficient Computation of Cube Roots in
Characteristic 3, 2004 cryptology ePrint Archive, Report 2004/305.

[42] A. Vithanage, personal communication.
[43] T. Kerins, E. Popovici, and W. Marnane, “Algorithms and

Architectures for Use in FPGA Implementations of Identity Based
Encryption Schemes,” Field-Programmable Logic and Applications,
J. Becker, M. Platzner, and S. Vernalde, eds., pp. 74-83, Springer,
2004.

[44] E. Gorla, C. Puttmann, and J. Shokrollahi, “Explicit Formulas for
Efficient Multiplication in IF36m ,” Selected Areas in Cryptography—
Proc. SAC ’07, C. Adams, A. Miri, and M. Wiener, eds., pp. 173-
183, 2007.

[45] F. Hess, N. Smart, and F. Vercauteren, “The Eta Pairing
Revisited,” IEEE Trans. Information Theory, vol. 52, no. 10,
pp. 4595-4602, Oct. 2006.

BEUCHAT ET AL.: ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE �T PAIRING IN CHARACTERISTIC THREE 1467

Jean-Luc Beuchat received the MSc and PhD
degrees in computer science from the Swiss
Federal Institute of Technology, Lausanne,
Switzerland, in 1997 and 2001, respectively.
He is an associate professor in the Graduate
School of Systems and Information Engineer-
ing, University of Tsukuba. His current re-
search interests include computer arithmetic
and cryptography.

Nicolas Brisebarre received the PhD degree
in pure mathematics from the Université
Bordeaux I, Talence, France, in 1998. He is a
chargé de recherche (junior researcher) at the
Centre National de la Recherche Scientifique
(CNRS), France, and a member of the Labor-
atoire de l’Informatique du Parallélisme (LIP),
which is a joint computer science laboratory of
CNRS, the �Ecole Normale Supérieure de Lyon,
Institut National de Recherche en Informatique

et Automatique (INRIA), and the Université Claude Bernard Lyon 1.
His research interests are in computer arithmetic and number theory.

Jérémie Detrey received the MSc and PhD
degrees in computer science from the �Ecole
Normale Supérieure de Lyon (ENS Lyon), Lyon,
France, in 2003 and 2007, respectively, under
the supervision of Florent de Dinechin and Jean-
Michel Muller. He is currently a postdoctoral
fellow in the Cosec Group, Bonn-Aachen Inter-
national Center for Information Technology (B-
IT), Bonn, Germany. His research interests
cover the various hardware aspects of computer

arithmetic, from floating-point and elementary functions to finite fields
and cryptography. He is a member of the IEEE and the IEEE Computer
Society.

Eiji Okamoto received the BS, MS, and PhD
degrees in electronics engineering from Tokyo
Institute of Technology, in 1973, 1975, and
1978, respectively. He worked and studied
communication theory and cryptography for
NEC central research laboratories since 1978.
From 1991, he became a professor at Japan
Advanced Institute of Science and Technology,
then at Toho University. He is currently a
professor in the Graduate School of Systems

and Information Engineering, University of Tsukuba. His research
interests are cryptography and information security. He is a co-editor-
in-chief of the International Journal of Information Security. He is a
senior member of the IEEE.

Masaaki Shirase received the BSc degree in
mathematics from Ibaraki University in 1994 and
the MIS and DrIS degrees from Japan Ad-
vanced Institute of Science and Technology
(JAIST), in 2003 and 2006, respectively. He is
currently a postdoctoral fellow in the School of
Systems Information Science, Future University-
Hakodate. He is currently interested in the
implementation of cryptographic algorithms.

Tsuyoshi Takagi received the BSc and MSc
degrees in mathematics from Nagoya University
in 1993 and 1995, respectively, and the Drrernat
degree from the Technische Universität Darm-
stadt in 2001. He engaged in research on
network security at NTT Laboratories from
1995 to 2001. He was an assistant professor in
the Department of Computer Science at the
Technische Universität Darmstadt until 2005. He
is currently a professor in the School of Systems

Information Science, Future University-Hakodate. His current research
interests are information security and cryptography. He is a member of
the Institute of Electronics, Information and Communication Engineers
(IEICE), the Information Processing Society of Japan (IPSJ), and the
International Association for Cryptographic Research (IACR).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1468 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

