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Abstract

This paper introduces Choice Trees (CTrees), a monad for modeling nondeterministic, recursive, and
impure programs in Coq. Inspired by Xia et al.’s ITrees, this novel data structure embeds computations
into coinductive trees with three kinds of nodes: external events, internal steps, and nondeterministic
branching. This structure allows us to provide shallow embedding of denotational models with internal
choice in the style of ccs, while recovering an inductive LTS view of the computation. CTrees inherit
a vast collection of bisimulation and refinement tools, with respect to which we establish a rich
equational theory.

We connect CTrees to the ITrees infrastructure by showing how a monad morphism embedding the
former into the latter permits using CTrees to implement nondeterministic effects. We demonstrate
the utility of CTrees by using them to model concurrency semantics in two case studies: ccs and
cooperative multithreading.
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2 Choice Trees

1 Introduction

Reasoning about and modeling nondeterministic computations is important for many pur-
poses. Formal specifications use nondeterminism to abstract away from the details of
implementation choices. Accounting for nondeterminism is crucial when reasoning about
the semantics of concurrent and distributed systems, which are, by nature, nondetermin-
istic due to races between threads, locks, or message deliveries. Consequently, precisely
defining nondeterministic behaviors and developing the mathematical tools to work with
those definitions has been an important research endeavor, and has led to the development
of formalisms like nondeterministic automata, labeled transition systems and relational
operational semantics (Bergstra et al., 2001), powerdomains (Smyth, 1976), or game seman-
tics (Abramsky and Melliès, 1999; Rideau and Winskel, 2011), among others, all of which
have been used to give semantics to nondeterministic programming language features such
as concurrency (Sangiorgi and Walker, 2001; Milner, 1989; Harper, 2016).

In this paper, we are interested in developing tools for modeling nondeterministic com-
putations in a dependent type theory such as Coq’s CIC (Team, 2022). Although any
of the formalisms mentioned above could be used for such purposes (and many have
been (Sevcík et al., 2013; Kang et al., 2017; Lee et al., 2020; Koenig and Shao, 2020;
Oliveira Vale et al., 2022)), those techniques offer various tradeoffs when it comes to the
needs of formalization: automata, and labeled transitions systems, while offering powerful
bisimulation proof principles, are not easily made modular (except, perhaps, with com-
plex extensions to the framework (Henrio et al., 2016)). Relationally-defined operational
semantics are flexible and expressive, but again suffer from issues of compositionality,
which makes it challenging to build general-purpose libraries that support constructing
complex models. Conversely, powerdomains and game semantics are more denotational
approaches, aiming to ensure compositionality by construction; however, the mathemat-
ical structures involved are themselves very complex, typically involving many relations
and constraints (Abramsky and Melliès, 1999; Melliès and Mimram, 2007; Rideau and
Winskel, 2011) that are not easy to implement in constructive logic (though there are
some notable exceptions (Koenig and Shao, 2020; Oliveira Vale et al., 2022)). Moreover,
in all of the above-mentioned approaches, there are other tensions at play. For instance,
how “deep” the embedding is affects the amount of effort needed to implement a formal
semantics—“shallower” embeddings typically allow more re-use of metalanguage features,
e.g., meta-level function application can obviate the need to define and prove properties
about a substitution operation; “deeper” embeddings can side-step meta-level limitations
(such as Coq’s insistence on pure, total functions) at the cost of additional work to define
the semantics. Moreover, these tradeoffs can have significant impact on how difficult it is
to use other tools and methodologies: for instance, to use QuickChick (Lampropoulos and
Pierce, 2018), one must be able to extract an executable interpreter from the semantics,
something that isn’t always easy or possible.

This paper introduces a new formalism designed specifically to facilitate the definition
of and reasoning about nondeterministic computations in Coq’s dependent type theory. The
key idea is to update Xia, et al.’s interaction trees (ITrees) framework (Xia et al., 2020)
with native support for nondeterminisic “choice nodes” that represent internal choices made
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during computation. The main technical contributions of this paper are to introduce the
definition of these CTrees (“choice trees”) and to develop the suitable metatheory and
equational reasoning principles to accommodate that change.

We believe that CTrees offer an appealing, and novel, point in the design space of
formalisms for working with nondeterministic specifications within type theory. Unlike
purely relational specifications, CTrees build nondeterminism explicitly into a datatype,
as nodes in a tree, and the nondeterminism is realized propositionally at the level of the
equational theory, which determines when two CTree computations are in bisimulation.
This means that the user of CTrees has more control over how to represent nondeterminism
and when to apply the incumbent propositional reasoning. By reifying the choice construct
into a data structure, one can write meta-level functions that manipulate CTrees, rather
than working entirely within a relation on syntax. This design allows us to bring to bear
the machinery of monadic interpreters to refine the nondeterminism into an (executable)
implementation. While ITrees can represent such choice nodes, in our experience, using
that feature to model “internal” nondeterminism is awkward: the natural equational theory
for ITrees is too fine, and other techniques, such as interpretation into Prop, don’t work out
neatly.

At the same time, the notion of bisimulation for CTrees is still connected to familiar
definitions like those from labeled transition systems (LTS), meaning that much of the
well-developed theory from prior work can be imported whole-sale. Indeed, we define
bisimilarity for CTrees by viewing them as LTSs and applying standard definitions. The
fact that the definition of bisimulation ends up being subtle and nontrivial is a sign that
we gain something by working with the CTrees: like their ITree predecessors, CTrees have
compositional reasoning principles, the type is a monad, and the useful combinators for
working with ITrees, namely sequential composition, iteration and recursion, interpretation,
etc., all carry over directly. CTrees, though, further allow us to conveniently, and flexibly,
define nondeterminstic semantics, ranging from simple choice operators to various flavors
of parallel composition. The benefit is that, rather than just working with a “raw” LTS
directly, we can construct one using the CTrees combinators—this is a big benefit because,
in practice, the LTS defining the intended semantics of a nondeterministic programming
language cannot easily be built in a compositional way without using some kind of inter-
mediate representation, which is exactly what CTrees provides (see the discussion about
Figure 4). A key technical novelty of our CTrees definition is that it makes a distinction
between stepping choices (which correspond to 𝜏 transitions and introduce new LTS states)
and delayed choices (which don’t correspond to a transition and don’t create a state in the
LTS). This design allows for compositional construction of the LTS and generic reasoning
rules that are usable in any context.

The net result of our contributions is a library, entirely formalized in Coq, that offers
flexible building blocks for constructing nondeterministic, and hence concurrent, models
of computation. To demonstrate the applicability of this library, we use it to implement
the semantics from two different formalisms: ccs (Milner, 1989) and a language with
cooperative threads inspired from the literature (Abadi and Plotkin, 2010). Crucially, in both
of these scenarios, we are able to define the appropriate parallel composition combinators
such that the semantics of the programming language can be defined fully compositionally
(i.e., by straightforward induction on the syntax). Moreover, we recover the classic definition
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4 Choice Trees

of program equivalence for ccs directly from the equational theory induced by the encoding
of the semantics using CTrees; for the language with cooperative threading, we prove some
standard program equivalences.

To summarize, this paper makes the following contributions:

• We introduce CTrees, a novel data structure for defining nondeterministic computa-
tions in type theory, along with a set of combinators for building semantic objects
using CTrees.

• We develop the appropriate metatheory needed to reason about strong and weak
bisimilarity of CTrees, connecting their semantics to concepts familiar from labeled
transition systems.

• We show that CTrees admit appropriate notions of refinement and that we can
use them to construct monadic interpreters; we show that ITrees can be faithfully
embedded into CTrees.

• We demonstrate how to use CTrees in two case studies: (1) to define a semantics for
Milner’s classic ccs and prove that the resulting derived equational theory coincides
with the one given by the standard operational semantics, and (2) to model in stages
cooperative multithreading with support for fork and yield operations and prove
nontrivial program equivalences.

All of our results have been implemented in Coq, and all claims in this paper are fully
mechanically verified. For expository purposes, we stray away from Coq’s syntax in the body
of this paper, but systematically link our claims to their formal counterpart via hyperlinks
represented as ( ).

The remainder of the paper is organized as follows. The next section gives some back-
ground about interaction trees and monadic interpreters, along with a discussion of the
challenges of modeling nondeterminism, laying the foundation for our results. We intro-
duce the CTrees data structure and its main combinators in Section 3. Section 4 introduces
several notions of program equivalence and comparison over CTrees—(coinductive) equal-
ity, strong bisimilarity, strong similarity, complete similarity, weak bisimilarity, and trace
equivalence—and describes its core equational theory. Section 5 gives another view on
strong bisimilarity and strong similarity of CTrees, enabling new proof techniques. Section 6
describes how to interpret uninterpreted events in an ITree into “choice” branches in a
CTree, as well as how to define the monadic interpretation of events from CTrees. Section 7
describes our first case study, a model for ccs. Section 8 describes our second case study,
a model for the imp language extended with cooperative multithreading. Finally, Section 9
discusses related work and concludes.

This journal paper is a follow-up to the one published in POPL’23 (Chappe et al., 2023),
in which we had introduced CTrees and their usage. The present version is extensively
updated and enriched to describe the current reimplementation of our library. In particular,
we present updated core definitions of CTrees to improve their usability and applicability;
we develop additional notions of program equivalence and refinements over CTrees in
Section 4; we define a novel alternate characterization of our strong (bi)simulation and
illustrate how it eases some reasoning in Section 5; we leverage this updated theory to
extend our results related to interpretation and refinement, as well as improve our model of

https://github.com/vellvm/ctrees/tree/jfp-submission
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CoInductive itree (E: Type → Type) (R: Type) : Type :=
(* computation terminating with value r *)
| Ret (r: R)
(* event e yielding an answer in A *)
| Vis {A: Type} (e : E A) (k : A → itree E R)
(* "silent tau" transition with child t *)
| Step (t: itree E R).

Fig. 1: Interaction trees: definition

cooperative scheduling. We further discuss some trade-offs in the design of such shallow
structures for divergence and non-determinism in Section 9.

2 Background

2.1 Interaction trees and monadic interpreters

Monadic interpreters have grown to be an attractive way to mechanize the semantics of a
wide class of computational systems in dependent typed theory, such as the one found in
many proof assistants, for which the host language is purely functional and total. In the
Coq ecosystem, interaction trees (Xia et al., 2020) provide a rich library for building and
reasoning about such monadic interpreters. By building upon the free(r) monad (Kiselyov
and Ishii, 2015; Letan et al., 2018), one can both design highly reusable components, as
well as define modular models of programming languages more amenable to evolution. By
modeling recursion coinductively, in the style of Capretta’s delay monad (Capretta, 2005;
Altenkirch et al., 2017), such interpreters can model non-total object languages while
retaining the ability to extract correct-by-construction, executable, reference interpreters.
By generically lifting monadic implementations of effects into a monad homomorphism,
complex interpreters can be built by stages, starting from an initial structure where all
effects are free and incrementally introducing their implementation. Working in a proof
assistant, these structures are well suited for reasoning about program equivalence and
program refinement: each monadic structure comes with its own notion of refinement, and
the layered infrastructure gives rise to increasingly richer equivalences (Yoon et al., 2022),
starting from the free monad, which comes with no associated algebra.

Interaction trees are coinductive data structures for representing (potentially divergent)
computations that interact with an external environment through visible events. A definition
of the ITree datatype is shown in Figure 1.1 The datatype takes as its first parameter
a signature—described as a family of types E : Type → Type—that specifies the set of
interactions the computation may have with the environment. The Vis constructor builds
a node in the tree representing such an interaction, followed by a continuation indexed
by the return type of the event. The second parameter, R, is the result type, the type
of values that the entire computation may return, if it halts. The constructor Ret builds
such a pure computation, represented as a leaf. Finally, the Step constructor models

1 The definition is presented with a positive coinductive datatype for expository purposes. The actual
implementation is defined in the negative style.
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6 Choice Trees

Jwhile true do skipK J𝑥::= 0; 𝑥::= 𝑦K J𝑥::= 𝑦K
Step

Step

Step

wr x 0

rd y

wr x 0

tt

wr x 1

tt

. . . wr x n

tt

. . .

rd y

wr x 0

tt

wr x 1

tt

. . . wr x n

tt

. . .

Fig. 2: Example ITrees denoting the imp programs 𝑝1, 𝑝2, and 𝑝3.

an internal, non-observable step of computation, allowing the representation of silently
diverging computations; it is also used for guarding corecursive definitions.2

To illustrate the approach supported by ITrees, and motivate the contributions of this
paper, we consider how to define the semantics for a simple imperative programming
language, imp:

comm ≜ skip | 𝑥::= 𝑒 | 𝑐1; 𝑐2 | while 𝑏 do 𝑐

The language contains a skip construct, assignments, sequential composition, and loops—
we assume a simple language of expressions, 𝑒, that we omit here. Consider the following
imp programs:

𝑝1 ≜ while true do skip 𝑝2 ≜ 𝑥::= 0; 𝑥::= 𝑦 𝑝3 ≜ 𝑥::= 𝑦

Following a semantic model for imp built on ITrees in the style of Xia et al. (2020), one
builds a semantics in two stages. First, commands are represented as monadic computations
of type itree MemE unit: commands do not return values, so the return type of the compu-
tation is the trivial unit type; interactions with the memory are (at first) left uninterpreted,
as indicated by the event signature MemE. This signature encodes two operations: rd yields
a value, while wr yields only the acknowledgment that the operation took place, which we
encode again using unit.

Variant MemE : Type → Type :=
| rd (x : var) : MemE value
| wr (x : var) (v : value) : MemE unit

Indexing by the value type in the continuation of rd events gives rise to non-unary
branches in the tree representing these programs. For instance, the programs 𝑝1, 𝑝2, 𝑝3 are,
respectively, modeled at this stage by the trees shown in Figure 2. These diagrams omit the
Vis and Ret constructors, because their presence is clear from the picture. For example, the
second tree 𝑝2 would be written as

Vis (wr x 0) (𝜆 _ ⇒ Vis (rd y) (𝜆 ans ⇒ (Vis (wr x ans) (𝜆 _ ⇒ Ret tt)))).

The Step nodes in the first tree are the guards from Capretta’s monad: because the
computation diverges silently, it is modeled as an infinite sequence of such guards. The

2 The ITree library uses Tau to represent Step nodes. Tau and 𝜏 are overloaded in our context, so we rename it
to Step here to avoid ambiguity and unify the notations with the CTree ones.
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Variant Flip : Type → Type :=
| flip : Flip bool.

Vis flip (𝜆 b ⇒ if b then p else q)

flip

J𝑝K J𝑞K

Fig. 3: A boolean event, an example of its use, and the corresponding CTree.

equivalence used for computations in the ITree monad is a weak bisimulation, dubbed equiv-
alence up-to taus (eutt), which allows one to ignore finite sequences of Step nodes when
comparing two trees. It remains termination-sensitive: the silently diverging computation
is not equivalent to any other ITree.

With ITrees, no assumption about the semantics of the uninterpreted memory events
is made. Although one would expect 𝑝2 and 𝑝3 to be equivalent as imp programs, their
trees are not eutt since the former starts with a different event than the latter. This
missing algebraic equivalence is concretely recovered at the second stage of modeling: imp
programs are given a semantics by interpreting the trees into the state monad, by handling
the MemE events. This yields computations in stateT mem (itree voidE) unit, or, unfolding
the definition of stateT, mem → itree voidE (mem * unit). Here, voidE is the “empty” event
signature, such that an ITree at that type either silently diverges or deterministically returns
an answer. For 𝑝2 and 𝑝3, assuming an initial state m, the computations become (writing
the trees horizontally to save space):

interp ℎ𝑚𝑒𝑚 J𝑝2K m = Step − Step − Step − (m{𝑥← 0}{𝑥← m(𝑦)}, 𝑡𝑡)
interp ℎ𝑚𝑒𝑚 J𝑝3K m = Step − Step − (m{𝑥← m(𝑦)}, 𝑡𝑡)

The Step nodes are introduced by the interpretation of the memory events. More pre-
cisely, an interp combinator applies the handler ℎ𝑚𝑒𝑚 to the rd and wr nodes of the trees,
implementing their semantics in terms of the state monad. Assuming an appropriate imple-
mentation of the memory, one can show that m{𝑥← 0}{𝑥← m(𝑦)} and m{𝑥← m(𝑦)} are
extensionally equal, and hence 𝑝2 and 𝑝3 are eutt after interpretation.

2.2 Nondeterminism

While the story above is clean and satisfying for stateful effects, nondeterminism is much
more challenging. Suppose we extend imp with a branching operator br p or q whose
semantics is to nondeterministically pick a branch to execute. This new feature is modeled
very naturally using a boolean-indexed flip event, creating a binary branch in the tree.
The new event signature, a sample use, and the corresponding tree are shown on Figure 3

Naturally, as with memory events, flip does not come with its expected algebra: associa-
tivity, commutativity and idempotence. To recover these necessary equations to establish
program equivalences such as 𝑝3 ≡ br 𝑝2 or 𝑝3, we need to find a suitable monad to
interpret flip into.
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8 Choice Trees

Zakowski et al. used this approach in the Vellvm project (Zakowski et al., 2021) for
formalizing the nondeterministic features of the LLVM IR. Their model consists of a
propositionally-specified set of computations: ignoring other effects, the monad they use is
itree E _ → Prop. The equivalence they build on top of it essentially amounts to a form of
bĳection up-to equivalence of the contained monadic computations. However, this approach
suffers from several drawbacks. First, one of the monadic laws is broken: the bind operation
does not associate to the left. Although stressed in the context of Vellvm (Zakowski et al.,
2021) and Yoon et al.’s work on layered monadic interpreters (Yoon et al., 2022), this
issue is not specific to ITrees but rather to a hypothetical “Prop Monad Transformer”,
i.e. to 𝜆 M X ⇒ M X → Prop, as pointed out previously in (Maillard et al., 2020). The
definition is furthermore particularly difficult to work with. Indeed, the corresponding
monadic equivalence is a form of bĳection up-to setoid: for any trace in the source, we must
existentially exhibit a suitable trace in the target. The inductive nature of this existential is
problematic: one usually cannot exhibit upfront a coinductive object as witness, they should
be produced coinductively. This challenge is particularly apparent in (Beck et al., 2024)
when proving that the change in perspective from an infinite domain of memory addresses
to a finite one is sound.

Second, the approach is very much akin to identifying a communicating system with
its set of traces, except using a richer structure, namely monadic computations, instead of
traces: it forgets all information about when nondeterministic choices are made. As has been
well identified by the process calculi tradition, and while trace equivalence is sometimes
the desired relation, such a model leads to equivalences of programs that are too coarse to
be compositional in general. In a general purpose semantics library, we believe we should
strive to provide as much compositional reasoning as possible and thus our tools support
both trace equivalence, and bisimulations (Bloom et al., 1988).

Third, because the set of computations is captured propositionally, this interpretation
is incompatible with the generation of an executable interpreter by extraction, losing one
of the major strengths of the ITree framework. Zakowski et al. work around this difficulty
by providing two interpretations of their nondeterministic events, and formally relating
them. But this comes at a cost — the promise of a sound interpreter for free is broken —
and with constraints — non-determinism must come last in the stack of interpretations,
and combinators whose equational theory is sensible to nondeterminism are essentially
impossible to define.

This difficulty with properly tackling nondeterminism extends also to concurrency. Lesani
et al. used ITrees to prove the linearizability of concurrent objects (Lesani et al., 2022).
Here too, they rely on sets of linearized traces and consider their interleavings. While a
reasonable solution in their context, that approach strays from the monadic interpreter style
and fails to capture bisimilarity.

This paper introduces CTrees, a suitable monad for modeling nondeterministic effects.
As with ITrees, the structure is compatible with divergence, external interaction through
uninterpreted events, extraction to executable reference interpreters, and monadic interpre-
tation. The core intuition is based on the observation that the tree-like structure from ITrees
is indeed the right one for modeling nondeterminism. The problem arises from how the
ITrees definition of eutt observes which branch is taken, requiring that all branches be
externally visible: while appropriate to model nondeterminism that results from a lack of
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information, it does not correspond to true internal choice. Put another way, thinking of
the trees as labeled transition systems, ITrees are deterministic. With CTrees, we therefore
additionally consider truly branching nodes, explicitly build the associated nondeterministic
LTS, and define proper bisimulations on the structure.

The resulting definitions are very expressive. As foreseen, they form a proper monad,
validating all monadic laws up-to coinductive structure equality, they allow us to establish
desired imp equations such as 𝑝3 ≡ br 𝑝2 or 𝑝3, but they also scale to model ccs and
cooperative multithreading.

Before getting to that, and to better motivate our definitions, let us further extend our
toy language with a block construction that cannot reduce, and a print instruction that
simply prints a dot. We will refer to this language as ImpBr.

comm ≜ skip | 𝑥::= 𝑒 | 𝑐1; 𝑐2 | while 𝑏 do 𝑐 | br 𝑐1 or 𝑐2 | block | print

Consider the program 𝑝 ≜ br (while true do print) or block. Depending on the
intended operational semantics associated with br, this program can have one of two
behaviors: (1) either to always reactively print an infinite chain of dots, or (2) to become
nondeterministically either similarly reactive, or completely unresponsive.

When working with (small-step) operational semantics, the distinction between these
behaviors is immediately apparent in the reduction rule for br (we only show rules for the
left branch here).

br 𝑐1 or 𝑐2→ 𝑐1
BrInternal

𝑐1→ 𝑐′1

br 𝑐1 or 𝑐2→ 𝑐′1
BrDelayed

BrInternal specifies that br may simply reduce to the left branch, while BrDelayed
specifies that br can reduce to any state reachable from the left branch. From an obser-
vational perspective, the former situation describes a system where, although we do not
observe which branch has been taken, we do observe that a branch has been taken. On the
contrary, the latter only progresses if one of the branches can progress, we thus directly
observe the subsequent evolution of the chosen branch, but not the branching itself.

In order to design the right monadic structure allowing for enough flexibility to model
either behavior, it is useful to look ahead and anticipate how we will reason about program
equivalence, as described in detail in Section 4. The intuition we follow is to interpret
our computations as labeled transition systems and define bisimulations over those, as is
generally done in the process algebra literature. From this perspective, the imp program 𝑝

may correspond to three distinct LTSs depending on the intended semantics, as shown in
Figure 4.

Figure 4a describes the case where picking a branch is an unknown external event,
hence where taking a specific branch is an observable action with a dedicated label: this
situation is naturally modeled by a Vis node in the style of ITrees, that is Jbr 𝑝 or 𝑞K ≜
𝑉𝑖𝑠 flip 𝜆𝑏 · if 𝑏 then J𝑝K else J𝑞K.

Figure 4b corresponds to BrInternal: both the stuck and the reactive states are reachable,
but we do not observe the label of the transition. This transition exactly corresponds to the
internal 𝜏 step of process algebra. This situation could3 be captured by introducing a

3 We will see shortly that these nodes are actually an encoding in the implementation.
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𝑝 𝑟𝑒𝑎𝑐

𝑠𝑡𝑢𝑐𝑘

flip

true

f
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fa
ls

e

print

( )

(a) Observation: branches

𝑝 𝑟𝑒𝑎𝑐

𝑠𝑡𝑢𝑐𝑘

𝜏

𝜏

print

( )

(b) Observation: branching

𝑝 𝑟𝑒𝑎𝑐
print

( )

print

( )

(c) Observation: none

Fig. 4: Three possible semantics for the program 𝑝, from an LTS perspective

new kind of node in our data structure, a 𝐵𝑟𝑆 branch, that maps in our bisimulations
defined in Section 4 to a nondeterministic internal step. For this semantics, we thus have
Jbr 𝑝 or 𝑞K ≜ 𝐵𝑟2

𝑆
𝜆𝑏 · if 𝑏 then J𝑝K else J𝑞K.4

Figure 4c corresponds to BrDelayed but raises the question: how do we build such a
behavior? A natural answer can be to assume that it is the responsibility of the model, i.e.,
the function mapping imp’s syntax to the semantic domain, CTrees, to explicitly build this
LTS. Here, J𝑝K would be an infinite sequence of Vis print nodes, containing no other
node. While that would be convenient for developing the meta-theory of CTrees, this design
choice would render them far less compositional (and hence less useful) than we want them
to be. Indeed, we want our models to be defined as computable functions by recursion on
the syntax, whenever possible. But to build this LTS directly, the model for br p or q
needs to introspect the models for J𝑝K and J𝑞K to decide whether they can take a step, and
hence whether it should introduce a branching node. But, in general, statically determining
whether the next reachable instruction is semantically equivalent to block is intractable,
so that introspection will be hard (or impossible) to implement. We thus extend CTrees
with a third category of nodes, a 𝐵𝑟 node, which does not directly correspond to states
of an LTS. Instead, 𝐵𝑟 nodes aggregate sub-trees such that the (inductively reachable) 𝐵𝑟
children of a 𝐵𝑟 node are “merged” in the LTS view of the CTree. This design choice means
that, for the BrDelayed semantics, the model is again trivial to define: Jbr 𝑝 or 𝑞K ≜
𝐵𝑟2 𝜆𝑏 · if 𝑏 then J𝑝K else J𝑞K, but the definition of bisimilarity for CTrees ensures that the
behavior of J𝑝K is precisely the LTS in Figure 4c.

Although BrDelayed and its corresponding LTS in Figure 4c is one example in which
𝐵𝑟 nodes are needed, we will see another concrete use in modeling ccs in Section 7.
Similar situations arise frequently, for modeling mutexes, locks, and other synchroniza-
tion mechanisms (e.g., the “await” construct in Encore (Brandauer et al., 2015)), dealing
with crash failures in distributed systems, encoding relaxed-consistency shared memory
models (e.g., the ThreadPromise rule of promising semantics (Kang et al., 2017)). The
𝐵𝑟 construct is needed whenever the operational semantics includes a rule whose possible
transitions depend on the existence of other transitions, i.e., for any rule of the following
shape, typically when it may be the case that 𝑃↛:

𝑃→ 𝑃′

𝐶 [𝑃] →𝐶 [𝑃′]
ContingentStep

4 The 2 indicates the arity of the branching.
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(* Core datatype *)
CoInductive ctree (E B : Type → Type) (R : Type) :=
| Ret (r : R) (* pure computation *)
| Stuck (* stuck process *)
| Step (t : ctree) (* internal guard *)
| Guard (t : ctree) (* invisible guard *)
| Vis {X : Type} (e : E X) (k : X → ctree) (* external event *)
| Br {X : Type} (c : B X) (k : X → ctree) (* delayed branching *)

(* Bind, sequencing computations *)
CoFixpoint bind {E T U} (t : ctree E B T) (k : T → ctree E B U)
: ctree E B U :=
match u with
| Ret r ⇒ k r
| Stuck ⇒ Stuck
| Step t ⇒ Step (bind t k)
| Guard t ⇒ Guard (bind t k)
| Vis e h ⇒ Vis e (𝜆 x ⇒ bind (h x) k)
| Br b h ⇒ Br b (𝜆 x ⇒ bind (h x) k)
end

(* Stepping branching *)
Definition BrS {X : Type} (c : B X) (k : X → ctree) :=
Br c (𝜆 x ⇒ Step (k x))

(* Main fixpoint combinator *)
CoFixpoint iter {I: Type} (body : I → ctree E B (I + R))
: I → ctree E B R :=
bind (body i) (𝜆 lr ⇒ match lr with

| inr r ⇒ Ret r
| inl i ⇒ Guard (iter body i)
end)

Notation "E { F" := (∀ X, E X → F X)
(* Atomic ctree triggering a single event *)
Definition trigger : E { ctree E B := 𝜆R (e : E R) ⇒ Vis e (𝜆 x ⇒ Ret x)
(* Atomic branching ctrees *)
Definition branchS : ctree E B R := 𝜆c ⇒ BrS c (𝜆 x ⇒ Ret x)
Definition branch : ctree E B R := 𝜆c ⇒ Br c (𝜆 x ⇒ Ret x)

Fig. 5: CTrees: definition and core combinators ( )

The point is that to implement the LTS corresponding to ContingentStep without using
a 𝐵𝑟 node would require introspection of 𝑃 to determine whether it may step, which
is potentially non-computable. The 𝐵𝑟 node bypasses the need for that introspection at
representation time, instead delaying it to the characterization of the CTree as an LTS,
which is used only for reasoning about the semantics. The presence of the 𝐵𝑟 nodes retains
the constructive aspects of the model, in particular the ability to interpret these nodes at
later stages, for instance to obtain an executable version of the semantics.

3 CTrees: Definition and Combinators

3.1 Core definitions

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Core/CTreeDefinitions.v#L58
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We are now ready to define our core datatype, displayed in the upper part of Figure 5.
The definition remains close to a coinductive implementation of the free monad, but
hard-codes support for an additional effect: unobservable, nondeterministic branching. The
CTree datatype, much like an ITree, is parameterized by a signature of (external) events E
encoded as a family of types, and a return type R. Contrary to ITree, it is parameterized
by a second family of types B characterizing the allowed arities of branching. CTrees are
coinductive tree5 with four main kinds of nodes: pure computations (Ret), external events
(Vis), unary node with an implicitly associated 𝜏 step (Step), and delayed internal branching
(Br). Nullary (Stuck) and unary (Guard) delayed internal branching could be expressed as
special cases of 𝐵𝑟 over an appropriate interface B, but we provide specific constructors for
them for convenience given their central role. The continuation following external events
is indexed by the return type specified by the emitted event. Similarly, the continuation
following internal branching is indexed by the return type specified by the emitted branch.
When using finite branching in examples, we assume that we are implicitly parameterized
by a suitable interface B supporting such finite indexed types, and we abuse notations and
write, for instance, 𝐵𝑟2 𝑡 𝑢 for a computation branching on a finite type with two inhabitants,
rather than explicitly spelling out an event with a boolean signature and the continuation
that branches on the boolean index: 𝜆 i ⇒ match i with 0 ⇒ t | 1 ⇒ u end. We write
Stuck nodes as “∅” in equations.

The remainder of Figure 5 displays (superficially simplified) definitions of the core
combinators. In particular, guarded branching, 𝐵𝑟𝑆 , as informally introduced in Section 2.2,
is defined as the composition of 𝐵𝑟 and 𝑆𝑡𝑒𝑝. It materializes an external nondeterministic
choice, one that may be observed. The minimal computations respectively triggering an
event e, delaying a branch, or generating observable branching, are defined as trigger,
branch and branchS.

As expected, ctree E B forms a monad for any interfaces E and B: the bind combinator
simply lazily crawls the potentially infinite first tree, and passes the value stored in any
reachable leaf to the continuation. The iter combinator is central to encoding looping and
recursive features: it takes as argument a body, body, intended to be iterated, and is defined
such that the computation returns either a new index over which to continue iterating, or
a final value; iter ties the recursive knot. Its definition is analogous to the one for ITrees,
except that we need to ask ourselves how to guard the cofix: if body is a constant, pure,
computation, unguarded corecursion would be ill-defined. ITrees use a Step node for this
purpose, treated weakly by the equivalence built on the structure. Here, we instead use the
Guard constructor, encoding a unary non-observable branch.

Convenience in building models comes at a cost: many CTrees represent the same LTS.
Figure 6 illustrates this phenomenon by defining several CTrees implementing the stuck
LTS and the silently spinning one. Indeed, the Stuck constructor is intended to canonically
represent the stuck process. However, it can be mimicked via nullary branching: stuckE
asks the environment a question without answer, while stuckB internally chose among
none. Worse, the spin* trees are infinitely deep, but never find in their structure a transition
to take. We define formally the necessary equivalences on computations to prove this
informal statement in Section 4. Similarly, all the spinS* process are infinite traces of 𝜏s.

5 The actual implementation uses a negative style with primitive projections. We omit this technical detail in the
presentation.
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(* Stuck processes *)
Definition stuck : ctree E B void := Stuck
Definition stuckE (e : E void) : ctree E B void :=
trigger e
Definition stuckB (b : B void): ctree E B void :=
branch b
CoFixpoint spin : ctree E B R := Guard spin
CoFixpoint spin_nary n (bn : B (fin n)) : ctree E B R :=
branch bn ;; spin_nary n bn

𝑠𝑡𝑢𝑐𝑘

(* Spinning processes *)
CoFixpoint spinS : ctree E B R := Step spinS
CoFixpoint spinS_nary n (bn : B (fin n)) : ctree E B R :=
branchS bn ;; spinS_nary n 𝑠𝑝𝑖𝑛

𝜏

Fig. 6: Concrete representations of stuck and spinning LTSs, where fin n is a finite type
with n elements.

Variant action E B R :=
| ARet (r : R)
| AStep (t : ctree E B R)
| AVis {X} (e : E X) (k : X → ctree E B R).

CoFixpoint head {E B R} (t : ctree E B R) : ctree E B (action E B R) :=
match t with
| Ret r ⇒ Ret (ARet r)
| Stuck ⇒ Stuck
| Step t ⇒ Ret (AStep t)
| Guard t ⇒ Guard (head t)
| Vis e k ⇒ Ret (AVis e k)
| Br b k ⇒ Br b (𝜆 x ⇒ head (k x))
end.

Fig. 7: Lazily computing the set of reachable observable nodes ( )

3.2 A hint of introspection: heads of computations

𝐵𝑟 nodes prevent the need for introspection over trees when modelling something as generic
as a delayed branching construct such as the one specified by BrDelayed. However,
introspection becomes necessary to build a tree that depends on the reachable external
actions of the sub-trees. This is the case for example for ccs’s parallel operator that we
model in Section 7. The set of reachable external actions is not computable in general, as
we may have to first know if the computation to the left of a sequence terminates before
knowing if the events contained in the continuation are reachable. We are, however, in luck,
as we have at hand a semantic domain able to represent potentially divergent computations:
CTrees themselves!

The head combinator, described on Figure 7, builds a pure, potentially diverging com-
putation only made of delayed choices, and whose leaves contain all reachable subtrees
starting with an observable node. These “immediately” observable trees are captured in
an action datatype, which is used as the return type of the built computation. The head
combinator simply crawls the tree by reconstructing all delayed branches, until it reaches

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Misc/Head.v#L35
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a subtree with any other node at its root; it then returns that subtree as the corresponding
action. The resulting head tree could be more precisely typed at the empty event interface
if need be.

4 Equivalences and Equational Theory for CTrees

Section 3 introduced CTrees, the domain of computations we consider, as well as a selection
of combinators upon it. We now turn to the question of comparing computations represented
as CTrees for notions of equivalence and refinement. In particular, we formalize the LTS
representation of a CTree that we have followed to justify our definitions. Through this
section, we introduce a (coinductive) syntactic equality of CTrees, and lift a range of
traditional process relations defined on LTSs to ctrees: strong and weak bisimilarity, trace
equivalence, (complete) similarities. We equip each of these notions with primitive up-to
principals and equational theory for CTrees. Section 4.7 shows how our notions of program
comparison generalizes to allow relating programs with different return types or signatures.
Finally, Section 4.8 describes observations and preliminary results on weak bisimilarity.
The theories discussed throughout this section provide the building blocks necessary for
deriving domain-specific equational theories, such as the ones established in Section 7 for
ccs, and in Section 8 for cooperative scheduling.

4.1 Coinductive proofs and up-to principles in Coq

Working with CTrees requires the use of a swarm of coinductive predicates and relations
to describe equivalences, refinements and invariants. Doing so at scale in Coq would be
highly impractical by relying only on its native support for coinductive proofs. Indeed, the
language provides no abstract reasoning principle, native proofs by coinduction boil down
to writing corecursive terms. But these terms must be provably productive to maintain the
language’s soundness as a logic, which Coq enforces through a syntactic guard checker.
However, in the case of corecursion, guard checking is incompatible with any automation,
and not compositional. Thanks fully, coinduction is nowadays possible in Coq thanks to
library support (Hur et al., 2013; Zakowski et al., 2020; Pous, 2016). In essence, they all
rely on bypassing Coq’s native coinductive type in the definition of the relation of interest,
and instead rely on an internalization of the theory of coinduction inside a library.

In particular, our development relies on Pous’s coinduction library (Pous, 2024) to
define and reason about the various coinductive predicates and relations we manipulate.
We briefly recall the essential facilities, based on the companion (Pous, 2016), and tower
induction (Schäfer and Smolka, 2017), that the library provides. We finish this subsection by
defining a subset of candidate “up-to” functions—we indicate in the subsequent subsections
which ones constitute valid up-to principles for the various relations we introduce. Note:
this section is aimed at the reader interested in understanding the internals of our library: it
can be safely skipped at first read.

Knaster-Tarski. The core construction provided by Pous’s library is a greatest fixpoint
operator (gfp 𝑏:X), for any complete lattice X, and monotone endofunction 𝑏 : X→ X. In
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particular, the sort of Coq propositions Prop forms a complete lattice, as do any function
from an arbitrary type into a complete lattice—coinductive relations, of arbitrary arity,
over arbitrary types, can therefore be built using this combinator. In the context of this
paper, we mostly instantiate X with the complete lattice of binary relations over CTrees,
written C: C := ctree E B A → ctree E B A → Prop for fixed parameters E, B and A. We
write such binary relations as rel(A,B) for A → B → Prop, and rel(A) for rel(A,A); for
instance: C := rel(ctree E B A).

At the most elementary level, the library provides tactic support for coinductive proofs
based on Knaster-Tarski’s theorem: any post fixpoint is below the greatest fixpoint. Spelled
out formally in the general case over a complete lattice (𝑋, ⊑) (left), and specialized to 𝐶

(right):

𝑥 ⊑ 𝑦 ⊑ 𝑏𝑦
𝑥 ⊑ gfp 𝑏

𝑅 ⊆ 𝑆 ∀ 𝑡 𝑢, 𝑆 𝑡 𝑢→ 𝑏 𝑆 𝑡 𝑢

∀ 𝑡 𝑢, 𝑅 𝑡 𝑢→ gfp 𝑏 𝑡 𝑢

Over C, the proof method therefore consists in exhibiting a relation R, that can be thought
of as a set of pairs of trees, providing a “coinduction candidate”, and proving that it is stable
by a play of the bisimulation game, i.e., stable under the endofunction b.

Enhanced coinduction. The larger the coinduction candidate R, the more work needed:
one must play the bisimulation game over any pair of trees in R. As often, this inherent
difficulty gets even more salient in a proof assistant. Enhanced coinduction principles,
or equivalently up-to principles, seek to provide more general reasoning principles. They
intuitively consist in allowing one to fall slightly out of the coinduction principle after
playing the game, and still conclude: rather than looking for a post fixpoint of b, we look
for one of bf, where f should be thought of as enlarging the candidate. Concretely, we say
that a function f : X → X defines a valid enhanced coinduction principle if the following
reasoning principle is valid:

𝑥 ⊑ 𝑦 ⊑ 𝑏 𝑓 𝑦
𝑥 ⊑ gfp 𝑏

𝑅 ⊆ 𝑆 ∀ 𝑡 𝑢, 𝑆 𝑡 𝑢→ 𝑏 ( 𝑓 𝑆) 𝑡 𝑢
∀ 𝑡 𝑢, 𝑅 𝑡 𝑢→ gfp 𝑏 𝑡 𝑢

Let us illustrate the concept on a few concrete examples. Suppose you start from a
non-reflexive candidate R, and observe during your proof that pairs of processes in R either
progress to pairs in R, or to definitionally equal pairs of processes. Unable to conclude in
the latter case, one would typically backtrack and expand R by taking its reflexive closure,
before going through the proof again, adding in the process proofs for the new pairs. Instead,
one may prove that the function 𝑓𝑟𝑒 𝑓 𝑙 𝑅 ≜ 𝑅 ∪ {(𝑡, 𝑡)} is a valid principle, and close the
original proof with R as a candidate.

As a second standard example, consider a proof of bisimilarity over your trees, as
introduced formally in Section 4.4. Your pairs may progress only so slightly out of the
candidate R: on each side, the resulting trees are themselves bisimilar to elements in R.
Saturating your candidate to close it under strong bisimilarity might complicate greatly
your proof, while establishing the validity of bisimulation up-to bisimilarity, that is the
principle associated to 𝑓𝑏𝑖𝑠𝑖𝑚 𝑅 ≜ {(𝑡, 𝑢) | ∃ 𝑡′ 𝑢′, 𝑡 ∼ 𝑡′ ∧ 𝑢′ ∼ 𝑢 ∧ 𝑅 𝑡′ 𝑢′}, is sufficient
to conclude.
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Lastly, given a source language, up-to congruence are a commonly crucial reasoning
principle. For instance, considering in ImpBr the br · or · construct, one may wonder
whether 𝑓𝑏𝑟 𝑅 ≜ {(br 𝑝 or 𝑞, br 𝑝′ or 𝑞′) | 𝑅 𝑝 𝑝′ ∧ 𝑅 𝑞 𝑞′} is valid.

But what if we need to use both up-to reflexivity and up-to br · or · context in
the same proof? Is the combined principle still valid? To answer such questions, and
more generally ease the construction of valid up-to principles, significant effort has been
invested in identifying classes of sound up-to principles, and developing ways to combine
them (Sangiorgi, 1998; Pous, 2007; Sangiorgi and Rutten, 2012).

In particular, Pous’s library is built upon the so-called companion, a construction which
relies on one particular class of functions, the so-called compatible functions. Their charac-
terization is fairly elementary: 𝑓 is compatible with 𝑏 if 𝑓 𝑏 ⊑ 𝑏 𝑓 . The class is of particular
interest for two main properties. First, all compatible functions are sound up-to functions.
Furthermore, the set of compatible functions for a given 𝑏 forms a complete lattice. One
may therefore consider the greatest compatible function, dubbed the companion and written
𝑡𝑏, and observe it is itself compatible. We refer the interested reader to Pous (2016) for
more details, and to Pous (2024) for pedagogical example of the library in action.

From a user perspective, this is priceless: rather than craft and pick the right up-to
principle for each proof, they can systematically work up to the companion, progressively
enhance their database of proven compatible principles,6 and access them on the fly during
the proofs. In the three examples above, access to these up-to principles would therefore be
granted by proving respectively 𝑓𝑟𝑒 𝑓 𝑙 ⊑ 𝑏𝑡 , 𝑓𝑏𝑖𝑠𝑖𝑚 ⊑ 𝑏𝑡 , and 𝑓𝑏𝑟 ⊑ 𝑏𝑡 , which in turn can be
in particular proved by showing that 𝑓𝑟𝑒 𝑓 𝑙 , 𝑓𝑏𝑖𝑠𝑖𝑚, and 𝑓𝑏𝑟 are compatible.

Tower induction. The final concept we greatly benefit from through our development,
via Pous’s library, is Schäfer and Smolka’s characterization of the companion via tower
induction (Schäfer and Smolka, 2017). They associate to the endofunction 𝑏 the so-called
𝑏 − 𝑡𝑜𝑤𝑒𝑟 , or 𝐶𝑏 the Chain of 𝑏, i.e., the inductive type closed under 𝑏 and infimum.
The greatest fixpoint of 𝑏 is recovered as the infinum of its chain, gfp 𝑏 = inf 𝐶𝑏, and
more generally the companion as 𝑡𝑏 (𝑥) = inf{𝑦 ∈𝐶𝑏 | 𝑥 ⊑ 𝑦}. Once again, we refer the
interest reader to (Schäfer and Smolka, 2017) for technical details, and only highlight here
the consequences for us, users of the library: since version 1.7, Pous’s library has been
reimplemented following Schäfer and Smolka’s construction.

The benefit shows when proving the validity of additional proof principles: in particular,
exploiting previously established sound principles in the proof of a new one required a
clever but non-trivial notion of second-order companion. In contrast, when working with
the tower, the statement of validity a function is much more natural: it essentially amounts
to proving that 𝑓 respects membership to the chain.

Let us make things concrete over our the three illustrative examples. Validity of 𝑓𝑟𝑒 𝑓 𝑙 is
now expressed by stating that all elements of the chain are reflexive, i.e., ∀(𝑐 :𝐶𝑏) 𝑡, 𝑐 𝑡 𝑡.
Validity of 𝑓𝑏𝑖𝑠𝑖𝑚 captures that elements of the chain are stable by bisimilarity on both
side, i.e., ∀(𝑐 :𝐶𝑏) 𝑡 𝑡′ 𝑢 𝑢′, 𝑡 ∼ 𝑡′→ 𝑢′ ∼ 𝑢→ 𝑐 𝑡′ 𝑢′→ 𝑐 𝑡 𝑢, or more concisely expressed
in Coq as Proper (sbisim ≡> sbisim ≡> iff) c. Finally, validity of 𝑓𝑏𝑟 is written as ∀(𝑐 :

6 Or slightly more generally, of any function proven below the companion.
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refl𝑢𝑝𝑅 ≜ {(𝑥, 𝑥)} sym𝑢𝑝𝑅 ≜ {(𝑦, 𝑥) | 𝑅 𝑥 𝑦}

trans𝑢𝑝𝑅 ≜ {(𝑥, 𝑧) | ∃𝑦, 𝑅 𝑥 𝑦 ∧ 𝑅 𝑦 𝑧}

bind𝑢𝑝 (𝑒𝑞𝑢𝑖𝑣) 𝑅 ≜ {(𝑥 >>= 𝑘, 𝑦 >>= 𝑙) | 𝑒𝑞𝑢𝑖𝑣 𝑥 𝑦 ∧∀𝑣, 𝑅 (𝑘 𝑣) (𝑙 𝑣)}

upto𝑢𝑝 (𝑒𝑞𝑢𝑖𝑣) 𝑅 ≜ {(𝑥, 𝑦) | ∃𝑥′ 𝑦′, 𝑒𝑞𝑢𝑖𝑣 𝑥 𝑥′ ∧ 𝑅 𝑥′ 𝑦′ ∧ 𝑒𝑞𝑢𝑖𝑣 𝑦′ 𝑦}

Fig. 8: Main generic up-to principles used for relations of CTrees where
R : rel (ctree E B X)

𝐶𝑏) 𝑝 𝑝′ 𝑞 𝑞′, 𝑐 𝑝 𝑝′→ 𝑐 𝑞 𝑞′→ 𝑐 (br 𝑝 or 𝑞) (br 𝑝′ or 𝑞′), or again more concisely
expressed in Coq as Proper (c ≡> c ≡> c) br.

Furthermore, the construction comes with a powerful proof principle for proving these
properties: tower induction, i.e., it suffices to prove that these universal properties over
elements of the chain are stable under 𝑏 and infimum to establish them.

During proofs by coinduction, the difference is mostly cosmetic, although it also lightens
the proofs: since every principle is directly expressed in terms of the chain, there is no need
to awkwardly pull out valid principles from the chain, we can directly apply them.

Conventions and preliminary definitions. In the remainder of this section, we describe
the family of relations over CTrees our library support. All these coinductive definitions
are defined via the library as greatest fixed point, i.e., behind the scene, as the infimum of
the corresponding chain. We hope the context provided through this subsection will help
the interested reader investigating our development, but we will naturally mostly stick to a
standard presentation.

In particular, we present proof systems over the relations, i.e., the greatest fixpoints, but
also up-to principles that their corresponding endofunction satisfies. Once again, behind the
scene, they are expressed in terms of properties of the elements of the corresponding chain.
Through this presentation however we elect to keep it under a simpler format. Consider the
example of strong bisimilarity, written ∼. Up-to principles (see Fig. 13) are presented as
proof rules whose conclusion is expressed in terms of ∼R , i.e., the goal of an ongoing proof
by bisimulation with candidateR. The coinduction hypothesis might not be yet accessible in
this case, we may have to play the bisimulation game beforehand. The premise may involve
three kinds of relations: other relations, such as bisimilarity as is the case of 𝑓𝑏𝑖𝑠𝑖𝑚, the
candidateR, illustrating that applying the rule unlocks the coinduction hypothesis, allowing
to soundly conclude based on it, or ∼R itself, where it is sound to apply the rule, but does
not give access to the coinduction hypothesis.

Figure 8 describes some main generic up-to principles we use for our relations on
CTrees.7 Recall that over 𝐶, these potential up-to functions are endofunctions of relations:
for instance, refl𝑢𝑝 is the constant diagonal relation, sym𝑢𝑝 builds the symmetric relation,
trans𝑢𝑝 is the composition of relations. The validity of refl𝑢𝑝 , sym𝑢𝑝 and trans𝑢𝑝

for a given endofunction 𝑏 entails respectively the reflexivity, symmetry and transitivity
of the relations (𝑏t𝑏 𝑅) and (t𝑏 𝑅). These two relations are precisely the ones involved

7 These are the core examples of library level up-to principles we provide. For our ccs case study, we also prove
the traditional language level ones.



783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

18 Choice Trees

during a proof by coinduction up-to companion: the former as our goal, the latter as our
coinduction hypothesis. The bind𝑢𝑝 (_) up-to function helps when reasoning structurally,
allowing to cross through bind constructs during proofs by coinduction. Finally, validity of
the upto𝑢𝑝 (𝑒𝑞𝑢𝑖𝑣) principle allows for rewriting via the 𝑒𝑞𝑢𝑖𝑣 relation during coinductive
proofs for 𝑏.

Remark that refl𝑢𝑝 is slightly simpler than 𝑓𝑟𝑒 𝑓 𝑙 defined above: rather than extend 𝑅,
it is the constant equality relation. This stems from working with the companion/tower
induction: we can pull any valid principle from the companion at any time, here when we
are ready to conclude by reflexivity, it is not forced on us ahead of time.

4.2 Coinductive equality for CTree

Coq’s equality, eq, is not a good fit to express the structural equality of coinductive
structures—even the eta-law for a coinductive data structure does not hold up-to eq. We
therefore define, as is standard, a structural equality8 by coinduction equ: rel(ctree E B A)
(written � in infix). The endofunction simply matches head constructors and behaves
extensionally on continuations.

Definition 1. Structural equality ( )

equ ≜ gfp 𝜆𝑅 ·{(Ret 𝑣, Ret 𝑣)} ∪
{(𝑉𝑖𝑠 𝑒 𝑘, 𝑉𝑖𝑠 𝑒 𝑘 ′) | ∀𝑣, 𝑅 (𝑘 𝑣) (𝑘 ′ 𝑣)} ∪
{(𝐵𝑟𝑐 𝑘, 𝐵𝑟𝑐 𝑘 ′) | ∀𝑣, 𝑅 (𝑘 𝑣) (𝑘 ′ 𝑣)} ∪
{(∅, ∅)} ∪
{(Guard 𝑡, Guard 𝑢)} | 𝑅 𝑡 𝑢} ∪
{(Step 𝑡, Step 𝑢)} | 𝑅 𝑡 𝑢}

The equ relation raises no surprises: it is an equivalence relation, and is adequate to prove
all eta-laws—for the CTree structure itself and for the cofixes we manipulate. Similarly, the
usual monadic laws are established with respect to equ.

Lemma 1. Monadic laws ( )

Ret 𝑣 >>= 𝑘 � 𝑘 𝑣 𝑥← 𝑡 ;; Ret 𝑥 � 𝑡 (𝑡 >>= 𝑘) >>= 𝑙 � 𝑡 >>= (𝜆𝑥⇒ 𝑘 𝑥 >>= 𝑙)

Of course, formal equational reasoning with respect to an equivalence relation other than
eq comes at the usual cost: all constructions introduced over CTrees must be proved to
respect equ (in Coq parlance, they must be Proper), allowing us to work painlessly with
setoid-based rewriting.9

Finally, we establish some enhanced coinduction principles for equ.

8 Note that for ITrees, this relation corresponds to what Xia et al. dub as strong bisimulation, and nameeq_itree.
We carefully avoid this nomenclature here to reserve this term for the relation we define in Section 4.4

9 As is the case for the eq_itree over ITrees, postulating as an axiom that equ coincide with definitional
equality would be sound in Coq. We are however doomed to embrace setoids anyway for all other relations, we
therefore avoid doing so.

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/Equ.v#L53
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/Equ.v#L850
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label ≜ tau | obs 𝑒 𝑣 | val 𝑣

𝑘 𝑣
𝑙−→ 𝑡

𝐵𝑟𝑏 𝑘
𝑙−→ 𝑡

𝑡
𝑙−→ 𝑢

Guard 𝑡
𝑙−→ 𝑢 Step 𝑡

tau−−−→ 𝑡 𝑉𝑖𝑠 𝑒 𝑘
obs 𝑒 𝑣−−−−−−→ 𝑘 𝑣 Ret 𝑣

val 𝑣−−−−→ ∅

Fig. 9: Inductive characterization of the LTS induced by a CTree ( )

Lemma 2. Enhanced coinduction for equ ( )
refl𝑢𝑝 , sym𝑢𝑝 , trans𝑢𝑝 , bind𝑢𝑝 (�) ( ) and upto𝑢𝑝 (�) ( ) provide valid up-to

principles for equ.

Meaning, to spell it out explicitly a last time, that one has the ability, in the middle
of a proof by coinduction aiming to establish that two trees are equ, to invoke reflexivity,
symmetry, transitivity, congruence for bind, and to rewrite previously established equations.

While equ, as a structural equivalence, is very comfortable to work with, it, naturally, is
much too stringent. To reason semantically about CTrees, we need a relation that remains
termination sensitive, but allows for mismatch in the amount of internal steps, that still
imposes a tight correspondence over external events, but relaxes its requirement for non-
deterministically branching nodes. We achieve this by drawing from standard approaches
developed for process calculi.

4.3 Looking at CTrees under the lens of labeled transition systems

To build a notion of bisimilarity between CTree computations, we associate a labeled
transition system to a CTree, as defined in Figure 9. This LTS exhibits three kinds of labels:
a tau10 witnesses a stepping branch, an obs e x observes the encountered event together
with the answer from the environment considered, and a val v is emitted when returning
a value. Interestingly, there is a significant mismatch between the structure of the tree and
the induced LTS: the states of the LTS correspond to the nodes of the CTree that are not
immediately preceded by a delayed choice. Accordingly, the definition of the transition
relation between states inductively iterates over delayed branches. Stepping branches and
visible nodes map immediately to a set of transitions, one for each outgoing edge; finally
a return node generates a single val transition, moving onto a stuck state, encoded as the
∅ constructor. These rules formalize the intuition we gave in Section 2.2 that allowed us to
derive the LTSs of Figure 4 from the corresponding ImpBr terms.

Defining the property of a tree to be stuck, that is: 𝑡↛ ≜ ∀𝑙 𝑢, ¬(𝑡 𝑙−→ 𝑢), we can make
the depictions from Figure 6 precise: ∅ itself and nullary nodes are stuck by construction,
since stepping would require a branch, while spin_nary is proven to be stuck by induction,
since it cannot reach any step.

∅↛ 𝐵𝑟0 ↛ spin_nary 𝑛 𝑏𝑛↛

10 We warn again the reader accustomed to ITrees to think of tau under the lens of the process algebra literature,
and not as a representation of ITree’s Tau constructor.

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/Trans.v#L107
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/Equ.v#L164
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/Equ.v#L575
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/Equ.v#L663
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𝑡
𝑙−→ 𝑢 𝑙 ≠ val 𝑣

𝑡 >>= 𝑘
𝑙−→ 𝑢 >>= 𝑘

𝑡
val 𝑣−−−−→ ∅ 𝑘 𝑣

𝑙−→ 𝑢

𝑡 >>= 𝑘
𝑙−→ 𝑢

𝑡 >>= 𝑘
𝑙−→ 𝑢

(𝑙 ≠ val 𝑣 ∧ ∃𝑡′, 𝑡 𝑙−→ 𝑡′ ∧ 𝑢 � 𝑡′ >>= 𝑘) ∨ (∃𝑣, 𝑡 val 𝑣−−−−→ ∅ ∧ 𝑘 𝑣
𝑙−→ 𝑢)

Fig. 10: Transitions under bind ( )

The stepping relation interacts slightly awkwardly with bind: indeed, although a unit for
bind, the Ret construct is not inert from the perspective of the LTS. Non val transitions can
therefore be propagated below the left-hand-side of a bind, while a val transition in the
prefix does not entail the existence of a transition in the bind. If one prefer to imagine LTSs,
the LTSs we consider have a set of "final" states, the Ret ones, that take a last observable
transition to a well; the bind operator fuses a LTSs to a family of LTSs in sequence by
rewiring the arrows to the well to the entry point of the corresponding LTS in the family.
Figure 10 describes the lemmas capturing this intuition, by distinguishing the special case
of a val v transition.

We additionally define the traditional weak transition 𝑠
𝑙
=⇒ 𝑡 on the LTS that can perform

tau transitions before or after the 𝑙 transition (and possibly be none if 𝑙 = 𝜏). This part of
the theory is so standard that we can directly reuse parts of the development for ccs that
Pous developed to illustrate the companion (Pous, 2024), with the exception that we need
to work in a Kleene Algebra with a model closed under equ rather than eq.

4.4 Bisimilarity

Having settled on the data structure and its induced LTS, we are back on a well-traveled
road: strong bisimilarity (referred simply as bisimilarity in the following) is defined in a
completely standard way over the LTS view of CTrees.

Definition 2 (Bisimulation for CTrees ( )). The progress function 𝑠𝑏 for bisimilarity maps
a relation R over CTrees to the relation such that 𝑠𝑏 𝑅 𝑠 𝑡, also noted 𝑡 ∼R 𝑢, holds if and
only if:

∀𝑙 𝑡′, 𝑡 𝑙−→ 𝑡′ =⇒ ∃𝑢′. 𝑡′ R 𝑢′ ∧ 𝑢 𝑙−→ 𝑢′

and conversely

∀𝑙 𝑢′, 𝑢 𝑙−→ 𝑢′ =⇒ ∃𝑡′. 𝑡′ R 𝑢′ ∧ 𝑡 𝑙−→ 𝑡′

The bisimulation game is represented visually in Figure 11. Bisimilarity, written 𝑡 ∼ 𝑢, is
defined as the greatest fixpoint of 𝑠𝑏: sbisim ≜ gfp 𝑠𝑏.

All the traditional tools surrounding bisimilarity can be transferred to our setup. We omit
the details, but additionally provide a characterization of the traces (represented as colists)
of a CTree, used to define trace-equivalence (written ≡tr) ( ). We provide elementary

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/Trans.v#L1041
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisim.v#L92
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/Trace.v#L13
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𝑡

𝑡′

𝑢

𝑢′

∼R

𝑙 𝑙

R

𝑡

𝑡′

𝑢

𝑢′

∼R

𝑙 𝑙

R
Fig. 11: The bisimulation game ∼R

𝑥 = 𝑦

Ret 𝑥 ∼ Ret 𝑦
=====================

∀𝑥, ℎ 𝑥 ∼ 𝑘 𝑥

𝑉𝑖𝑠 𝑒 ℎ ∼𝑉𝑖𝑠 𝑒 𝑘
==========================

(∀𝑥, ∃𝑦, ℎ 𝑥 ∼ 𝑘 𝑦) ∧ (∀𝑦, ∃𝑥, ℎ 𝑥 ∼ 𝑘 𝑦)
𝐵𝑟𝑐 ℎ ∼ 𝐵𝑟𝑑 𝑘

𝑡 ∼ 𝑢

Step 𝑡 ∼ Step 𝑢
========================

(∀𝑥, ∃𝑦, ℎ 𝑥 ∼ 𝑘 𝑦) ∧ (∀𝑦, ∃𝑥, ℎ 𝑥 ∼ 𝑘 𝑦)

𝐵𝑟𝑐𝑆 ℎ ∼ 𝐵𝑟𝑑𝑆 𝑘
===============================================================

𝑡 ∼ 𝑢 (∀𝑥, 𝑔 𝑥 ∼ 𝑘 𝑥)
𝑡 >>= 𝑔 ∼ 𝑢 >>= 𝑘

Guard 𝑡 ∼ 𝑡
𝑢↛

𝐵𝑟2 𝑡 𝑢 ∼ 𝑡
𝐵𝑟2 𝑡 (𝐵𝑟2 𝑢 𝑣) ∼ 𝐵𝑟2 (𝐵𝑟2 𝑡 𝑢) 𝑣 𝐵𝑟2 𝑡 𝑢 ∼ 𝐵𝑟2 𝑢 𝑡

𝐵𝑟2 𝑡 𝑡 ∼ 𝑡 𝐵𝑟2 (𝐵𝑟2 𝑡 𝑢) 𝑣 ∼ 𝐵𝑟3 𝑡 𝑢 𝑣 𝐵𝑟2
𝑆 𝑡 𝑢 ∼ 𝐵𝑟2

𝑆 𝑢 𝑡 𝐵𝑟2
𝑆 𝑡 𝑡 ∼ Step 𝑡

Step 𝑡 ≈ 𝑡 spin_nary 𝑛 ∼ spin_nary 𝑚
(𝑛 > 0∧𝑚 > 0) ∨ (𝑛 =𝑚 = 0)
spinS_nary 𝑛 ∼ spinS_nary 𝑚

Fig. 12: Elementary equational theory for CTrees ( )

results for it, notably that sbisim entails trace-equivalence, but that the converse does not
hold.

4.4.1 Core equational theory

Bisimilarity forms an equivalence relation satisfying a collection of primitive laws for
CTrees summed up in Figure 12. We use simple inference rules to represent an implication
from the premises to the conclusion, and double-lined rules to represent equivalences. Each
rule is proved as a lemma with respect to the definitions above.

The first four rules recover some structural reasoning on the syntax of the trees from its
semantic interpretation. These rules are much closer to what eutt provides by construction
for ITrees: leaves are bisimilar if they are equal, computations performing the same external
interaction must remain point-wise bisimilar, and unary steps can be matched against one
another. Delayed branches, potentially of distinct arity, can be matched one against another
if both domains of indexes can be injected into the other to reestablish bisimilarity. This is
only an implication and not an equivalence since the points of the continuation structurally
immediately accessible do not correspond to accessible states in the LTS. By contrast, this

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisim.v#L1128
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same condition is necessary and sufficient for stepping branches, as their Step nodes induce
additional 𝜏 transitions, thus new states in the LTS. Finally, bisimilarity is a congruence for
bind.

Another illustration of the absence of equivalence for delayed branching nodes as head
constructor is that such a computation may be strongly bisimilar to a computation with a
different head constructor. The simplest example is that sbisim can ignore (finite numbers
of) Guard nodes. Another example is that stuck processes behave as a unit for delayed
branching nodes. We furthermore obtain the equational theory that we expect for nonde-
terministic effects. Delayed branching is associative, commutative, idempotent, and can be
merged into delayed branching nodes of larger arity w.r.t. sbisim.11 By contrast, stepping
branches are only commutative, and almost idempotent, provided we introduce an addi-
tional Step. This Step can in turn be ignored by moving to weak bisimilarity, making
stepping branches commutative and properly idempotent; however, it crucially remains not
associative, a standard fact in process algebra.12

Finally, two delayed spins are always bisimilar (neither process can step) while two
stepping spins are bisimilar if and only if they are both nullary (neither one can step), or
both non-nullary.

We omit the formal equations for sake of space here, but we additionally prove that the
iter combinator deserves its name: the Kleisli category of the ctree E monad is iterative
w.r.t. strong bisimulation ( ). Concretely, we prove that the four equations described by
Xia et al. (2020), Section 4, hold true. The fact that they hold w.r.t. strong bisimulation is a
direct consequence of the design choice taken in our definition of iter: recursion is guarded
by a Guard. We conjecture that one could provide an alternate iterator guarding recursion
by a Step, and recover the iterative laws w.r.t. weak bisimulation, but have not proved it
and leave it as future work. We expand further on a handful of delicate points related to
weak bisimilarity in Section 4.8.

Naturally, this equational theory gets trivially lifted at the language level for ImpBr ( ).
The acute reader may notice that in exchange for being able to work with strong bisimulation,
we have mapped the silently looping program to spinD, hence identifying it with stuck
processes. For an alternate model observing recursion, one would need to investigate the
use of the alternate iterator mentioned above and work with weak bisimilarity.

4.4.2 Proof system for bisimulation proofs

As is usual, the laws in Figure 12, enriched with domain-specific equations, allow for
deriving further equations purely equationally. But to ease the proof of these primitive
laws, as well as new nontrivial equations requiring explicit bisimulation proofs, we provide
proof rules that are valid during bisimulation proofs, derived from valid up-to principles.

We recall that given a bisimulation candidate R, we write 𝑡 ∼R 𝑢 for 𝑠𝑏 𝑅, i.e. the proof
goal in which the coinduction hypothesis is not yet accessible. 13 We depict the main rules
we use in Figure 13. In particular, from the standpoint of the proof scientist, these rules

11 Stating these facts generically in the arity of branching is quite awkward, we hence state them here for binary
branching, but adapting them at other arities is completely straightforward.

12 This choice would be referred as external in this community
13 As explained in Section 4.1, in the implementation, 𝑅 would hence be specifically an element of the chain of

𝑠𝑏, and the up-to principles stated in terms of closure properties valid on all elements of this chain.

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/IterFacts.v#L114
https://github.com/vellvm/ctrees/tree/jfp-submission/examples/ImpBr/ImpBr.v#L131
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Ret 𝑣∼RRet 𝑣

∀𝑣, (𝑘 𝑣) R (𝑘 ′ 𝑣)
𝑉𝑖𝑠 𝑒 𝑘∼R𝑉𝑖𝑠 𝑒 𝑘 ′

(∀𝑥, ∃𝑦, (𝑘 𝑥)∼R (𝑘 ′ 𝑦))∧(∀𝑦, ∃𝑥, (𝑘 𝑥)∼R (𝑘 ′ 𝑦))
𝐵𝑟𝑐 𝑘∼R𝐵𝑟𝑑 𝑘 ′

𝑡 ∼R 𝑢
Guard 𝑡∼RGuard 𝑢

𝑡 R 𝑢

Step 𝑡∼RStep 𝑢

(∀𝑥, ∃𝑦, (𝑘 𝑥) R (𝑘 ′ 𝑦)) ∧ (∀𝑦, ∃𝑥, (𝑘 𝑥) R (𝑘 ′ 𝑦))
𝐵𝑟𝑐𝑆 𝑘∼R𝐵𝑟𝑑𝑆 𝑘 ′

∀𝑣, (𝑘 𝑣) R (𝑘 ′ 𝑣)
𝐵𝑟𝑐𝑆 𝑘∼R𝐵𝑟𝑐𝑆 𝑘 ′

Fig. 13: Proof rules for coinductive proofs of sbisim ( )

notably avoid the exponential explosion in the number of subgoals in our proofs that would
arise by simply playing the bisimulation game iteratively: it entails a binary split at each
level of play. These rules essentially match up counterpart CTree constructors at the level of
bisimilarity, but additionally make a distinction whether applying the rule soundly acts as
playing the game—i.e., the premises refer to R, allowing to conclude using the coinduction
hypothesis—or whether they do not—i.e., the premises still refer to ∼R . The latter situation
arises when using the proof rules that strip off delayed branches from the structure of our
trees: on either side, they do not entail any step in the corresponding LTSs, but rather
correspond to recursive calls to its inductive constructor.

Furthermore, we provide a rich set of valid up-to principles:

Lemma 3. Enhanced coinduction for sbisim ( ) The functions refl𝑢𝑝 , sym𝑢𝑝 , trans𝑢𝑝 ,
bind𝑢𝑝 (∼) ( ), upto𝑢𝑝 (�) ( ) and upto𝑢𝑝 (∼) ( ) provide valid up-to principles for
sbisim.

In particular, the equation Guard 𝑡 ∼ 𝑡 can be used for rewriting during bisimulation
proofs, allowing for asymmetric stripping of guards.

4.5 Similarity

Similarity is a well-studied notion of refinement that is typically coinductively defined
over an LTS. We provide two of the many existing variants of similarity: strong similarity
and complete strong similarity. The latter is slightly more complex but behaves better in
presence of stuck LTSs.

4.5.1 Strong similarity

Strong similarity is defined as the greatest fixpoint of the bisimulation left half-game
previously depicted in Figure 11.

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisim.v#L693
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisim.v#L348
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisim.v#L432
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisim.v#L211
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisim.v#L298
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𝑡↛

𝑡≲R𝑢
(𝑠𝑠_𝑠𝑡𝑢𝑐𝑘) Ret 𝑣≲RRet 𝑣 (ss_ret)

∀𝑣, (𝑘 𝑣) R (𝑘 ′ 𝑣)
𝑉𝑖𝑠 𝑒 𝑘≲R𝑉𝑖𝑠 𝑒 𝑘 ′

(ss_vis_id)

∀𝑥, (𝑘 𝑥)≲R𝑢

𝐵𝑟𝑐 𝑘≲R𝑢
==================== (ss_br_l)

∃𝑦, 𝑡≲R (𝑘 ′ 𝑦)
𝑡≲R𝐵𝑟

𝑑 𝑘 ′
(ss_br_r)

∀𝑥, ∃𝑦, (𝑘 𝑥)≲R (𝑘 ′ 𝑦)
𝐵𝑟𝑐 𝑘≲R𝐵𝑟

𝑑 𝑘 ′
(ss_br)

∀𝑣, (𝑘 𝑣)≲R (𝑘 ′ 𝑣)
𝐵𝑟𝑐 𝑘≲R𝐵𝑟

𝑐 𝑘 ′
(ss_br_id)

𝑡 ≲R 𝑢

Guard 𝑡≲R𝑢
================== (ss_guard_l)

𝑡 ≲R 𝑢

𝑡≲RGuard 𝑢
================== (ss_guard_r)

𝑡 ≲R 𝑢

Guard 𝑡≲RGuard 𝑢
============================== (ss_guard)

𝑡 R 𝑢

Step 𝑡≲RStep 𝑢
========================= (ss_step)

∀𝑥, ∃𝑦, (𝑘 𝑥) R (𝑘 ′ 𝑦)

𝐵𝑟𝑐𝑆 𝑘≲R𝐵𝑟
𝑑
𝑆 𝑘 ′

================================== (ss_brS)
∀𝑣, (𝑘 𝑣) R (𝑘 ′ 𝑣)
𝐵𝑟𝑐𝑆 𝑘≲R𝐵𝑟

𝑐
𝑆 𝑘 ′

(ss_brS_id)

Fig. 14: Rules for coinductive proofs of ssim, with their names in our Coq library ( )

Definition 3 (Simulation for CTrees ( )). The progress function 𝑠𝑠 for similarity maps a
relation R over CTrees to the relation such that 𝑠𝑠 𝑅 𝑡 𝑢 (also noted t ≲R u) holds if and
only if:

∀𝑙 𝑡′, 𝑡 𝑙−→ 𝑡′ =⇒ ∃𝑢′. 𝑡′ R 𝑢′ ∧ 𝑢 𝑙−→ 𝑢′

Similarity, written 𝑡 ≲ 𝑢, is defined as the greatest fixpoint of 𝑠𝑠: ssim ≜ gfp 𝑠𝑠.

The coinductive proof rules for simulation are depicted on Figure 14. The rules are similar
to those for bisimulation (Figure 13), but more permissive. In particular, a stuck process
is simulated by any CTree (ss_stuck). Furthermore, additional asymmetric reasoning
principles are available over 𝐵𝑟 nodes. ss_br_l states that a 𝐵𝑟 node is simulated by a
CTree 𝑢 if and only if all its branches are simulated by 𝑢. Conversely, ss_br_r states that a
CTree starting with a 𝐵𝑟 node simulates a CTree 𝑡 if one of its branches simulates 𝑡. These
powerful rules illustrate the semantic particularity of 𝐵𝑟 nodes: they are collapsed and thus
completely invisible in the LTS. The composition of ss_br_l and ss_br_r gives ss_br,
which is similar to the sbisim proof rule for 𝐵𝑟, with the symmetric condition dropped.

For convenience, the proof rules are lifted to ssim-level, raising equations similar to the
ones in Figure 12. We omit the details as the resulting rules can be trivially deduced from
the ≲R ones by replacing occurrences of both R and ≲R by ≲ in Figure 14.

All the up-to principles valid for sbisim are also valid for ssim except of course for the
symmetry principle.

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSim.v#L576
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSim.v#L30
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𝑡

𝑡′

𝑢

𝑢′

≲𝐶R

𝑙 𝑙

R

𝑡

𝑡′

𝑢

𝑢′

≲𝐶R

𝑙′ 𝑙

Fig. 15: The complete simulation game ≲𝐶R

Lemma 4. Enhanced coinduction for ssim ( ) The functions refl𝑢𝑝 , trans𝑢𝑝 , bind𝑢𝑝 (≲
) ( ), upto𝑢𝑝 (�) ( ) and upto𝑢𝑝 (∼) ( ) provide valid up-to principles for ssim.

4.5.2 Complete similarity

A well-known limitation of similarity is its deadlock-insensitivity: it directly follows from
the definition of the simulation game that a stuck LTS is simulated by any LTS, and we
have indeed a corresponding proof rule in Figure 14.

In many applications, when stating that a program or process 𝑝 refines a non-stuck
process 𝑞, we mean to prove that 𝑝 exhibit a non-empty subset of the behaviors of 𝑞,
which strong similarity therefore fails to capture. Several notions of similarity tackle this
limitation (see for instance Chapter 6 of (Sangiorgi, 2012)). This section is dedicated to
complete similarity, an intuitive answer to this problem. Concretely, a complete simulation
game is defined like a simulation game, with the additional constraint that if either LTS is
stuck, the other one should be too. Figure 15 depicts graphically the following complete
simulation game, where In these rules, we write 𝑡→ for ∃𝑙 𝑡′, 𝑡 𝑙−→ 𝑡′, i.e. 𝑡 is not stuck.

Definition 4 (Complete simulation for CTrees ( )). The progress function 𝑐𝑠𝑠 for complete
similarity maps a relation R over CTrees to the relation such that 𝑐𝑠𝑠 𝑅 𝑡 𝑢 (also noted
𝑡 ≲𝐶R 𝑢) holds if and only if

(𝑠𝑠 R 𝑡 𝑢) ∧ (if 𝑢→ then 𝑡→)

Complete similarity, written 𝑡 ≲𝐶 𝑢, is defined as the greatest fixpoint of 𝑐𝑠𝑠: cssim ≜
gfp 𝑐𝑠𝑠.

The coinductive proof rules for complete simulation are depicted on Figure 16. The
proof rules are basically the same as with ssim, with conditions to ensure that a CTree does
not become stuck after taking a step. Note however that in cases where a node is matched
against the exact same node, no additional condition is enforced. These cases are greyed
out in the figure, as they are identical to the rules for ssim.

The up-to principles that are valid for ssim are also valid for cssim, except the up-to
bind principle. We define a more restrictive up-to principle for complete similarity that
requires the continuation not to be stuck.

bind𝑢𝑝
𝑐 (𝑒𝑞𝑢𝑖𝑣) 𝑅 ≜ {(𝑥 >>= 𝑘, 𝑦 >>= 𝑙) | 𝑒𝑞𝑢𝑖𝑣 𝑥 𝑦 ∧∀𝑣, 𝑅 (𝑘 𝑣) (𝑙 𝑣) ∧ 𝑘 𝑣→}

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSim.v#L115
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSim.v#L370
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSim.v#L148
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisim.v#L1556
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/CSSim.v#L33
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Ret 𝑣≲𝐶RRet 𝑣

∀𝑣, (𝑘 𝑣) R (𝑘 ′ 𝑣)
𝑉𝑖𝑠 𝑒 𝑘≲𝐶R𝑉𝑖𝑠 𝑒 𝑘 ′

∀𝑥 ∈ 𝑋, (𝑘 𝑥)≲𝐶R𝑢 inhabited 𝑋

𝐵𝑟𝑐 𝑘≲𝐶R𝑢

∃𝑦, 𝑡≲𝐶R (𝑘
′ 𝑦) 𝑡→

𝑡≲𝐶R𝐵𝑟
𝑑 𝑘 ′

∀𝑥, ∃𝑦, (𝑘 𝑥)≲𝐶R (𝑘
′ 𝑦) ∃𝑥, 𝑘 𝑥→

𝐵𝑟𝑐 𝑘≲𝐶R𝐵𝑟
𝑑 𝑘 ′

∀𝑣, (𝑘 𝑣)≲𝐶R (𝑘
′ 𝑣)

𝐵𝑟𝑐 𝑘≲𝐶R𝐵𝑟
𝑐 𝑘 ′

𝑡 ≲𝐶R 𝑢

Guard 𝑡≲𝐶RGuard 𝑢

𝑡 R 𝑢

Step 𝑡≲𝐶RStep 𝑢

∀𝑥 ∈ 𝑋, ∃𝑦, (𝑘 𝑥) R (𝑘 ′ 𝑦) inhabited 𝑋

𝐵𝑟𝑐𝑆 𝑘≲𝐶R𝐵𝑟
𝑑
𝑆 𝑘 ′

∀𝑣, (𝑘 𝑣) R (𝑘 ′ 𝑣)
𝐵𝑟𝑐𝑆 𝑘≲𝐶R𝐵𝑟

𝑐
𝑆 𝑘 ′

Fig. 16: Proof rules for coinductive proofs of cssim ( )

Lemma 5. Enhanced coinduction for cssim ( ) The functions refl𝑢𝑝 , trans𝑢𝑝 ,
bind𝑢𝑝

𝑐 (≲𝐶 ) ( ), upto𝑢𝑝 (�) ( ) and upto𝑢𝑝 (∼) ( ) provide valid up-to principles for
cssim.

4.6 Proof example

Let us pause to illustrate concretely over a minimalist toy example how one can conduct in
our library a proof of similarity by enhanced coinduction. We consider here CTrees with a
print event for printing a boolean value, and binary internal branches.

Variant PrintE : Type → Type := print : bool → PrintE unit.

CoFixpoint t : ctree PrintE B2 void :=
Vis (print true) (𝜆 _ ⇒
Vis (print false) (𝜆 _ ⇒ t)).

CoFixpoint u : ctree PrintE B2 void :=
br2
(Vis (print true) (𝜆 _ ⇒ u))
(Vis (print false) (𝜆 _ ⇒ u)).

CoFixpoint u’ : ctree PrintE B2 void :=
br2
(trigger (print true))
(trigger (print false))
;;
Guard u’.

Example CTrees t and u represent programs that repeatedly print booleans, with slightly
different behaviors. t alternates printing true and false, while each iteration of u nonde-
terministically chooses a boolean and prints it. u’ has the same semantics as u, but it is
written in a different style: u exclusively uses the CTree constructors while u’ uses higher-
level trigger and bind (through the ;; syntax) operators. In the second case, there is an
additional Guard node as Coq needs a syntactic guard before co-recursive calls, but this

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/CSSim.v#L418
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/CSSim.v#L120
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/CSSim.v#L277
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/CSSim.v#L163
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisim.v#L1728
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𝑢

print true

print false

𝑢′

print true

print false

Fig. 17: The LTS for t (left) and u / u’ (right)

has no consequence on the underlying LTS.14 The LTS underlying t and u are represented
on Figure 17.

It is clear that program t is a refinement of program u. We establish this fact, 𝑡 ≲ 𝑢, through
the following detailed proof steps, which correspond exactly to the Coq implementation
( ). We write the current state of the proof goal to the right of the sequent, the coinduction
hypothesis to its left, and the proof rule leading us there at the beginning of the line.

⊢ 𝑡 ≲ 𝑢
coinduction⇐========= t R u ⊢ t ≲R u

unfold⇐===== t R u ⊢ Vis (print true) (𝜆 _ ⇒ Vis (print false) (𝜆 _ ⇒ t)) ≲R

br branch2 (𝜆 b ⇒ Vis (print b) (𝜆 _ ⇒ u))

ss_br_r true⇐========= t R u ⊢ Vis (print true) (𝜆 _ ⇒ Vis (print false) (𝜆 _ ⇒ t)) ≲R

Vis (print true) (𝜆 _ ⇒ u)

ss_vis_id⇐======= t R u ⊢ Vis (print false) (𝜆 _ ⇒ t)R u
step
⇐=== t R u ⊢ Vis (print false) (𝜆 _ ⇒ t) ≲R u

unfold⇐===== t R u ⊢ Vis (print false) (𝜆 _ ⇒ t) ≲R

br branch2 (𝜆 b ⇒ Vis (print b) (𝜆 _ ⇒ u))

ss_br_r false⇐========== t R u ⊢ Vis (print false) (𝜆 _ ⇒ t) ≲R

Vis (print false) (𝜆 _ ⇒ u)

ss_vis_id⇐======= t R u ⊢ tR u

The proof proceeds by coinduction: taking the singleton pair (𝑡, 𝑢) as the simulation
candidate R,15 we prove that t ≲R u, i.e., the pair (𝑡′, 𝑢′) obtained after a simulation step is
still in R. After initializing the coinduction, we unfold one iteration of t and one iteration of
u.16 At this point, CTree constructors appear in the goal. In particular the Vis (print true)
at the head of the left-hand side should be matched against another Vis (print true) in

14 More formally, u and u’ are in bisimulation.
15 Note that this candidate would not be a valid simulation without any enhancement.
16 Unfolding the body of a loop is a non-trivial operation that involves an unfolding lemma and the up-to-equ

principle.
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order to progress. This can be achieved by choosing the true outcome of the br on the right-
hand side using ss_br_r. Then, the matching Vis (print true) can be stripped using the
ss_vis_id theorem. Notice that the relation in the goal is no longer ≲R butR, as consuming
Vis nodes performs a simulation step. But we want to perform one more simulation step to
consume the second Vis of the left CTree, so we strengthen the proof goal from R to ≲R
again. Then, the remaining Vis on the left can be matched using the same method as the
first one, finally reducing to the goal t R u, which is precisely our coinduction hypothesis,
concluding the proof.

Through this example, we emphasize not the complexity of the result, but the fact that
our infrastructure is robust enough to formally conduct, in Coq, a proof that is as simple as
the detailed one we would write on paper.

For a similar pedagogical proof of bisimilarity of 𝑢 and 𝑢′, illustrating the use of
bisimulation up-to bisimilarity, we refer the interested reader to our development ( ).

4.7 Heterogeneous (bi)similarity

Throughout this section, we have defined various relations for comparing programs which
essentially match transitions with identical labels—with the exception of weak bisimilarity
that we have briefly mentioned, and come back to in Section 4.8. From the perspective
of program verification, this is insufficient: val v labels may carry in v the memory
configuration of our language, and we may need to express non-trivial relational invariants
between such configuration, rather than enforcing equality.

The ITree library has had this notion since its inception, parameterizing their equivalence,
eutt, by an arbitrary relation on leaves. When dealing with some more advanced reasoning,
one may even wish to relate distinct external events. This led Silver et al. Silver et al.
(2023) to introduce over ITrees the rutt relation in order to express security invariants—
Michelland et al. Michelland et al. (2024) have also made crucial use of this facility to
relate concrete and abstract events to prove the soundness of abstract interpreters.

Although we have omitted for conciseness these details through our presentation, our
library supports such a similar generalization for all the relations we have introduced. In our
setting, we recover immediately the full generality of rutt by parameterizing the relations
by an arbitrary relation L on labels. As an example, we reproduce below our definition of
strong bisimilarity, and the other ones are generalized the same way.

Definition 5 (Bisimulation for CTrees, with an arbitrary relation on labels ( )). The
progress function 𝑠𝑏 L for bisimilarity maps a relation R over CTrees to the relation such
that 𝑠𝑏 L 𝑅 𝑠 𝑡 holds if and only if:

∀𝑙 𝑡′, 𝑡 𝑙−→ 𝑡′ =⇒ ∃𝑙′ 𝑢′. 𝑡′ R 𝑢′ ∧ 𝑙 L 𝑙′ ∧ 𝑢 𝑙′−→ 𝑢′

and conversely

∀𝑙 𝑢′, 𝑢 𝑙−→ 𝑢′ =⇒ ∃𝑙′ 𝑡′. 𝑡′ R 𝑢′ ∧ 𝑙′ L 𝑙 ∧ 𝑡 𝑙′−→ 𝑡′

Bisimilarity w.r.t. L, written 𝑡 ∼L 𝑢, is defined as the greatest fixpoint of 𝑠𝑏 L:
sbisim L ≜ gfp (𝑠𝑏 L).

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisim.v#L62
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Many of the proof rules and up-to principles introduced in the previous sections are
generalized to this setting, and can be used seamlessly in presence of such a heterogeneous
relation on labels. The most interesting rule to extend is the bind rule. In terms of usefulness
first, it becomes a very general cut rule allowing for the introduction of an intermediate
relational invariant on the values returned by the first parts of the computations. In terms of
statement second, where we must be careful to introduce the necessary machinery to allow
for this update to the val · of the relation, while maintaining a consistent view on the other
labels.

4.8 Weak bisimilarity

Weak bisimilarity, written 𝑠 ≈ 𝑡, is derived from the definition of the weak transition ( ).
We define it as the standard asymmetric game (see for instance Chapter 4 of (Sangiorgi,
2012)), and omit details.

Our library currently offers restricted support for weak bisimilarity. This situation stems
in part by needs: existing applications of CTrees, including the examples in Sections 7 and
8, but also the artifact of Chappe et al. (2024) have so far only leveraged strong bisimilarity.
While in the case of ccs is naturally only a matter of having not pushed the development
of the case study further, the two other examples are more interesting: by using 𝐺𝑢𝑎𝑟𝑑 in
corecursive definition and careful definitions of the models, strong bisimilarity appears to
be sufficient to recover a satisfying equivalence.

But the situation also comes from interesting technical challenges. As is well-known
in the field of process algebra, weak bisimilarity can be unwieldy. Specifically, it is not
a congruence for the + operator, of which the CTree 𝐵𝑟 nodes can be seen as a direct
generalization. This has several consequences in the CTree setting. First, unlike strong
bisimilarity, weak bisimilarity is not a congruence for 𝐵𝑟: we cannot define a general proof
rule on the same model. Furthermore, the up-to bind principle is not verified in the general
case either, as it would, with well-chosen CTrees, imply the former result.

As an example, consider the CTree 𝑡 and the continuations 𝑘 and 𝑘 ′ below. We have 𝑡 ≈ 𝑡,
k true≈ k’ true, and k false≈ k’ false; yet, we do not have 𝑡 >>= 𝑘 ≈ 𝑡 >>= 𝑘 ′.

t :=𝐵𝑟2 (Ret 𝑡𝑟𝑢𝑒) (Ret 𝑓 𝑎𝑙𝑠𝑒)
k true :=Ret 2
k false :=𝐵𝑟2 (Step (Ret 0)) (Step (Ret 1))
k’ true :=Ret 2
k’ false :=Step (𝐵𝑟2 (Step (Ret 0)) (Step (Ret 1)))

This limitation of weak bisimilarity is commonly circumvented in process algebra by
requiring processes to be guarded: the operands of the + operator should begin with a 𝜏.
With CTree terminology, it means that each branch of a 𝐵𝑟 should begin with a Step, which
is precisely the definiton of 𝐵𝑟𝑆 ( ). Similarly, we proved that an up-to bind principle that
requires continuations to begin with Step is valid ( ).

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/WBisim.v#L82
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/WBisim.v#L548
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/WBisim.v#L574
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bind𝑢𝑝
𝑤 (≈) 𝑅 ≜ {(𝑥 >>= (𝜆 x ⇒ Step (k x)), 𝑦 >>= (𝜆 x ⇒ Step (l x))) |

𝑥 ≈ 𝑦 ∧∀𝑣, 𝑅 (𝑘 𝑣) (𝑙 𝑣)}

This principle is however not completely satisfying: we can note that it removes the
guards in the co-recursive call. Transferred to an enhanced principle, this would translate to
a bind-rule for Step-guarded continuations that do not unlock the coinduction hypothesis.
We conjecture that the following more comfortable principle could be established, but we
have not proved it at this point. It is particularly desirable, as it would be the key to adapting
directly the ITree proofs of the iterative laws to the iterative laws for a Step-guarded iter
against weak bisimilarity.

Conjecture:
bind𝑢𝑝

𝑤′ (≈) 𝑅 ≜ {(𝑥 >>= (𝜆 x ⇒ Step (k x)), 𝑦 >>= (𝜆 x ⇒ Step (l x))) |
𝑥 ≈ 𝑦 ∧∀𝑣, 𝑅 (Step(𝑘 𝑣)) (Step(𝑙 𝑣))}

5 Reasoning on a 𝐵𝑟-aware LTS

In some cases, (bi)simulation proofs that involve 𝐵𝑟 nodes can be unwieldy. Consider the
following property: ∀𝑡, spin ≲ 𝑡. We could of course simply apply the rule ss_stuck, but
let us try to proceed by coinduction, using the rules from Figure 14.

⊢ ∀𝑡, spin ≲ 𝑡

coinduction⇐=========∀𝑡, spin R t ⊢ ∀𝑡, spin ≲R t
unfold⇐=====∀𝑡, spin R t ⊢ ∀𝑡, Guard spin ≲R t

step_ss_guard_l
⇐=============∀𝑡, spin R t ⊢ ∀𝑡, spin ≲R t

After initializing the coinduction, we can unfold one iteration of spin and use the
relevant proof rule to remove the Guard, but this gives back the original proof state.
Rather, in the middle of our game, we need to proceed by induction over the transition
considered—in this case to realize there are none such transition, but more generally to
capture enough information on the state this transition can reach. While in this trivial case, it
is manageable, it becomes extremely painful in more complex theorems that require proper
nesting of coinductive and inductive reasoning, including many results established on iter
and interp from Section 6.

This need for inductive reasoning is a common problem, encountered with many flavor
of weak (bi)similarity built on weak transition systems (van Glabbeek, 1993; Sangiorgi,
2012). For instance for weak bisimilarity, a natural definition would be to define it as the
strong bisimulation game over the weak LTS, quantifying over weak challenges forces
undesired inductive reasoning upon us. The standard solution is to observe that the same
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label ≜ 𝜖 | tau | obs 𝑒 𝑣 | val 𝑣

𝐵𝑟𝑏 𝑘
𝜖−→ 𝑡 Guard 𝑡

𝜖−→ 𝑢 Step 𝑡
tau−−−→ 𝑡 𝑉𝑖𝑠 𝑒 𝑘

obs 𝑒 𝑣−−−−−−→ 𝑘 𝑣 Ret 𝑣
val 𝑣−−−−→ ∅

Fig. 18: Inductive characterization of the alternative 𝜖-LTS induced by a CTree. The 𝐵𝑟

and Guard cases differ from the original LTS.

𝑢

𝜖

𝜖

pri
nt
tru
e

print false

Fig. 19: The LTS built from the CTree u of Section 4.6, with explicit 𝜖 transitions

relation can be generated by an asymmetric game, where challenges are strong (Sangiorgi,
2012)—which we indeed follow in our definition of the weak bisimulation.

Similarly, section 5.1 develops an alternative characterization of CTree simulation based
on this principle, yielding a standard definition of similarity. Section 5.2 does the same
for CTree bisimulation, which gives an unusual definition of bisimilarity based on mutual
coinduction.

5.1 Alternative characterization of CTree similarity

We have defined the strong simulation game in a standard and intuitive way (see
Definition 3), and it admits convenient proof rules and up-to principles. However, it is
defined on a slightly unusual LTS where all the 𝐵𝑟 nodes are skipped/collapsed. An unfor-
tunate consequence is that we cannot reason at the level of the simulation on these 𝐵𝑟

nodes, as they do not even appear in the LTS. Alternatively, in this section, we consider
LTSs in which 𝐵𝑟 nodes generate a special 𝜖 transition, and define a fitting simulation game
that “ignores” these 𝜖 transitions, enabling finer-grained reasoning. Figure 18 shows the
definition of this alternative 𝜖-LTS. Considering the example CTree u from Section 4.6, the
resulting finer-grained LTS is shown on Figure 19.17

With this definition, the previously introduced strong transition (strong w.r.t. 𝜏 transitions)
becomes weak with respect to 𝜖 transitions. Figure 20 depicts the simulation game ss
introduced in Section 4.5.1, but from the perspective of the 𝜖-LTS. We note 𝑡

𝜖−→ 𝑢 for 𝜖
transitions and 𝑡

𝑙−→ 𝑢 for other transitions. This simply explicit that the simulation challenge

17 For historical reasons, this LTS is not explicitly defined in our Coq development, but rather baked in the
definition of the alternative simulation game. Making it explicit would make many Coq definitions described
in this section cleaner, and closer to the definitions in this paper, but as this has no consequence on the theory,
we leave this refactoring for future work.
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𝑡

𝑡1

𝑡′

𝑢

𝑢1

𝑢′

≲R
𝜖∗

𝑙

𝜖∗

𝑙

R
Fig. 20: The simulation game and bisimulation half-game t ≲R u, in the 𝜖-LTS

𝑡

𝑡′

𝑢

𝑢′

≲′R

𝜖 𝜖∗

R

𝑡

𝑡′

𝑢

𝑢1

𝑢′

≲′R

𝑙

𝜖∗

𝑙

R
Fig. 21: The two cases of the simulation game t ≲′R u

we have been considering may involve an arbitrary number of 𝜖 transitions before reaching
an observable label, which is indicative of a flavor of a weak simulation game, defined as
a strong simulation game over a flavor of a weak transition system. And as illustrated in
the toy example proof above, the awkwardness in the game translates in the proof system:
consider Figure 14, the proof rule for 𝐵𝑟 does not perform a coinductive step.

By switching our perspective over the 𝜖-LTS, it is possible to provide an definition of
CTree simulation equivalent to ssim, while avoid its drawbacks: Figure 21 shows its game
( ). The key to the definition of this new game ss’ (written ≲′R) is to distinguish appart
𝜖-transition as a special kind of challeng. While other transitions are handled as in the
original definitions, 𝜖 transition can be answered by any number of 𝜖 transitions, possibly
0. This distinction is standard in the context of weak simulations.

We note ≲′ for the induced notion of similarity gfp 𝑠𝑠′. Of course, a critical result is the
equivalence of this notion of similarity with the original notion of strong similarity.

Lemma 6. Equivalence of the two notions of similarity ( ).

∀𝑡 𝑢, 𝑡 ≲ 𝑢 ⇐⇒ t ≲′ u

All the proof rules for 𝑠𝑠 are also proved valid on 𝑠𝑠′, and more powerful rules are valid for
𝐵𝑟 and Guard nodes. Among the newly valid proof rules is one that performs a coinductive
step when encountering a Guard node, while an induction nested in the coinductive proof
would have been needed if working with ss.

𝑡 ≲R 𝑢

Guard 𝑡 ≲R 𝑢
(ss_guard_l)

t R u
Guard 𝑡 ≲′R 𝑢

(ss’_guard_l)

The up-to-bind and up-to-equ principles are valid for 𝑠𝑠′. However, the up-to-sbisim
principle that allows rewriting top-level strongly bisimilar terms is no longer valid. Indeed,
rewriting using the theorem sb_guard : Guard t ∼ twould allow introducing a guard node
and coinductively removing it using step_ss’_guard_l. This echoes the classical result

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSimAlt.v#L33
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSimAlt.v#L971
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that weak (bi)simulation is not valid up-to weak (bi)simulation when presented as generated
by the asymmetric game. Fortunately, it is still possible to strip Guard nodes using a
dedicated up-to principle:

𝜖𝑟
𝑢𝑝 𝑅 ≜ {(𝑥, 𝑦) | 𝑦′ 𝜖 ∗−−→ 𝑦 ∧∀𝑣, 𝑥 R 𝑦′}

This up-to principles is used to recover asymmetric Guard- and 𝐵𝑟-stripping proof rules
for the right-hand side of the simulation.

Lemma 7. Enhanced coinduction for ≲′ ( ) The functions refl𝑢𝑝 ( ), bind𝑢𝑝 (≲) ( ),
𝜖𝑟

𝑢𝑝 ( ), 𝑠𝑠 ( ) and upto𝑢𝑝 (�) ( ) provide valid up-to principles for ≲′.

Another interesting new up-to principle is 𝑠𝑠, the original strong simulation game. In
fact, it is more than an up-to principle. At any point during the proof of a ssim’ simulation,
we can perform a regular ss step instead of an ss’ step. This is because an ss step always
corresponds to one or more ss’ steps. To state this fact formally, we have to leak the
implementation details of our relations in terms of tower induction:

Lemma 8. 𝑠𝑠 is a sub-chain of 𝑠𝑠′ ( ) Given R :𝐶𝑠𝑠′ , i.e., a chain for 𝑠𝑠′, the following
implication holds.

∀𝑡 𝑢, 𝑠𝑠 R 𝑡 𝑢 =⇒ t ≲′R u

We can now revisit our motivating example from Section 5, and conclude via a purely
coinductive proof ( ).

⊢ ∀𝑡, spin ≲ 𝑡

⇐= ⊢ ∀𝑡, spin ≲′ 𝑡
coinduction⇐=========∀𝑡, spin R t ⊢ ∀𝑡, spin ≲′R t

unfold⇐=====∀𝑡, spin R t ⊢ ∀𝑡, Guard spin ≲′R t
step_ss’_guard_l
⇐=============∀𝑡, spin R t ⊢ ∀𝑡, spin R t

5.2 Alternative characterization of CTree bisimilarity

Naturally, we want a similar improvement for strong bisimilarity. However, while the
solution in the case of similarity turned out to be a fairly standard recipe, bisimilarity calls
for more inventivity. Indeed, bisimulation games are usually defined as the intersection of
the simulation game and its symmetrized version—that was the case for the bisimulation
game in Section 4.4. However, this would not work for the alternative game. Consider the
CTrees in Figure 22. They are bisimilar since they have the same available transitions,
(val i) for 𝑖 ∈ {0, 1, 2, 3}, to the empty state. But a naïve symmetrization of ≲′ would
require an 𝜖 challenge to be matched by exactly one 𝜖 transition, which is not possible in

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSimAlt.v#L0
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSimAlt.v#L227
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSimAlt.v#L809
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSimAlt.v#L721
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSimAlt.v#L751
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSimAlt.v#L118
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSimAlt.v#L956
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SSimAlt.v#L988
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𝐵𝑟2

𝐵𝑟2 𝐵𝑟2

Ret 0 Ret 1 Ret 2 Ret 3

𝐵𝑟2

𝐵𝑟2 𝐵𝑟2

Ret 0 Ret 2 Ret 1 Ret 3

Fig. 22: Two bisimilar ctrees

the example. No matter which branch of the left CTree is taken, there is no branch in the
right CTree that is bisimilar with the intermediate node. Hence, this definition would be
too strong.

Rather, we define an alternative bisimulation over two mutually coinductive relations:
intutively, one for the left half-game, and another one for the right half-game. The inter-
section of the greatest fixpoints of these relations gives the bisimulation relation. This
construction is reminiscent of coupled simulations (Parrow and Sjödin, 1994; Sangiorgi,
2012), though the principles are not comparable. A notion of bisimilarity based on mutual
coinduction has been proposed before in the context of applicative bisimilarity (Levy,
2006).

To define formally our alternate bisimilarity, we define the pair of games we consider by
indexing them by a boolean, encoding which half we are currently participating in. While
the games encountered so far were monotone function over binary CTree relations, ∼′□ is a
monotone function over ternary bool * ctree * ctree relations R. In the following we
note R𝑙 for R true, R𝑟 for R false, and R𝑙𝑟 for the intersection of R𝑙 and R𝑟 . Similarly,
we write ∼′R𝑙 for 𝑠𝑏′ R true, ∼′R𝑟 for 𝑠𝑏′ R false, and ∼′R𝑙𝑟 for their intersection.

The bisimulation relation t ∼′ u is defined as ∀side:bool, (gfp ∼′□) side 𝑡 𝑢. The
“∀side” is critical as it requires a CTree pair to be both in R𝑙 and R𝑟 to be considered
bisimilar. Finally, we write t ∼′

𝑙
u for gfp ∼′□ true 𝑡 𝑢 and t ∼′𝑟 u for gfp ∼′□ false 𝑡 𝑢.

The definition of ∼′R𝑙 and ∼′R𝑟 ( ) depicted in Figure 23 is similar to the one of ≲′R , but
the 𝜖 case in the bisimulation left (resp. right) half-game has a weaker conclusion: it only
leads to the left (resp. right) half-relation. When the head of a CTree is an 𝜖 node, both the
left and right half games need to be played (possibly several times) to get back to R𝑙 ∩ R𝑟 .

For readers familiar with ITrees (Xia et al., 2020), our boolean parameter may evoke a
proof device that was used in the definition of eqit, a coinductive relation parameterized
by two booleans. However, the point of the booleans in eqit was to factor out four similar
definitions of simulation and bisimulation (eutt, etc.). In this context, the booleans were
outside the greatest fixpoint, while our boolean is not fixed and does evolve during a
coinductive proof.

The main proof rules are shown on Figure 24.18 The ones related to Guard and 𝐵𝑟 are
more powerful than the 𝑠𝑏 rules, and the other ones (greyed out) are equivalent.

As usual, various up-to principles are valid, but this time R is not a binary but a ternary
relation (because of the additional boolean). For each of the up-to principles proved for ≲′

in Lemma 7, we proved the validity of a ternary counterpart for ∼′.

18 Note: for technical reasons, the rules involving 𝐵𝑟𝑆 nodes are only valid when the relation R is an element of
the chain 𝐶𝑠𝑏′ . This is completely transparent, as we never consider any other relation.

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisimAlt.v#L37
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𝑡

𝑡′

𝑢

𝑢′

∼′R𝑙
𝜖 𝜖∗

R𝑙

𝑡

𝑡′

𝑢

𝑢′

∼′R𝑟
𝜖∗ 𝜖

R𝑟
𝑡

𝑡′

𝑢

𝑢1

𝑢′

∼′R𝑙
𝑙

𝜖∗

𝑙

R𝑙𝑟

𝑡

𝑡1

𝑡′

𝑢

𝑢′

∼′R𝑟𝜖∗

𝑙

𝑙

R𝑙𝑟
Fig. 23: The four cases of the bisimulation game t ∼′R𝑙𝑟 u. Note that the left and right
half-games are symmetric, with R𝑙 and R𝑟 swapped.

Ret 𝑣∼′R𝑙𝑟Ret 𝑣
∀𝑣, (𝑘 𝑣) R𝑙𝑟 (𝑘 ′ 𝑣)
𝑉𝑖𝑠 𝑒 𝑘∼′R𝑙𝑟𝑉𝑖𝑠 𝑒 𝑘 ′

∀𝑥, (𝑘 𝑥) R𝑙 𝑢
𝐵𝑟𝑐 𝑘∼′R𝑙𝑢

∀𝑥, 𝑡 R𝑟 (𝑘 𝑥)
𝑡∼′R𝑟 𝐵𝑟

𝑐 𝑘

(∀𝑥, ∃𝑦, (𝑘 𝑥)∼′R𝑙𝑟 (𝑘
′ 𝑦))∧(∀𝑦, ∃𝑥, (𝑘 𝑥)∼′R𝑙𝑟 (𝑘

′ 𝑦))
𝐵𝑟𝑐 𝑘∼′R𝑙𝑟 𝐵𝑟

𝑑 𝑘 ′
∀𝑣, (𝑘 𝑣) R𝑙𝑟 (𝑘 ′ 𝑣)
𝐵𝑟𝑐 𝑘∼′R𝑙𝑟 𝐵𝑟

𝑐 𝑘 ′

𝑡 R𝑙𝑟 𝑢
Guard 𝑡∼′R𝑙𝑟Guard 𝑢

𝑡 R𝑙𝑟 𝑢
Step 𝑡∼′R𝑙𝑟Step 𝑢

(∀𝑥, ∃𝑦, (𝑘 𝑥) R (𝑘 ′ 𝑦)) ∧ (∀𝑦, ∃𝑥, (𝑘 𝑥) R (𝑘 ′ 𝑦))
𝐵𝑟𝑐𝑆 𝑘∼′R𝑙𝑟 𝐵𝑟

𝑑
𝑆 𝑘 ′

∀𝑣, (𝑘 𝑣) R𝑙𝑟 (𝑘 ′ 𝑣)
𝐵𝑟𝑐𝑆 𝑘∼′R𝑙𝑟 𝐵𝑟

𝑐
𝑆 𝑘 ′

Fig. 24: Proof rules for coinductive proofs of ∼′ ( )

Lemma 9. Enhanced coinduction for ∼′ ( ) The up-to reflexivity ( ), up-to equ ( ),
up-to bind ( / ), up-to ss ( ) and up-to epsilon ( ) principles are valid for ∼′. A new
up-to negated symmetry nsym𝑢𝑝

3 principle is also valid ( ).

nsym𝑢𝑝

3 𝑅 ≜ {(𝑏, 𝑥, 𝑦) | 𝑅 ¬𝑏 𝑦 𝑥}

The up-to negated symmetry principle is a ternary variant of the standard up-to symmetry
principle. It swaps two CTrees operands of a relation and negates its boolean, because after
swapping the operands, R𝑙 and R𝑟 become inverted.

Again, a major result on this alternative characterization of bisimilarity is its equiva-
lence with the bisimilarity previously presented in Section 4.4. Interestingly, the theorem
statement can be split into a result on ∼′

𝑙
and one on ∼′𝑟 .

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisimAlt.v#L411
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisimAlt.v#L0
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisimAlt.v#L253
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisimAlt.v#L162
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisimAlt.v#L1139
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisimAlt.v#L1027
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisimAlt.v#L889
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisimAlt.v#L1094
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisimAlt.v#L278
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𝑡

𝑡′

𝑢

𝑢′

∼′R
𝜖 𝜖∗

R

𝑡

𝑡′

𝑢

𝑢1

𝑢′

∼′R
𝑙

𝜖∗

𝑙

R ∩ R◦

Fig. 25: The two cases of the homogeneous alternative bisimulation game 𝑡 ∼′R 𝑢. R◦
represents the converse of R.

Theorem 1. Equivalence of the two notions of bisimilarity ( ).

∀𝑡 𝑢, 𝑡 ∼ 𝑢 ⇐⇒ t ∼′ u
∀𝑡 𝑢, ss (sbisim t u) ⇐⇒ t ∼′𝑙 u
∀𝑡 𝑢, ss (sbisim u t) ⇐⇒ t ∼′𝑟 u

We have presented alternative characterizations of similarity and bisimilarity in the
homogeneous case, but as with most definitions of Section 4, we implemented them in Coq
with support for heterogeneous relations. In fact, in the homogeneous case, the bisimulation
game of Figure 23 degenerates to a simpler game (Figure 25) that does not rely on mutual
coinduction, nor a ternary relation with a boolean. This simpler game stems from the
observation that an homogeneous R verifies R 𝑏 𝑡 𝑢 ⇐⇒ R ¬𝑏 𝑢 𝑡 ( ).

6 Interpretation from and to CTrees

The ITree ecosystem fundamentally relies on the incremental interpretation of effects,
represented as external events, into their monadic implementations. Through this section,
we show how CTrees fit into this narrative both by supporting the interpretation of their
own external events, and by being a suitable target monad for ITrees, for the implementation
of nondeterministic branching.

6.1 Interpretation

ITrees support interpretation: provided a handler h:E { M implementing its signature
of events E into a suitable monad M, the (interp h):itree E { M combinator provides
an implementation of any computation into M. The only restriction imposed on the target
monad M is that it must support its own iter combinator, i.e., be iterative, so that divergence,
modelled coinductively in the tree, can also be internalized in M. For this implementation to
be sensible and amenable to verification in practice, one must, however, check an additional
property: interp h should form a monad morphism—in particular, it should map eutt
ITrees to equivalent monadic computations in M.

Unsurprisingly, given their structure, CTrees enjoy their own interp combinator. Its
definition, provided in Figure 26, is very close to its ITree counterpart. The interpreter
relies on the target monad’s own iter to chain the implementations of the external events
in the process. But additionally to being iterative, i.e., being able to internalize divergence,

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisimAlt.v#L1482
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Eq/SBisimAlt.v#L72
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Definition interp (h : E { M) : ctree E B { M := 𝜆R ⇒
miter (𝜆 t ⇒ match t with
| Ret r ⇒ ret (inr r)
| Stuck ⇒ mStuck
| Guard t ⇒ ret (inl t)
| Step t ⇒ bind mstep (𝜆 _ ⇒ inl t)
| Br n k ⇒ bind (mBr n) (𝜆 x ⇒ ret (inl (k x)))
| Vis e k ⇒ bind (h e) (𝜆 x ⇒ ret (inl (k x)))
end).

Fig. 26: Interpreter for CTrees (class constraints omitted) ( )

𝐵𝑟2

flip

0 1

flip

2 3

𝐵𝑟2

flip

2 1

flip

0 3

𝐵𝑟2

Step

flip

0 1

Step

flip

2 3

𝐵𝑟2

Step

flip

2 1

Step

flip

0 3

Fig. 27: Two strongly bisimilar trees before interpretation (left), but not after (right)

the target monad but also be able to internalize non-determinism by providing a stuck
state (mStuck)), an observable tick (mStep), and an internal branching (mBr). We provide
straightforward instances for CTrees and stateful interpretations.

Perhaps more surprisingly, the requirement that interp h defines a monad morphism
unearths interesting subtleties. Let us consider the elementary case where the interface
E is implemented in terms of (possibly pure) uninterpreted computations, that is when
M := ctree F B. The requirement becomes: ∀𝑡 𝑢, 𝑡 ∼ 𝑢→ interp h 𝑡 ∼ interp h 𝑢. But this
result does not hold for an arbitrary h: intuitively, our definition for sbisim has implicitly
assumed that implementations of external events may eliminate reachable states in the
computation’s induced LTS—through pure implementations—but should not be allowed to
introduce new ones.

The counter-example in Figure 27, where flip is the binary event introduced in
Section 2.2, fleshes out this intuition. Indeed, both trees are strongly bisimilar: each
of them can emit the label obs flip false by stepping to either the Ret 0 or Ret 2
node, or emit the label obs flip true by stepping to either the Ret 1 or Ret 3 node.
However, they are strongly bisimilar because the induced LTS processes the question to the
environment—flip— and its answer—false/true—in a single step, such that the compu-
tations never observe that they have had access to distinct continuations. However, if one
were to introduce in the tree a Step node before the external events, for instance using
the handler h := 𝜆 e ⇒ Step (trigger e), a new state allowing for witnessing the distinct
continuations would become available in the LTSs, leading to non-bisimilar interpreted
trees.

We hence say a handler h : E { ctree F B is quasi-pure if it implements each event
e either as a pure computation, i.e., ∀𝑙 𝑡′, ℎ 𝑒

𝑙−→ 𝑡′ =⇒ ∃𝑟, 𝑙 = val 𝑟 , or always performs
exactly one step before returning, i.e., ∀𝑙 𝑡′, ℎ 𝑒

𝑙−→ 𝑡′ =⇒ ∃𝑟, 𝑡′ = Ret 𝑟 . Similarly, we say

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Interp/Fold.v#L57
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that h : E { stateT S (ctree F B) is quasi-pure if it is point-wise quasi-pure. We show
that we recover the desired property for the subclass of quasi-pure handlers:

Theorem 2 (Quasi-pure handlers interpret into monad morphisms ( )).

• If h : E { ctree F B is quasi-pure, then

∀𝑡 𝑢, 𝑡 ∼ 𝑢→ interp h 𝑡 ∼ interp h 𝑢.

• If h : E { stateT (ctree F B) is quasi-pure, then

∀𝑡 𝑢, 𝑡 ∼ 𝑢→∀𝑠, interp h 𝑡 𝑠 ∼ interp h 𝑢 𝑠.

The same is true for ≲.

The stateful version is, in particular, sufficient to transport ImpBr equations established
before interpretation—such as the theory of br _ or _—through interpretation ( ).
More generally, we can reason after interpretation to establish equations relying both
on the nondeterminism and state algebras, for instance to establish the equivalence 𝑝3 ≡
br 𝑝2 or 𝑝3 mentioned in Section 2.2 ( ).

The former theorem links CTrees before and after interpretation. It can also be interesting
to compare alternative implementations of a handler for the same kind of event, e.g. different
memory models for memory access events. In this case, we provide a theorem to lift a
simulation result on handlers to a simulation result on interpreted CTrees.

Theorem 3 (A simulation between handlers can be lifted through interpretation ( )).

• ∀ (h h’ : E { ctree F) 𝑡, (∀𝑒, ℎ 𝑒 ≲ ℎ′ 𝑒) =⇒ interp h 𝑡 ≲ interp h’ 𝑡.

• ∀ (h h’ : E { stateT (ctree F)) 𝑡, (∀𝑒𝑠, ℎ 𝑒 𝑠 ≲ ℎ′ 𝑒 𝑠) =⇒ interp h 𝑡 𝑠 ≲

interp h’ 𝑡 𝑠.

This theorem is presented here in the homogeneous case for simplicity, but we provide
it for heterogeneous simulations, thus the heavily-parameterized Coq statement of the
mechanized theorem. Note that unlike Theorem 2, we do not need any assumption on the
handlers or the trees.

6.2 Refinement

Interpretation provides a general theory for the implementation of external events.
Importantly, CTrees also support an analogous facility for the refinement of its internal
branches: one can shrink the set of accessible paths in a computation—and, in particular,
determinize it.

We provide, to this end, a new combinator, refine, defined in Figure 28. The definition
is very similar19 to interp, except that it takes as an argument a handler specifying how

19 In our development, interp and refine are defined as special case of a fold operator allowing for the
simultaneous implementation of both external events and internal branches.

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Interp/FoldStateT.v#L1013
https://github.com/vellvm/ctrees/tree/jfp-submission/examples/ImpBr/ImpBr.v#L180
https://github.com/vellvm/ctrees/tree/jfp-submission/examples/ImpBr/ImpBr.v#L220
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Interp/FoldStateT.v#L560
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Definition refine (h : B { M) : ctree E B { M := 𝜆R ⇒
miter (𝜆 t ⇒ match t with
| Ret r ⇒ ret (inr r)
| Stuck ⇒ mStuck
| Guard t ⇒ ret (inl t)
| Step t ⇒ bind mstep (𝜆 _ ⇒ inl t)
| Br b k ⇒ bind (h b) (𝜆 x ⇒ ret (inl (k x)))
| Vis e k ⇒ bind (mTrigger e) (𝜆 x ⇒ ret (inl (k x)))
end).

Fig. 28: Refining CTrees (class constraints omitted) ( )

to implement branches rather than external events into a monad M. The target monad must
naturally still be iterative, able to provide a stuck state, and an observable tick, but must
additionally explain how it can re-embed an uninterpreted event (mtrigger)—a device
already used in (Yoon et al., 2022).

As hinted at by the combinator’s name, the source program should be able to simulate the
refined program. Fixing M to ctree F B, this is expressed as ∀𝑡, refine h 𝑡 ≲ 𝑡. However, one
cannot hope to obtain such a result for an arbitrary h, because it could implement internal
branches with an observable computation that can’t be simulated by 𝑡. We hence prove this
result for refinement handlers implementing branches in terms of finite pure CTrees ( ):
finite-height CTrees that do not contain any Step or Vis node.

Lemma 10 (Finite pure refinements are proper refinements ( ) 20 ).

• ∀ℎ 𝑡, ℎ pointwise pure finite =⇒ refine_cst ℎ 𝑡 ≲ 𝑡

• ∀ℎ 𝑡 𝑠, ℎ pointwise finite pure =⇒ refine_state ℎ 𝑡 𝑠 ≲𝑠𝑡 𝑡

Unlike interp, refine is not a monad morphism. The CTrees 𝐵𝑟2 (Ret 0) (Ret 1) and
𝐵𝑟2 (Ret 1) (Ret 0) are clearly bisimilar, but refining them by always choosing the left
branch of 𝐵𝑟 nodes gives Ret 0 and Ret 1, which are not bisimilar. This highlights the
major difference between Vis and 𝐵𝑟: Vis nodes represent external events whose response
from the environment has a strong semantic value, while 𝐵𝑟 nodes represent internal
nondeterminism, with semantically indistinguishable branches.

6.3 Extraction

The shallow nature of CTrees also offers testing opportunities. Xia et al. (2020) describe
how external events such as IO interactions can alternatively be implemented in OCaml and
linked against at extraction. Similarly, we demonstrate on ImpBr how to execute a CTree by
running an impure refinement implemented in OCaml by picking random branches along
the execution.

In comparison with ITrees, the random execution of CTrees requires some care because
of their nondeterministic nature. The naïve approach ( ) of randomly choosing a branch

20 The second theorem is an heterogeneous simulation (see Section 4.7): the return types of the trees are not
identical — the refined tree maintains an additional state that we ignore.

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Interp/Fold.v#L68
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Misc/Pure.v#L149
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Interp/Refine.v#L64


1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

40 Choice Trees

let rec run t =
match observe t with
| RetF r -> print_int (int_of_nat r); true
| BrF (_, k) ->
let b = Random.bool() in
if run (k (Obj.magic b)) then true
else run (k (Obj.magic (not b)))

| GuardF t -> run t
| StuckF -> false
| _ -> failwith "unreachable";;

let rec collect t =
match observe t with
| RetF r -> [int_of_nat r]
| GuardF t -> collect t
| StuckF -> []
| BrF (_, k) ->
collect (k (Obj.magic true)) @ collect (k (Obj.magic false))

| _ -> failwith "unreachable";;

Fig. 29: A random interpreter and a collecting interpreter for ImpBr, implemented in
OCaml.

when encountering a 𝐵𝑟 node is not semantically correct because of stuck branches: the
semantics of 𝐵𝑟2 ∅ 𝑡 should be the semantics of 𝑡. We provide a correct implementation for
the ImpBr example ( ) that backtracks when it encounters a stuck branch.

This fixed version still chooses 𝐵𝑟 branches randomly, but if it subsequently reaches a
stuck node (materialized by a false return value), it explores the other branch. Again on
the ImpBr example, we can define a collecting interpreter that, given an ImpBr program,
crawls its CTree to build the list of its possible return values.

We observe that these interpreters exhibits correct behavior on an example CTree ( ).
However, a limitation of the proposed implementations is that they may loop when given a
program with an infinite chain of Guard or 𝐵𝑟 nodes (e.g., the spin CTree from Figure 6).
If it reaches a spin, the random interpreter will loop on the Guard case and never terminate.
As for the collecting interpreter, it will always loop as it always explores every branch of the
CTree. For the random interpreter, performing a breadth-first search instead of a depth-first
search would solve this limitation. But this is not an option for the collecting interpreter.
Instead, the maximal exploration depth could be limited as a workaround.

6.4 ITree embedding

We have used CTrees directly as a domain to represent the syntax of ImpBr, as well as in
our case studies (see Section 7 and 8). CTrees can, however, fulfill their promise sketched
in Section 2, and be used as a domain to host the monadic implementation of external
representations of nondeterministic events in an ITree.

To demonstrate this approach, we consider the family of events
choose (n: nat) : Choose (fin n), and aim to define an operator embed taking an
ITree computation modeling nondeterministic branching using these external events, and
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Definition inject {E} : itree E { ctree E := interp (𝜆 e ⇒ trigger e).
Definition internalize {E} : ctree (Choose +’ E) { ctree E :=
interp (𝜆 e ⇒ match e with | inl1 (choose n) ⇒ 𝐵𝑟𝑛

𝑆
| inr1 e ⇒ trigger

e).
Definition embed {E} : itree (Choose +’ E) { ctree E :=
𝜆 _ t ⇒ internalize (inject t).

Fig. 30: Implementing external branching events into the CTree monad ( )

implementing them as branches indexed similarly into a CTree. This operator, defined in
Figure 30, is the composition of two transformations. First, we inject ITrees into CTrees
by (ITree) interpretation. This injection rebuilds the original tree as a CTree, where Step𝑖
nodes have become Guard nodes, and an additional Guard has been introduced in front
of each external event. Second, we internalize the external branching contained in a
CTrees implementing a Choose event, using the isomorphic stepping branch. The resulting
embedding forms a monad morphism transporting eutt ITrees into sbisim CTrees:

Lemma 11. embed respects eutt ( ) ∀𝑡 𝑢, eutt 𝑡 𝑢 =⇒ 𝑒𝑚𝑏𝑒𝑑 (𝑡) ∼ 𝑒𝑚𝑏𝑒𝑑 (𝑢)

The proof of this theorem highlights how Step𝑖 nodes in ITrees (adding a subscript
to distinguish them from their CTree homonym) collapse two distinct concepts that non-
determinism forces us to unravel in CTrees. The eutt relation is defined as the greatest
fixpoint of an inductive endofunction euttF. In particular, one can recursively and asym-
metrically strip finite amounts of Step𝑖—the corecursion is completely oblivious to these
nodes in the structures. Corecursively, however, Step𝑖 nodes can be matched symmet-
rically—a construction that is useful in exactly one case, namely to relate the silently
spinning computation, Step𝜔

𝑖
, to itself. From the CTrees perspective, recursing in euttF

corresponds to recursion in the definition of the LTS: Step𝑖 nodes are Guard nodes. But
corecursing corresponds to a step in the LTS: Step𝜔

𝑖
corresponds to Step𝜔 . ITrees’ Step𝑖

thus corresponds to either a Guard or a Step. Nondeterminism forces us to separate both
concepts, as whether a node in the tree constitutes an accessible state in the LTS becomes
semantically relevant. We obtain two "dual" notions that have no equivalent in ITrees: we
may have finite amounts of asymmetric corecursive choices, i.e., finitely many Steps, and
structurally infinite stuck processes, i.e., Guard𝜔 .

In the proof of Lemma 11, this materializes by the fact that an induction on euttF
leaves us disappointed in the symmetric Step𝑖 case: we have no applicable induction
hypothesis, but expose in our embedding a Guard, which does not allow us to progress in
the bisimulation. We must resolve the situation by proving that being able to step in embed t
implies that t is not Step𝜔

𝑖
, i.e., that we can inductively reach a Vis or a Ret node ( ).

Limitations: on guarding recursive calls using Guard. We have shown that CTrees
equipped with iter as recursor and strong bisimulation as equivalence form an itera-
tive monad. Furthermore, building interpretation atop this iter combinator gives rise to a
monad morphism respecting eutt, hence is suitable for implementing non-deterministic
effects represented as external in an ITree.

https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Interp/ITree.v#L25
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Interp/ITree.v#L255
https://github.com/vellvm/ctrees/tree/jfp-submission/theories/Interp/ITree.v#L179
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However, we stress that the underlying design choice in the definition of iter, guarding
recursion using Guard, is not without consequences. It has strong benefits, mainly that a lot
of reasoning can be performed against strong bisimulation. More specifically, this choice
allows the user to reserve weak bisimulation for the purposes of ignoring domain-specific
steps of computations that may be relevant both seen under a stepping or non-stepping
lens—e.g., synchronizations in ccs—but it does not impose this behavior on recursive
calls. However, it also leads to a coarse-grained treatment of silent divergence: in particular,
the silently diverging ITree (an infinite chain of Step𝑖) is embedded into an infinite chain of
Guard, which, we have seen, corresponds to a stuck LTS. For some applications—typically,
modeling other means of being stuck and later interpreting them into a nullary branch—
one would prefer to embed this tree into the infinite chain of Step to avoid equating both
computations. While one could rely on manually introducing a Step in the body iterated
upon when building the model, that approach is a bit cumbersome.

Instead, a valuable avenue would be to develop the theory accompanying the alter-
nate iterator mentioned in Section 4.4 and guarding recursion using Step. Naturally, the
corresponding monad would not be iterative with respect to strong bisimulation, but we con-
jecture that it would be against weak bisimulation. From this alternate iterator would arise
an alternative embedding of ITrees into CTrees: we conjecture it would still respect eutt,
but seen as a morphism into CTrees equipped with weak bisimulation. The development
accompanying this paper does not yet support this alternate iterator, we leave implementing
it to future work.

Currently, the user has the choice between (1) not observing recursion at all, but getting
away with strong bisimulation in exchange, (2) manually inserting Step at recursive calls
that they chose to observe. With support for this alternate iterator, the user would be given
additional option to (3) systematically tau-observe recursion, at the cost of working with
weak bisimulation everywhere.

7 Case study: a model for ccs

We claim that CTrees form a versatile tool for building semantic models of nondeterministic
systems, concurrent ones in particular. In this section, we illustrate the use of CTrees as
a model of concurrent communicating processes by providing a semantics for Milner’s
Calculus of Communicating Systems (ccs) (Milner, 1989). The results we obtain—the
usual algebra, up-to principles, and precisely the same equivalence relation as the usual
operational-based strong bisimulation—are standard, per se, but they are all established by
exploiting the generic notion of bisimilarity of CTrees. The result is a shallowly embedded
model for ccs in Coq that could be easily, and modularly, combined with other language
features.

7.1 Syntax and operational semantics

The syntax and operational semantics of ccs are shown in Figure 31. The language assumes
a set of names, or communication channels, ranged over by c. For any name c, there is a
co-name c̄ satisfying ¯̄c = c. An action is represented by a label 𝑙; it is either a communication
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𝑙 ::= 𝜏 | c | c̄ P ::= 0 | 𝑙 · P | P ⊕ Q | P ∥ Q | 𝜈c · P | !P

𝑎 · 𝑃 𝑎−→ccs 𝑃

𝑃
𝑙−→ccs 𝑃

′

𝑃 ⊕𝑄 𝑙−→ccs 𝑃
′

𝑄
𝑙−→ccs 𝑄

′

𝑃 ⊕𝑄 𝑙−→ccs 𝑄
′

𝑃
𝑙−→ccs 𝑃

′

𝑃 ∥ 𝑄 𝑙−→ccs 𝑃
′ ∥ 𝑄

𝑄
𝑙−→ccs 𝑄

′

𝑃 ∥ 𝑄 𝑙−→ccs 𝑃 ∥ 𝑄′
𝑃

c−→ccs 𝑃
′ 𝑄

c̄−→ccs 𝑄
′

𝑃 ∥ 𝑄 𝜏−→ccs 𝑃
′ ∥ 𝑄′

𝑃
𝑙−→ccs 𝑃

′ 𝑙 ∉ {c, c̄}

𝜈c · 𝑃 𝑙−→ccs 𝜈c · 𝑃′

𝑃 ∥!𝑃 𝑙−→ccs 𝑃
′

!𝑃
𝑙−→ccs 𝑃

′

Fig. 31: Syntax for ccs ( ) and its operational semantics ( )

label c or c̄, representing the sending/reception of a message on a channel, or the reserved
action 𝜏, which represents an internal action.

The standard operational semantics, shown in the figure, is expressed as a labeled tran-
sition system, where states are terms 𝑃 and labels are actions 𝑙. The ccs operators are the
following: 0 is the process with no behavior. A prefix process 𝑙 · 𝑃 emits an action 𝑙 and then
becomes the process 𝑃. The internal choice P ⊕ Q behaves either like the process P or like
the process Q, in the same fashion as the BrInternal semantics for br in Section 2.2. The
parallel composition of two processes P ∥ Q interleaves the behavior of the two processes,
while allowing the two processes to communicate. If the process P emits a name c and
the process Q emits its co-name c̄, then the two processes can progress simultaneously
and the parallel composition emits an internal action 𝜏. Channel restriction 𝜈c · P prevents
the process P from emitting an action c or c̄: the operational rule states that any emission
of another action is allowed. Finally the replicated process !P behaves as an unbounded
replication of the process P. Operationally, !P has the behavior of 𝑃 ∥!P.

7.2 Model

We define a denotational model for ccs using ctree actE ccsB void as domain, writ-
ten ccs# in the following. As witnessed by this type, processes do not return any
value, but may emit actions modeled as external events expecting unit for answer:
Inductive actE ::= | act a : actE unit. They can exhibit only binary, ternary, or qua-
ternary branch, captured in ccsB. Figure 32 defines the semantic operators associated with
each construct of the language. They are written as over-lined versions of their syntactic
counterparts, and defined over ccs#.

The empty process is modeled as a stuck tree—we cannot observe it. Actions are directly
defined as visible events, and thus the prefix triggers the action, and continues with the
remaining of the process. As discussed in Section 2.2, the delayed branching node fits
exactly with the semantics of the choice operator in ccs, only progressing if one of the
composed terms progresses. Restriction raises a minor issue: the compositional definition

https://github.com/vellvm/ctrees/tree/jfp-submission/examples/CCS/Syntax.v#L52
https://github.com/vellvm/ctrees/tree/jfp-submission/examples/CCS/Operational.v#L12
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0 ≜ ∅ 𝑎·𝑝 ≜ trigger 𝑎 ;; 𝑝 𝑝 ⊕ 𝑞 ≜ 𝐵𝑟2 𝑝 𝑞 !𝑝 ≜ 𝑝∥!𝑝

𝜈𝑐·𝑃 ≜ interp h_new 𝑐 𝑃

where h_new 𝑐 𝑒 =
{
∅ if 𝑒 = 𝑎𝑐𝑡 𝑐 or 𝑒 = 𝑎𝑐𝑡 𝑐

trigger 𝑒 otherwise

𝑝 ∥ 𝑞 ≜ cofix 𝐹 𝑝 𝑞 · 𝐵𝑟3 (𝑝′← head 𝑝 ;; actL 𝐹 𝑞 𝑝′)
(𝑞′← head 𝑞 ;; actR 𝐹 𝑝 𝑞′)
(𝑝′← head 𝑝 ;; 𝑞′← head 𝑞 ;; 𝑎𝑐𝑡𝐿𝑅 𝐹 𝑝′ 𝑞′)

actL 𝐹 𝑞 (𝐴𝑆𝑡𝑒𝑝 𝑡) ≜ 𝑆𝑡𝑒𝑝 (𝐹 𝑡 𝑞)
actL 𝐹 𝑞 (𝐴𝑉𝑖𝑠 𝑒 𝑘) ≜ 𝑉𝑖𝑠 𝑒 (𝜆𝑖 · 𝐹 (𝑘 𝑖) 𝑞)

actR 𝐹 𝑝 (𝐴𝑆𝑡𝑒𝑝 𝑡) ≜ 𝑆𝑡𝑒𝑝 (𝐹 𝑝 𝑡)
actR 𝐹 𝑝 (𝐴𝑉𝑖𝑠 𝑒 𝑘) ≜ 𝑉𝑖𝑠 𝑒 (𝜆𝑖 · 𝐹 𝑝 (𝑘 𝑖))

actLR 𝐹 𝑟 𝑟 ′ ≜{
Step · 𝐹 (𝑘 ()) (𝑘 ′ ()) if ∃𝑎. 𝑟 =𝑉𝑖𝑠 (𝑎𝑐𝑡 𝑎) 𝑘 ∧ 𝑟 ′ =𝑉𝑖𝑠 (𝑎𝑐𝑡 𝑎̄) 𝑘 ′
∅ otherwise

Fig. 32: Denotational model for ccs using ccs# as a domain ( )

implies that the CTree for the restricted term has already been produced when we encounter
the restriction and, a priori, that tree might contain visible actions on the name being
restricted. We enforce scoping by replacing those actions by a stuck tree, ∅, effectively
cutting these branches. This is done using the interp operator from CTrees, with h_new,
a handler that does the substitution.

𝐵𝑟3

head p

𝑎

𝑝′ ∥ 𝑞

𝑎, 𝑝′
head q

𝑎

𝑝 ∥ 𝑞′

𝑎, 𝑞′

head p

head q

Step

𝑝′ ∥ 𝑞′

𝑎𝑐𝑡 𝑐, 𝑝′

𝑎𝑐𝑡 𝑐, 𝑞′

∅

otherwise

Fig. 33: Depiction of the tree resulting from
𝑝 ∥ 𝑞

Parallel composition is more intri-
cate, as the operator requires significant
introspection of the composed terms.
The traditional operational semantics
of ccs is not explicitly construc-
tive: each of the three reduction rules
depends on the existence of specific
transitions in the sub-processes. We
perform this necessary introspection,
in a constructive way, defining the
tree as an explicit cofixpoint, and
using the head operator introduced in
Section 3.2. While the operationhead p
precisely captures the desired set of
actions that 𝑝 may perform, comput-
ing this set could, in general, silently
diverge. We therefore cannot bluntly

https://github.com/vellvm/ctrees/tree/jfp-submission/examples/CCS/Denotation.v#L64
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!𝑝 ≜ 𝑝∥!𝑝

𝑝∥!𝑞 ≜ cofix 𝐹 𝑝 𝑞 · 𝐵𝑟4 (𝑝′← head p ;; actL 𝐹 𝑞 𝑝′)
(𝑞′← head q ;; pbR 𝐹 𝑞 𝑝 𝑞′)
(𝑝′← head p ;; 𝑞′← head q ;; pbLR 𝐹 𝑞 𝑝′ 𝑞′)
(𝑞′← head q ;; 𝑞′′← head q ;; pbRR 𝐹 𝑞 𝑞′ 𝑞′′)

actL 𝐹 𝑞 (𝐴𝑆𝑡𝑒𝑝 𝑡) ≜ 𝑆𝑡𝑒𝑝(𝐹 𝑡 𝑞)
actL 𝐹 𝑞 (𝑉𝑖𝑠 𝑒 𝑘) ≜ 𝑉𝑖𝑠 𝑒 (𝜆𝑖 · 𝐹 (𝑘 𝑖) 𝑞)

pbR 𝐹 𝑞 𝑝 (𝐴𝑆𝑡𝑒𝑝 𝑡) ≜ 𝑆𝑡𝑒𝑝(𝜆𝑖 · 𝐹 (𝑝 ∥ 𝑡) 𝑞)
pbR 𝐹 𝑞 𝑝 (𝑉𝑖𝑠 𝑒 𝑘) ≜ 𝑉𝑖𝑠 𝑒 (𝜆𝑖 · 𝐹 (𝑝 ∥ 𝑘 𝑖) 𝑞)

pbLR 𝐹 𝑞 𝑟 𝑟 ′ ≜{
Step · 𝐹 (𝑘 () ∥ 𝑘 ′ ()) 𝑞 if ∃𝑎. 𝑟 =𝑉𝑖𝑠 (𝑎𝑐𝑡 𝑎) 𝑘 ∧ 𝑟 ′ =𝑉𝑖𝑠 (𝑎𝑐𝑡 𝑎̄) 𝑘 ′
∅ otherwise

pbRR 𝐹 𝑞 𝑟 𝑟 ′ ≜{
Step · 𝐹 (𝑝 ∥ 𝑘 () ∥ 𝑘 ′ ()) 𝑞 if ∃𝑎. 𝑟 =𝑉𝑖𝑠 (𝑎𝑐𝑡 𝑎) 𝑘 ∧ 𝑟 ′ =𝑉𝑖𝑠 (𝑎𝑐𝑡 𝑎̄) 𝑘 ′
∅ otherwise

Fig. 34: Denotational model for !𝑝 ( )

initiate the computation by sequencing the heads of 𝑝 and 𝑞, as divergence in the former
may render inaccessible valid transitions in the latter.21 Instead, we initiate the computation
with a ternary delayed choice: the left (resp. middle) branch captures the behaviors starting
with an interaction by 𝑝 (resp. 𝑞), while the right branch captures the behaviors starting
with a synchronisation between 𝑝 and 𝑞. Essentially, the tree nondeterministically explores
the set of applicable instances of the three operational rules for parallel composition. In
particular, if the operational rule to step in the left (resp. right) process is non-applicable,
the left (resp. middle) branch of the resulting tree silently diverges. The right branch silently
diverges if neither process can step, but, in general, it also contains branches considering the
interaction of incompatible actions; we cut these branches by inserting ∅. In all cases, the
operator continues corecursively, having progressed in either or both processes. Figure 33
shows the CTree resulting from 𝑝 ∥ 𝑞.

The last operator to consider is the replication !. In theory, it could be expressed in
terms of parallel composition directly, as the cofix !𝑝 ≜ 𝑝 ∥ !𝑝. Unfortunately, although
it is sound, defining the ! operator in this way is too involved for Coq’s syntactic criterion
on cofixes to recognize that the corecursive call is guarded under ∥ . To circumvent this

21 Technically, the variant of ccs considered here actually cannot generate such a computation, so we could
therefore rule this case out extensionally. The case could, however, easily arise in a variant of ccs relying
on recursive processes rather than replication, and in other calculi, so we therefore favor this more general,
reusable, approach.

https://github.com/vellvm/ctrees/tree/jfp-submission/examples/CCS/Denotation.v#L129
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difficulty, we use an auxiliary operator, defined on Figure 34. The intuition behind this
operator, 𝑝∥!𝑞, is to capture the parallel composition of a process 𝑝 with a replicated
process !𝑞. By extending the domain of the function, we manage to recover a syntactically
guarded cofix, therefore accepted by Coq. The operator 𝑝∥!𝑞 nondeterministically explores
the four kinds of interactions that such a process could exhibit: a step in 𝑝; the creation of
a copy of 𝑞 performing a step to 𝑞′, before being composed in parallel with 𝑝; the creation
of a copy of 𝑞 synchronizing with 𝑝; or the emission of two copies of 𝑞 synchronizing one
with another. We finally define the replication operator as !𝑝 ≜ 𝑝∥!𝑝.

With these tools at hand, the model J·K : ccs→ ccs# is defined by recursion on the
syntax.

Equational Theory We provide a first validation of our model by proving that it satisfies the
expected equational theory with respect to CTrees’s notion of strong bisimulation, enabling
the usual algebraic reasoning advocated for process calculi. In particular, we prove that our
definition for the replication is sane in that it validates equationally the expected definition:
!𝑝 ∼ !𝑝 ∥ 𝑝 ( ). We also prove an illustrative collection of expected equations satisfied by
our operators ( ):

𝑝 ⊕ 𝑞 ∼ 𝑞 ⊕ 𝑝 𝑝 ⊕ (𝑞 ⊕ 𝑟) ∼ (𝑝 ⊕ 𝑞) ⊕ 𝑟 𝑝 ⊕ 0 ∼ 𝑝 𝑝 ⊕ 𝑝 ∼ 𝑝

𝑝 ∥ 0 ∼ 𝑝 𝑝 ∥ 𝑞 ∼ 𝑞 ∥ 𝑝 𝑝 ∥ (𝑞 ∥ 𝑟) ∼ (𝑝 ∥ 𝑞) ∥ 𝑟

To facilitate these proofs, we first prove sound up-to principles at the level of ccs for
each constructor: strong bisimulation up-to 𝑐·[·], [·] ⊕ [·], [·] ∥ [·], ![·], and 𝜈𝑐·[·] are all
valid principles, allowing us to rewrite sbisim under semantic contexts during bisimulation
proofs. Additionally to these language-level up-to principles, we inherit the ones generically
supported by sbisim (Lem. 3).

7.3 Equivalence with the operational strong bisimilarity

In addition to proving that we recover in our semantic domain the expected up-to principles
and the right algebra, we furthermore show that the model is sound and complete with
respect to strong bisimulation compared to its operational counterpart. We do so by first
establishing an asymmetrical bisimulation between ccs and ccs#, matching operational
steps over the syntax to semantic steps in the CTree. We write 𝑙 for the obvious translation
of labels between both LTSs.

Definition 6 (Strong bisimulation between ccs and ccs#.). A relation R : 𝑟𝑒𝑙 (ccs, ccs#)
is a strong bisimulation if and only if, for any label 𝑙, ccs term 𝑃, and ccs# tree 𝑞.

𝑃 R 𝑞 ∧ 𝑃 𝑙−→ccs 𝑃
′ =⇒ ∃𝑞′, 𝑃′ R 𝑞′ ∧ 𝑞 𝑙−→ 𝑞′

and conversely

𝑃 R 𝑞 ∧ 𝑞 𝑙−→ 𝑞′ =⇒ ∃𝑃′. 𝑃′ R 𝑞′ ∧ 𝑃 𝑙−→ 𝑃′

𝑃 R 𝑞

𝑃′
𝑙

R 𝑞′
𝑙

ccs

https://github.com/vellvm/ctrees/tree/jfp-submission/examples/CCS/Denotation.v#L1453
https://github.com/vellvm/ctrees/tree/jfp-submission/examples/CCS/Denotation.v#L1064
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Lemma 12 ( ). The relation 𝑅 ≜ {(𝑃, 𝑞) | J𝑃K ∼ 𝑞} is a strong bisimulation.

We derive from this result that the operational and semantic strong bisimulations define
exactly the same relation over ccs:

Lemma 13 ( ). ∀𝑃 𝑄, J𝑃K ∼ J𝑄K iff 𝑃 ∼ccs 𝑄

8 Case study: modelling cooperative multithreading

As a second case study, we consider cooperative multithreading. Cooperative scheduling is
used in languages such as Javascript, async Rust, or Akka/Scala actors, but is also a very
general model, as preemptive multi-tasking is equivalent to cooperative scheduling where
threads are willing to yield (i.e., let other threads run) at any time. We extend the syntax of
imp with two additional constructs:

comm ≜ skip | 𝑥::= 𝑒 | 𝑐1; 𝑐2 | while 𝑏 do 𝑐 | fork 𝑐1 𝑐2 | yield

The command fork forks the current thread into two, running respectively 𝑐1 and 𝑐2.
Importantly, during such a fork, the thread running 𝑐2 retains control, and the one running
𝑐1 will only get a chance to execute after 𝑐2 voluntarily yields control, or terminates. This
yielding of control is achieved by the yield statement, which signals that the current thread
suspends its execution, and lets a new thread be scheduled—possibly the same one again.

This semantics implements a mechanism akin to the fork system call, which duplicates
the current process, but without a possibility for joining threads. For example, the program

(fork (𝑥::= 1) (yield; 𝑥::= 2)); 𝑦::= 𝑥

forks two copies of the program, with the “main” thread immediately yielding, allowing
for either thread to run next. Its semantics is to first spawn a thread for 𝑥::= 1, then have
the main thread reach the yield, giving 𝑥::= 1 a chance to run. Assuming the spawned
thread goes next, it runs in sequence 𝑥::= 1 and 𝑦::= 𝑥, after which the main thread recovers
control and finishes its execution. 𝑦::= 𝑥 is part of both threads and is thus executed twice,
after each assignment to 𝑥.

Alternatively, some cooperative scheduling languages (Abadi and Plotkin, 2010) consider
a spawn operator that simply spawns an independent thread: we can encode this behavior
in several ways. Notably, if spawn always occurs in tail position, there is no continuation
to duplicate. For instance, the program

fork 𝑥::= 1 (fork (𝑥::= 2) skip)

spawns two threads that set 𝑥 to different values, and terminates. The two spawned threads
can then be scheduled in either order, resulting in 𝑥 = 1 or 𝑥 = 2 in the final state. This
constraint could be syntactically enforced in the language if relevant. Alternatively, one
can use the command while true do yield22 to “terminate” a thread; for instance to
prevent the first thread above from reaching 𝑦::= 𝑥. With fancier encodings using reserved
shared-variables, nested “joins” and other synchronization operations can be modeled. In

22 Or more elegantly, introduce block in the language.

https://github.com/vellvm/ctrees/tree/jfp-submission/examples/CCS/OpDenot.v#L257
https://github.com/vellvm/ctrees/tree/jfp-submission/examples/CCS/OpDenot.v#L434
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this case study, we do not concern ourselves with such extensions, and restrict ourselves to
the formalization of the syntax described above.

8.1 Model

The model for ImpBr, described in Section 2, was defined in two stages: a representation
into a nondeterministic CTree with interaction with memory, and then a stateful interpre-
tation. We proceed this time in three stages: a representation into a deterministic CTree
with concurrent interaction represented as external events, a scheduling pass introducing
nondeterminism by interleaving all the valid executions, and finally a stateful interpretation.

Representation First, we represent statements as computations of type
ctree (YieldE + SpawnE + MemE) voidB unit. At this stage of representation, they
are modeled as deterministic computations,23 as highlighted by the use of the empty
interface voidB for branches. The computation can however perform two more classes of
events than the traditional memory ones: yielding and spawning:

Variant YieldE : Type → Type :=
| Yield : YieldE unit.

Variant ForkE : Type → Type :=
| Fork : ForkE bool.

Yield carries no additional information and acts purely as a signal to yield control, and
Fork introduces a binary branch in the CTree, allowing us to store the asynchronous thread
in one branch and the main thread that continues running in the other branch. These events
are used to represent the corresponding statements:

JyieldK ≜ trigger (Yield)
Jfork 𝑐1 𝑐2K ≜ 𝑏← trigger (Fork) ;; if 𝑏 then J𝑐1K else J𝑐2K

The remaining of the representation is entirely standard.
We write J𝑝K the representation of 𝑝.

Interleaving The model’s second pass introduces the non-determinism implicitly induced
by the Fork events (extending the thread pool) and the Yield events (non-deterministically
picking a new active thread to schedule). At a high-level, our goal is hence to write a
function:

schedule1: ctree (YieldE + ForkE + MemE) voidB unit → ctree MemE Bn unit

where Bn allows arbitrary finite branching—at run time, we may pick an identifier out of
the current pool set, i.e., out of an unbounded finite set.

This combinator, like in the case of parallel composition for ccs, cannot be simply
defined via interp. We hence craft this function by co-recursion, but need to generalize it
first to this end. Let us pose a couple of definitions:

Variant SpawnE : Type → Type := | Spawn : SpawnE unit.
Notation thread := ctree (YieldE + ForkE + MemE) voidB unit.
Notation prog := ctree (YieldE + SpawnE + MemE) Bn unit.

23 We could have alternatively used ITrees as semantic domain at this stage.
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schedule 𝑣0 ⌊-⌋ ≜ ret ( )
schedule 𝑣𝑛 ⌊-⌋ ≜ 𝑉𝑖𝑠 Yield (𝑏𝑟𝑎𝑛𝑐ℎ𝑛 (𝜆𝑖 · schedule 𝑣𝑛 ⌊𝑖⌋)) for 𝑛 > 0
schedule 𝑣𝑛 ⌊𝑖⌋ ≜

if 𝑣 [𝑖] = then
ret ( ) 𝐺𝑢𝑎𝑟𝑑 (schedule 𝑣 [−𝑖]𝑛−1 ⌊-⌋)

𝐺𝑢𝑎𝑟𝑑 𝑡 𝐺𝑢𝑎𝑟𝑑 (schedule 𝑣 [𝑖 ↦→ 𝑡]𝑛 ⌊𝑖⌋)
𝑆𝑡𝑒𝑝 𝑡 𝑆𝑡𝑒𝑝 (schedule 𝑣 [𝑖 ↦→ 𝑡]𝑛 ⌊𝑖⌋)
𝑆𝑡𝑢𝑐𝑘 𝑆𝑡𝑢𝑐𝑘

𝑉𝑖𝑠 Yield 𝑘 𝐺𝑢𝑎𝑟𝑑 (schedule 𝑣 [𝑖 ↦→ 𝑘 ( )]𝑛 ⌊-⌋)
𝑉𝑖𝑠 Fork 𝑘 𝑉𝑖𝑠 Spawn (𝜆_ · schedule (𝑘 true :: 𝑣 [𝑖 ↦→ 𝑘 false])𝑛+1 ⌊𝑖 + 1⌋)

𝑉𝑖𝑠 e 𝑘 𝑉𝑖𝑠 𝑒 (𝜆𝑥 · schedule (𝑣 [𝑖 ↦→ 𝑘 𝑥])𝑛 ⌊𝑖⌋)

Fig. 35: The definition of schedule ( )

We introduce an external event Spawn containing no information that we will use to keep
track of points where a fork happened. We write thread as a shorthand for the datatype of
represented threads, i.e., intermediate, deterministic, models of pieces of code that have not
been scheduled yet. In contrast, we write prog for the second semantic domain we aim, the
datatype of already scheduled (and therefore nondeterministic) computations.

Our updated goal is therefore to craft a cofixpoint

schedule n (pool: fin n → thread) (curr : option (fin n)): prog,

where n is the arity of the current set of threads left to interpret, and curr is the index of
the thread currently under focus, if any. The result is a scheduled computation, i.e., a prog.
Once we have this function, we shall define our second stage of interpretation by simply
starting with the singleton thread pool:

Definition schedule1 t := schedule 1 (𝜆 _ ⇒ t) (Some F1)

Figure 35 defines the function formally.24 We write 𝑣𝑛 for a vector of size 𝑛, and
vector operations for removing the 𝑖-th element as 𝑣 [−𝑖], updating the 𝑖-th element to 𝑥 as
𝑣 [𝑖 ↦→ 𝑥], and adding an element 𝑥 to the front as 𝑥 :: 𝑣 (so 𝑥 is the new 0-th element in
the resulting vector). The traditional constructors of the option type None and Some v are
written respectively ⌊-⌋ and ⌊𝑣⌋. References to schedule in its body should be interpreted
as corecursive calls—we abuse notations to lighten the presentation.

The first two cases cover the situation where no thread is active, i.e., the second argument
is ⌊-⌋ . If the thread pool is empty, the computation simply terminates. Otherwise, it picks
a thread to be scheduled: a Yield event is inserted, followed by a branching node of arity
the cardinality of the thread pool, and sets the chosen thread active.

If there is an active thread, ⌊𝑖⌋, the schedule makes progress in that thread, analyzing the
corresponding tree in the pool. If the active thread has terminated, it is removed from the
pool, and out of focus. 𝐺𝑢𝑎𝑟𝑑, 𝑆𝑡𝑒𝑝, and memory event nodes are simply kept, the active
thread updated, and scheduling continues without changing focus. A stuck thread blocks
the whole computation: this justifies encoding variant fork operators that do not distribute

24 The implementation relies on Sozeau and Mangin (2019)’s Equations library given the heavy reliance on
dependent pattern matching on vectors.

https://github.com/vellvm/ctrees/tree/jfp-submission/examples/Yield/Par.v#L60
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over sequence by killing one of the forked threads as suggested in the introduction of this
Section—it has however the inelegant side effect that the dead threads are never garbage
collected from the pool. Remain finally to treat the concurrency events.25 The Yield nodes
are substituted for an invisible Guard, and remove the current focus—the event is hence
reintroduced right after in the focusing rule. The Fork nodes are replaced by a simple unary
Spawnmarker, and corecursion occurs over the vector extended with the new thread, and the
updated thread that remains under focus (note that this shifts the active thread from index 𝑖

to 𝑖 + 1).
The acute reader may wonder why we keep Yield and Spawn events in the prog datatype

since they do not contain any data. And indeed, we follow this scheduling process by an
interpretation phase simply removing these events. They however offer an intermediate
semantic domain at which less programs are equated, but that respects more contexts.

We write SJ𝑝K ≜ schedule J𝑝K1 ⌊-⌋ : ctree MemE unit and S̄J𝑝K : ctree MemE Bn unit
the resulting tree after clean up of the Yield and Spawn events.

Stateful interpretation. Remains only to interpret the memory events. No difficulty
remains, as already informally described over ImpBr and formalized in Section 2.1, we
can simply use the generic facility for stateful interpretation over CTrees. The resulting,
final, semantic domain is therefore stateT mem (ctree voidE Bn) unit.

8.2 Equational theory

The model described in Section 8.1 allows us to derive some program equivalences at
source-level w.r.t. weak bisimilarity of their models. For example, the following programs all
just run 𝑐, though some of them first perform some “invisible” steps related to concurrency
( ):

S̄Jfork 𝑐 skipK ∼ S̄Jyield; 𝑐K ∼ S̄J𝑐K

We emphasize that these equations are not compositional, they only hold in the absence
of additional concurrent threads, hence why yield behaves as a no op. In contrast, we
conjecture that the monadic equivalence between SJ·K representations is a congruence,
albeit we have not proved it formally at the moment.

Other equations, especially ones that make use of multiple threads in nontrivial ways,
rely on the stability of schedule under sbisim:

Lemma 14 (schedule preserves∼ ( )). If the delayed branches of every element of vectors
𝑣𝑛 and 𝑤𝑛 have arity less than 2, and the elements of both vectors are strongly bisimilar up
to a permutation 𝜌, then schedule 𝑣𝑛 ⌊𝑖⌋ ∼ schedule 𝑤𝑛 ⌊𝜌 𝑖⌋.

The arity requirement is satisfied by all denotations of programs in this language. This
condition greatly simplifies the proof by constraining the shape that the strongly bisimilar
CTrees can take.

25 Note that the typing of thread rules out statically the branching case, which simplifies greatly the proof of the
meta-theory of schedule.

https://github.com/vellvm/ctrees/tree/jfp-submission/examples/Yield/Lang.v#L274
https://github.com/vellvm/ctrees/tree/jfp-submission/examples/Yield/Par.v#L682
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Lemma 14 allows us to permute the thread pool, which is useful in examples such as
( ):

SJfork 𝑐1 (fork 𝑐2 skip)K ≈SJfork 𝑐2 (fork 𝑐1 skip)K

This program spawns two asynchronous threads then yields control to one of the two. This
equivalence captures the natural fact that it does not matter which thread is spawned first,
since neither can run until both are spawned.

Furthermore, Lemma 14 allows us to validate some simple optimizations that do not
directly involve reasoning about concurrency or memory, such as ( ):

SJfork 𝑐1 (fork (while true do yield) skip)K
≈ SJfork (yield; while true do yield) (fork 𝑐1 skip) K

Here, one of the spawned threads is a while loop, which we wish to unroll by one iteration.
Crucially, the loop and its unrolled form are strongly bisimilar, so this equivalence follows
from Lemma 14 just as in the previous example. Other optimizations that can be done
before interpreting events, such as constant folding or dead code elimination, can be proven
sound similarly.

Finally, equivalences involving memory operations are still valid as well ( ):

fork (𝑥::= 2) (𝑥::= 1) ≡ 𝑥::= 2

where ≡ here refers to equivalence (≈ in this case) after interpreting both concurrency
and memory events. This result follows from the result in Section 6.1, which allows us
to transport equations made before interpreting state events into computations in the state
monad after interpetation.

9 Related Work

Since Milner’s seminal work on ccs (Milner, 1989) and the 𝜋-calculus (Milner et al.,
1992), process algebras have been the topic of a vast literature (Bergstra et al., 2001). We
mention only a few parts of it that are most relevant to our work. In the Coq realm, Lenglet
and Schmitt (2018) have formalized HO𝜋, a minimal 𝜋-calculus, notably exhibiting the
difficulty inherent to the formal treatment of name extrusion. Beyond its formalization,
dealing with scope extrusion as part of a compositional semantics is known to be a chal-
lenging problem (Crafa et al., 2012; Cristescu et al., 2013). By restricting to ccs in our case
study, we have side-stepped this difficulty. Foster et al. (2021) formalize in Isabelle/HOL a
semantics for CSP and the Circus language using a variant implementation of ITrees, where
continuations to external events are partial functions. However, they only model determin-
istic processes, leaving nondeterministic ones for future work. This paper introduces the
tools to address that problem. CSP has also been extensively studied by Brookes (2002) by
providing a model based on the compositional construction of infinite sets of traces: CTrees
offer a complementary coinductive model to this more set-theoretic approach. Brookes
tackles questions of fairness, an avenue that we have not yet explored in our setup.

Formal semantics for nondeterminism are especially relevant when dealing with low-
level concurrent semantics. In shared-memory-based programming languages, rather than

https://github.com/vellvm/ctrees/tree/jfp-submission/examples/Yield/Lang.v#L253
https://github.com/vellvm/ctrees/tree/jfp-submission/examples/Yield/Lang.v#L391
https://github.com/vellvm/ctrees/tree/jfp-submission/examples/Yield/Lang.v#L474
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message passing ones, concurrency gives rise to the additional challenge of modeling their
memory models, a topic that has received considerable attention. Understanding whether
monadic approaches such as the one proposed in this paper are viable to tackle such models
vastly remains to be investigated. Early suggestions that they may include Lesani et al.
(2022) : the authors prove correct concurrent objects implemented using ITrees, assuming a
sequentially consistent model of shared memory. They relate the ITrees semantics to a trace-
based one to reason about refinement, something that we conjecture would not be necessary
when starting from CTrees. Operationally specified memory models, in the style of which
increasingly relaxed models have been captured and sometimes formalized, intuitively seem
to be a better fit. Major landmarks in this axis include the work by Sevcík et al. on modeling
TSO using a central synchronizing transition system linking the program semantics to
the memory model in the CompCertTSO compiler (Sevcík et al., 2013); or Kang et al.’s
promising semantics (Kang et al., 2017; Lee et al., 2020) that have captured large subsets of
the C++11 concurrency model without introducing out-of-thin-air behaviors. On the other
side of the spectrum, axiomatic models in the style of Alglave et al.’s (Alglave et al., 2014,
2021) framework appear less likely to transpose to our constructive setup.

Our model for cooperative multithreading is partially reminiscent of Abadi and Plotkin’s
work (Abadi and Plotkin, 2010): they define a denotational semantics based on partial traces
that they prove fully abstract, and satisfying an algebra of stateful concurrency. The main
difference between the two approaches is that partial traces use the memory state explicitly
to define the composition of traces, where CTrees can express the semantics of a similar
language independently of the memory model. The formal model we describe here tackles a
slightly different language than theirs, but we should be able to adapt it reasonably easily to
obtain a formalization of their work. More recently, Din et al. (Din et al., 2017, 2022) have
suggested a novel way to define semantics based on the composition of symbolic traces,
partially inspired by symbolic execution (King, 1976). They use it, in particular, to formalize
actor languages, which rely on cooperative scheduling, with a similar modularity as the one
we achieve (orthogonal semantic features can be composed), but not in a compositional
way.

Our work brings proper support for nondeterminism to monadic interpreters in Coq. As
with ITrees however, the tools we provide are just right to conveniently build denotational
models of first order languages, such as ccs, but have difficulty retaining compositionality
when dealing with higher-order languages. In contrast, on paper, game semantics has
brought a variety of techniques lifting this limitation. In particular in a concurrent setup,
event structures have spawned a successful line of work (Rideau and Winskel, 2011;
Castellan et al., 2017) from which inspiration could be drawn for further work on CTrees.

Comparison with the original CTrees paper and subsequent related work

Differences in design compared to Chappe et al. (2023). The original CTrees paper
(Chappe et al., 2023) is the basis for the present one. We detail below the main differences
and limitations of this previous iteration.

At the time, the structure was not parameterized by a signature B. Rather, 𝐵𝑟 nodes
were limited to finite branching in fin n. This limitation was triple. First most obviously,
it prevented infinite branching (which is heavily used in Chappe et al. (2024)). Second,



2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

N. Chappe, P. He, L. Henrio, E. Ioannidis, Y. Zakowski & S. Zdancewic 53

it did not allow carrying information about the origin of a given internal choice: when
encountering a branching on fin n, there was no way to know whether it represents the
generation of a random number or the choice of a thread to schedule, for instance. The
new parameterization allows for the theory of refine we develop in Section 6.2, and more
generally enable the possibility of writing interesting schedulers based on source-level
information. Finally, the case study presented in Section 8 had to rely on an extrinsic
coinductive invariant to express and exploit the fact that the first level of representation is
deterministic. We can now capture it statically with an empty branching interface.

On the other hand, ∅ and Guard used to be particular cases of 𝐵𝑟 , respectively nullary
and unary branching nodes. However, with this parameterization, maintaining this encoding
required class constraints to every definition relying on them. This overhead led us to expose
a sort of canonical encoding of these two constructs as dedicated constructors.

Finally, 𝐵𝑟𝑆 nodes used to be their own construction, and it was proved that they could
be equivalently encoded as guarded 𝐵𝑟 nodes. Since we also add to introduce a dedicated
𝑆𝑡𝑒𝑝 node for the same reason as ∅ and Guard, we removed the 𝐵𝑟𝑆 constructors and
directly work with the encoding.

Without the alternative definition of the LTS from Section 5, some results, especially
from Section 6, were significantly harder to establish and were proved in more restrictive
cases. In particular, the monad morphism result for interp was only proved for handlers
reduced to trigger or Ret. Similarly, the simulation result for refine was only proved for
constant handlers. The introduction of the alternative LTS enables more concise and more
general proofs for these results.

The equational theory was based on an older version of Pous’ coinduction library that
relied on the companion (Pous, 2016) instead of tower induction. These two theories are
proved equivalent in the library, but tower induction is more comfortable to work with,
especially when up-to principles are involved.

Comparison to Bahr and Hutton (2023). Following the original publication of Chappe
et al. (2023), Bahr and Hutton (2023) have proposed an implementation in Agda of a
variant on the CTree structure, and extensively compared it to the original paper on CTrees.
The most important difference they introduce is to statically prevent infinite chain of
𝐵𝑟 nodes, i.e., in particular infinite structures denoting stuck processes, by defining the
datatype through mutual induction-coinduction: intuitively, a Step guard must always be
finitely reachable. Their definition as is would not be accepted by Coq, but investigating
alternate encoding would be an interesting perspective. Another distinction came from one
of the observations in the original paper: to avoid the necessary restriction on handlers
described in Section 6, visible events generate two successive transitions in the LTS: one
deterministically labeled with the event (a question to the environment), and a second one
labeled by the response from the environment. This split makes the definition of the LTS
more cumbersome, since the domain of states is no longer the datastructure itself, but it
does recover a (tighter) equivalence unconditionally preserved by interpretation. Moving
our CTree library to such a finer LTS would make sense, but we leave it to future work as
we have not yet encountered a concrete case where our simpler definition does not suffice.

The paper focuses on concurrency for functional programming, relying notably on a
binary parallel operator. In this setting, the definition of their parallel operator relies
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on a codensity monad, and their notion of program equivalence relies on step-indexed
bisimilarity. These various theories are exploited for calculating concurrent compilers.

Comparison to Cho et al. (2023). Cho et al. (2023) introduces DTrees, a generalization
of ITrees with support for nondeterminism: the (D)Tau sort of node is the counterpart of
our BrS nodes. DTrees are equipped with a novel notion of weak simulation that they call
freely-stuttering. The key element of this notion of simulation is that its simulation game
operates not only on 2 programs, but also on additional indices that enable more powerful
reasoning principles, especially for the asymmetric stripping of Taus. In this regard, this
approach has some similarities with our alternative characterization of strong bisimulation
that relies on a extra boolean in the bisimulation game. Interestingly, Cho et al. (2023)
observe that this notion is not only weaker than the notions of forward and backward
simulations in CompCert (Leroy, 2009), but that each step of these notions of simulation
can be replayed by one step of freely-stuttering simulation. Unfortunately, this notion is not
strong enough to formally compare the standard and alternative notions of strong similarity
from the present paper, as a step of our strong simulation from Section 4.5.1 corresponds to
several steps of our strong simulation from Section 5.1. The paper additionally studies new
ATau nodes, representing angelic nondeterminism, with no equivalent in CTrees. Cho et al.
(2023) defined freely-stuttering simulations in a generic way so that they can be applied to
LTSs that are not defined as DTrees. Note that due to their lack of equivalent to 𝐵𝑟 nodes,
some LTSs that can be represented as CTrees cannot be represented as DTrees, in particular
LTSs with nondeterminism that stems from non-𝜏 nodes.

10 Conclusion and Perspectives

We have introduced CTrees, a model for nondeterministic, recursive, and impure programs
in Coq. Inspired by ITrees, we have introduced two kinds of nondeterministic branching
nodes, and designed a toolbox to reason about these new computations. Beyond the various
strong (bi)similarity game that we studied in depth, future extensions of our work could
develop the meta-theory around weak (bi)similarity. More ambitiously, we could refactor
our library to clearly separate our various reasoning principles on LTSs from the CTree
structure, so that they can be used more widely.

We have illustrated the expressiveness of the framework through two significant case
studies. Both nonetheless offer avenues for further work, notably through an extension
of ccs to name passing à la 𝜋-calculus, and to further extend the equational theory for
cooperative multithreading that we currently support.

With this extended version, we have presented how the library has evolved during the
two years that separates us from its introduction. Not only has the library evolved in the
meantime, but it has been put to great use. In particular, Chappe et al. (2024) has shown
that it is expressive enough to model complex weak memory models, paving realistically
the long term goal to leveraging the library as the basis for a verified compiler with support
for weak memory models.

The library has been greatly enriched, from introducing additional equivalences and
refinements, generalizing their meta-theory, but also to reimplementing its structure based
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on slightly tweaked design points. These design choices matter greatly. It is particularly
interesting to see at around the same time alternate proposals for similar structures, in
particular in Bahr and Hutton (2023) and Cho et al. (2023). Conducting an in-depth
comparison of these approaches could fuel the next iteration towards a formal library for
building monadic model of concurrent programming languages.
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