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Introduction

Computer programs are every-
where, including in critical systems
that have to be bug-free

The code the machine understands
is hard to understand for humans

cmpl $0, a(%rip)
jl .LBB0_2

# %bb.1:
leaq .L.str(%rip), %rdi
movb $0, %al
callq printf@PLT

.LBB0_2:

Verified compilation can reconcile these two facts
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Compilation

if (a >= 0)
say_hello()

Human-readable code
written in a programming language

Compiler−−−−→

cmpl $0, a(%rip)
jl .LBB0_2

# %bb.1:
leaq .L.str(%rip), %rdi
movb $0, %al
callq printf@PLT

.LBB0_2:

Machine-readable code
in assembly language
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Verified compilation

• Is the compiler output correct?

Compilation: P
source program

C (P)

compiled program

Verified compilation:

JPK
behaviors of

source program

1 Formalize the behaviors of programs in the source language

2 Formalize the behaviors of programs in the target language
3 Check that the behaviors of the compiled program are also behaviors of the source

program
• Notable example: CompCert in Coq/Rocq, compiles C to optimized machine code
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Verified compilation

if (a >= 0)
say_hello()

Human-readable code
that satisfies some safety

properties

Verified compiler−−−−−−−−→

cmpl $0, a(%rip)
jl .LBB0_2

# %bb.1:
leaq .L.str(%rip), %rdi
movb $0, %al
callq printf@PLT

.LBB0_2:

Machine-readable code
that satisfies the same safety

properties
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LLVM IR

Many programming languages C Rust Swift

Many kinds of machine
(architectures) x86 ARM RISC-V

LLVM IR
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Many kinds of machine
(architectures) x86 ARM RISC-V

LLVM IR

This is getting complex!
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LLVM IR

Many programming languages C Rust Swift

Many kinds of machine
(architectures) x86 ARM RISC-V

Intermediate representation LLVM IR

• LLVM IR: intermediate language that factors out many compilers1

• Many program transformations and optimizations defined on LLVM IR
• Interesting starting point for a verified compilation infrastructure

1Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation”. In: CGO ’04. USA: IEEE Computer Society, 2004.
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Related work: Vellvm

Vellvm’s goal: efficiently model the semantics of LLVM IR in Rocq

Old Vellvm

2012

2021

Vellvm
based on ITrees

2020

ITrees
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Vellvm’s goal: efficiently model the semantics of LLVM IR in Rocq2

Old Vellvm
hard to maintain

2012 2021

Vellvm
based on ITrees

2020

ITrees

2Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic.
“Modular, Compositional, and Executable Formal Semantics for LLVM IR”. In: Proc. ACM Program.
Lang. 5.ICFP (Aug. 2021). doi: 10.1145/3473572.
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Related work: Vellvm

Vellvm’s goal: efficiently model the semantics of LLVM IR in Rocq2

Old Vellvm
hard to maintain

2012 2021

Vellvm
based on ITrees

2020

ITrees

Limitation: no support for concurrency

2Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic.
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Concurrency

Standard program: series of instructions
for the processor

Processor
Memory

Reads/writes

Program

Concurrent program: contains several
tasks (or threads)

Memory

Processor
core

Program
task

Processor
core

Program 
task

Reads/writes

Rea
ds

/w
rite

s
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Concurrency – data races
What happens when two tasks access the same memory cell?

Memory

Write 1 
to a

Write 2 
to a

Processor
core

Program
task

Processor
core

Program 
task

Reads/writes

Rea
ds

/w
rite

s

• Many other subtleties, cf. weak memory models
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Contributions

Vellvm’s goal: efficiently model the semantics of LLVM IR in Rocq

Old Vellvm
hard to maintain

2012 2021

Vellvm
based on ITrees

2020

ITrees

Our goal: efficiently model the semantics of concurrent LLVM IR in Rocq

2024

Concurrent LLVM semantics
based on CTrees

2023

CTrees
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Context: Interaction Trees



12/38

Interaction Trees (ITrees)3

• Tree model for representing programs
• Modular, reusable semantics
• Executable semantics
• Mechanized as a Rocq (formerly Coq) library

Ret v

Return a value

v 1
. . .. . .

vn
Vis e

t1 tn

Interact with the
environment

Step

t
Perform an internal

computation

3Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and
Steve Zdancewic. “Interaction trees: representing recursive and impure programs in Coq”. In: Proc.
ACM Program. Lang. 4.POPL (Dec. 2019). doi: 10.1145/3371119.

https://doi.org/10.1145/3371119
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ITrees: Visible events

• Each Vis node represents an effect of the program
• Branches of a Vis node represent the possible answers from the environment
• Ret nodes are leaves returning a value

LLVM IR example with memory access effects:

%x = load @a
store %x, @b
ret 0

0 1
Vis (Read "a")

Vis (Write "b" 0)

Ret 0

Vis (Write "b" 1)

Ret 0
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ITrees: Loops

ITrees are coinductive, they can be infinitely deep.

while true do print

Vis Print

Step

Vis Print

Step

• Unary Step nodes mark internal events such as loop iterations
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ITrees: Interpretation

We can make the semantics appear by providing a stateful interpreter for Vis nodes.
• Write events update a memory state
• Read events return the corresponding value from memory

0 1

Vis (Print "performing b = a")

Vis (Read "a")

Vis (Write "b" 0)

Ret 0

Vis (Write "b" 1)

Ret 0

interp {a 7→1}−−−−−−−−→

{a 7→ 1}
Vis (Print "performing b = a")

{a 7→ 1}
Step

{a 7→ 1}
Step

{a 7→ 1, b 7→ 1}
Ret ({a 7→ 1, b 7→ 1}, 0)
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ITrees: Interpretation and executability

• General methodology: successively
refine each kind of event node.

Print event 
interpretation

Memory event 
interpretation

• In the end, we can execute the tree

initial state 7→

Step

...

Step

Ret final state

Vellvm applies this approach to LLVM, with 6 layers of interpretation
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Choice Trees
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Nondeterminism

Consider a Rand event that generates a random number. How to interpret it?

0 1
Vis Rand

• No proper way to interpret it with ITrees

• Not interpreting it is semantically wrong 0 1
Vis Rand

Ret 0 Ret 1

/∼ 0 1
Vis Rand

Ret 1 Ret 0

• Special Br nodes represent nondeterministic choices, we will give them appropriate
semantics later



18/38

Nondeterminism

Consider a Rand event that generates a random number. How to interpret it?

0 1
Br Rand

• No proper way to interpret it with ITrees

• Not interpreting it is semantically wrong 0 1
Vis Rand

Ret 0 Ret 1

/∼ 0 1
Vis Rand

Ret 1 Ret 0
• Special Br nodes represent nondeterministic choices, we will give them appropriate

semantics later



19/38

Choice Trees (CTrees)

• Infinite (coinductive) tree model for representing programs
• Rocq library that takes inspiration from ITrees, with nondeterminism support
• Collaboration between LIP and UPenn

Ret v v 1
. . .. . .

vn
Vis e

t1 tn

Step

t

v 1
. . .. . .

vn
Br b

t1 tn

We can give nondeterministic semantics to Br nodes by defining a
fitting notion of equivalence of CTrees



19/38

Choice Trees (CTrees)

• Infinite (coinductive) tree model for representing programs
• Rocq library that takes inspiration from ITrees, with nondeterminism support
• Collaboration between LIP and UPenn

Ret v v 1
. . .. . .

vn
Vis e

t1 tn

Step

t

v 1
. . .. . .

vn
Br b

t1 tn

We can give nondeterministic semantics to Br nodes by defining a
fitting notion of equivalence of CTrees



Building a labeled transition system (LTS) from a CTree
An LTS consists of a set of states and a set of labeled transitions.

Ret v
→ val v

v 1
. . .. . .

vn
Vis e

t1 tn

→
t1

tn

...
obs e v1

obs e vn

Step

t

→ tτ

v 1
. . .. . .

vn
Br b

t1 tn

→
• Collapsed in the LTS
• Does not generate a transition
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CTrees and the underlying LTS: example

0 1 0 1

0 1
Br Rand

Vis (Read "a")

Ret 0 Ret 0

Vis (Read "a")

Ret 0 Ret 1

val 1

val 0

obs (Read a) 1

obs (Read a) 0

val 0

val 0

obs (Read a) 1

obs (Read a) 0

→

val 1

val 0

val 0

val 0

obs (Read a) 1

obs (Read a) 0

obs (Read a) 1
obs (Read a) 0
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CTree equivalence: Strong bisimulation on the LTS

Legend
∀
∃

t

t ′

u
R

a

u′

a

R

t

t ′

u
R

a

u′

a

R

Definition of a strong bisimulation t R u, with two half-games
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Legend
∀
∃

t

t ′

u
R

a

u′

a

R

t

t ′

u
R

a

u′

a

R
Definition of a strong bisimulation t R u, with two half-games

• Br nodes verify the algebraic laws of non-determinism
• Equational proof principles for coinductive proofs
• Many up-to principles, using the coinduction library from Damien Pous
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CTrees and the explicit LTS

• We cannot reason about collapsed Br nodes,
which complicated some of my proofs.

• We can build an LTS in which they appear.

0 1 0 1

0 1
Br Rand

Vis (Read "a")

Ret 0 Ret 0

Vis (Read "a")

Ret 0 Ret 1

val 1

val 0

obs (Read a) 1

obs (Read a) 0

val 0

val 0

obs (Read a) 1

obs (Read a) 0

ε

ε

Br as ε transitions: explicit LTS

val 1

val 0

val 0

val 0

obs (Read a) 1

obs (Read a) 0

obs (Read a) 1
obs (Read a) 0

Br nodes collapsed in the original LTS



23/38

CTrees and the explicit LTS

• We cannot reason about collapsed Br nodes,
which complicated some of my proofs.

• We can build an LTS in which they appear. 0 1 0 1

0 1
Br Rand

Vis (Read "a")

Ret 0 Ret 0

Vis (Read "a")

Ret 0 Ret 1

val 1

val 0

obs (Read a) 1

obs (Read a) 0

val 0

val 0

obs (Read a) 1

obs (Read a) 0

ε

ε

Br as ε transitions: explicit LTS

val 1

val 0

val 0

val 0

obs (Read a) 1

obs (Read a) 0

obs (Read a) 1
obs (Read a) 0

Br nodes collapsed in the original LTS



23/38

CTrees and the explicit LTS

• We cannot reason about collapsed Br nodes,
which complicated some of my proofs.

• We can build an LTS in which they appear. 0 1 0 1

0 1
Br Rand

Vis (Read "a")

Ret 0 Ret 0
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Ret 0 Ret 1
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val 0

obs (Read a) 1

obs (Read a) 0

val 0

val 0

obs (Read a) 1
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How do we define bisimulation on this
alternative explicit LTS?

It should relate the same CTrees as the
original definition.
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Intertwined bisimulation on the explicit LTS

1©

t

t ′

u

u1

u′

Rl

a
ε∗

aRl ∩Rr

2©

t

t ′

u

u′

Rl

ε ε∗

Rl

3©

u

u′

t

t1

t ′

Rr

a
ε∗

a Rl ∩Rr

4©

u

u′

t

t ′

Rr

εε∗

Rr

Intertwined bisim. game Rl ∩Rr

1© Left: a−→

Left half-game Rl only

2© Left: ε−→

2© Left: ε−→

1© Left: a−→

3© Right: a−→

Right half-game Rr only

4© Right: ε−→

4© Right: ε−→

3© Right: a−→
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Intertwined bisimulation on the explicit LTS

We define intertwined bisimulation using two mutually coinductive relations Rl and Rr .

• Proved equivalent to strong bisimulation on the original LTS
• Makes some proofs significantly easier, especially around the interpretation

combinator
• Equational theory similar to the original definition
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CTrees – summary

• CTrees capture a wide class of nondeterministic LTSs
• Effects of a program can be handled in a modular way with interpretation
• CTrees are executable
• Paper at POPL’234

Other personal contributions in the thesis

• Notions of refinement: Strong similarity, complete similarity
• Meta-theoretical results on interpretation and other combinators
• ...

4Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic. “Choice
Trees: Representing Nondeterministic, Recursive, and Impure Programs in Coq”. In: Proc. ACM
Program. Lang. 7.POPL (Jan. 2023). doi: 10.1145/3571254.

https://doi.org/10.1145/3571254
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Concurrent µVellvm
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The language

1 define @main() {
2 store atomic 0, @x monotonic
3 store atomic 0, @y monotonic
4 call @thrd_create(@f)
5 %1 = atomicrmw xchg @x, 1 monotonic
6 %2 = atomicrmw xchg @y, 1 release
7 ret 0
8 }
9

10 define @f() {
11 %y1 = atomicrmw xchg @y, 2 acquire
12 %x1 = load atomic @x monotonic
13 ret 0
14 }

Syntax:
• Restricted subset of LLVM IR
• Thread management

(thrd_create and thrd_join)
• Concurrent memory accesses
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Interpretation stack

• We represent LLVM IR functions as CTrees with (VarE + ThreadE + MemE)
events

• Reusable interpretation passes give semantics to these events
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Interpretation stack

• We represent LLVM IR functions as CTrees with (VarE + ThreadE + MemE)
events

• Reusable interpretation passes give semantics to these events

Variable 
access

Thread 
creation

Memory 
access

Variant VarE : Type → Type :=
| LocalWrite (id: ident) (v: value) : VarE unit
| LocalRead (id: ident) : VarE value
| GlobalRead (id: ident) : VarE value
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Interpretation stack

• We represent LLVM IR functions as CTrees with (VarE + ThreadE + MemE)
events

• Reusable interpretation passes give semantics to these events

Variable 
access

Thread 
creation

Memory 
access

Variant ThreadE : Type → Type :=
| Spawn (f: fid) (arg: value) : ThreadE thread_id
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Interpretation stack

• We represent LLVM IR functions as CTrees with (VarE + ThreadE + MemE)
events

• Reusable interpretation passes give semantics to these events

Variable 
access

Thread 
creation

Memory 
access

Variant MemE : Type → Type :=
| Load (o: ordering) (k: addr) : MemE value
| Store (o: ordering) (k: addr) (v: value) : MemE unit
| RMW (o: ordering) (k: addr) (f: value → value) : MemE value
| Fence (o: ordering) : MemE unit
| Alloc (sz: nat) : MemE addr
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Interpretation stack

With a proof of transport
of equivalences across the
interpretation passes

µthread
IR

Representation Irepr

Variables Ivar

Threads Ithread

Executable model

Memory Imem

spawn @f()
%1 = load @a

Spawn "f"

Load "a"

LocalWrite "1" 0 LocalWrite "1" 1

Spawn "f"

Load "a"

define @f() {
store @a 1

}

Store "a" 1

Store "a" 1

Sched

Sched

Load "a"

Sched Sched

Store "a" 1

Sched

Sched

Sched

UpdView a Rd

Sched

UpdView a Wr

Sched
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Interpretation stack

With a proof of transport
of equivalences across the
interpretation passes

µthread
IR

Representation Irepr

Variables Ivar

Threads Ithread

Executable model

Memory Imem

spawn @f()
%1 = load @a

Spawn "f"

Load "a"

LocalWrite "1" 0 LocalWrite "1" 1

Spawn "f"

Load "a"

define @f() {
store @a 1

}

Store "a" 1

Store "a" 1

Sched

Sched

Load "a"

Sched Sched

Store "a" 1

Sched

Sched

Sched

UpdView a Rd

Sched

UpdView a Wr

Sched
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Interpreting multithreading
µthread
IR

Representation Irepr

Variables Ivar

Threads Ithread

Executable model

Memory Imem

spawn @f()
%1 = load @a

Spawn "f"

Load "a"

LocalWrite "1" 0 LocalWrite "1" 1

Spawn "f"

Load "a"

define @f() {
store @a 1

}

Store "a" 1

Store "a" 1

Sched

Sched

Load "a"

Sched Sched

Store "a" 1

Sched

Sched

Sched

UpdView a Rd

Sched

UpdView a Wr

Sched

→
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Interpreting multithreading

• To model the parallel composition of
n threads, we interleave their
CTrees, which gives a single CTree

• A Br Sched node chooses which
thread to execute next

• Thread creation adds one CTree to
the interleaving

• Based on a co-recursive combinator
interleave fns tasks

Load ”a”

Store ”b” 0 Store ”b” 1

Store ”a” 1

Sched

Load ”a”

Sched Sched

Store ”b” 1 Store ”a” 1

Store ”a” 1

Sched
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Interpreting multithreading

• To model the parallel composition of
n threads, we interleave their
CTrees, which gives a single CTree

• A Br Sched node chooses which
thread to execute next

• Thread creation adds one CTree to
the interleaving

• Based on a co-recursive combinator
interleave fns tasks

Load ”a”

Store ”b” 0 Store ”b” 1

Store ”a” 1

Sched

Load ”a”

Sched Sched

Store ”b” 1 Store ”a” 1

Store ”a” 1

Sched
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Interpreting memory events
µthread
IR

Representation Irepr

Variables Ivar

Threads Ithread

Executable model

Memory Imem

spawn @f()
%1 = load @a

Spawn "f"

Load "a"

LocalWrite "1" 0 LocalWrite "1" 1

Spawn "f"

Load "a"

define @f() {
store @a 1

}

Store "a" 1

Store "a" 1

Sched

Sched

Load "a"

Sched Sched

Store "a" 1

Sched

Sched

Sched

UpdView a Rd

Sched

UpdView a Wr

Sched

→
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Interpreting memory events

CTrees are modular! We support SC, TSO and a
subset of Promisinga, with simulation results.

Promising-based model

• A very complete operational concurrent memory
model

• We support read, write, read-modify-write and
fence operations

• We support most levels of atomicity
• Monotonic accesses partly left to future work

aJeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis,
and Derek Dreyer. “A promising semantics for relaxed-memory
concurrency”. In: POPL’17. ACM, 2017. doi:
10.1145/3009837.3009850.

https://doi.org/10.1145/3009837.3009850
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Executability
µthread
IR

Representation Irepr

Variables Ivar

Threads Ithread

Executable model

Memory Imem

spawn @f()
%1 = load @a

Spawn "f"

Load "a"

LocalWrite "1" 0 LocalWrite "1" 1

Spawn "f"

Load "a"

define @f() {
store @a 1

}

Store "a" 1

Store "a" 1

Sched

Sched

Load "a"

Sched Sched

Store "a" 1

Sched

Sched

Sched

UpdView a Rd

Sched

UpdView a Wr

Sched

→

• We can still execute CTrees, but
we have to schedule the
remaining branching nodes

• Round-robin, random...
• Collecting interpreter written in

OCaml
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Conclusion
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Conclusion

Contributions
• Choice Trees: modular and executable semantics for nondeterministic programs

(POPL’23 paper)
• A novel notion of equivalence: intertwined bisimulation (paper in submission)
• Modular concurrency semantics, applied to LLVM (paper accepted at CPP’25)

Future work
• Meta-theoretical results on the interpretation stack
• Integration into Vellvm
• A verified compilation chain
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Conclusion

Choice Trees

Intertwined bisimulation

Load ”a”

Store ”b” 0 Store ”b” 1

Store ”a” 1

Sched

Load ”a”

Sched Sched

Store ”b” 1 Store ”a” 1

Store ”a” 1

Sched

LLVM IR concurrency

Thanks for your attention!
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