Nicolas Chappe (Inria Lyon, LIP)
Supervised by Ludovic Henrio (CNRS, LIP) and Yannick Zakowski (Inria Lyon, LIP)

November 22, 2024

1/38

Introduction

Computer programs are every-
where, including in critical systems
that have to be bug-free

Computer programs are every-
where, including in critical systems
that have to be bug-free

Introduction

The code the machine understands
is hard to understand for humans

cmpl $0, a(¥rip)
jl .LBBO_2
Jbb.1:
leaq .L.str(%rip), %rdi
movb $0, %al
callq printf@PLT

.LBBO_2:

Computer programs are every-
where, including in critical systems
that have to be bug-free

Introduction

The code the machine understands
is hard to understand for humans

cmpl $0, a(¥rip)
jl .LBBO_2
Jbb.1:
leaq .L.str(%rip), %rdi
movb $0, %al
callq printf@PLT

.LBBO_2:

Verified compilation can reconcile these two facts

if (a >= 0)
say_hello()

Human-readable code
written in a programming language

3/38

cmpl $0, a(%rip)

31 .LBBO_2
if (a >= 0) # Ybb.1:
leaq .L.str(%rip), %rdi
Say_hello () Comp”er movb $0, %al
\ callq printf@PLT
7 LBBO_2:

Human-readable code

written in a programming language Machine-readable code
in assembly language

3/38

® |s the compiler output correct?
source program compiled program

Compilation: pP—%(P)

[Pl
behaviors of

source program

@ Formalize the behaviors of programs in the source language

4/38

® |s the compiler output correct?
source program compiled program

Compilation: pP—%(P)

[P] [« (®)]

behaviors of behaviors of

source program compiled program

@ Formalize the behaviors of programs in the source language
@® Formalize the behaviors of programs in the target language

4/38

Verified compilation

® |s the compiler output correct?

source program compiled program
Compilation: P— % (P)
. ;
|
/’" ‘\
A 2 Y
Verified compilation: [P] D [€(P)]
behaviors of behaviors of
source program compiled program

@ Formalize the behaviors of programs in the source language
@® Formalize the behaviors of programs in the target language
© Check that the behaviors of the compiled program are also behaviors of the source

Verified compilation

® |s the compiler output correct?

source program compiled program
Compilation: P— % (P)
. ;
|
/’" ‘\
A 2 Y
Verified compilation: [P] D [€(P)]
behaviors of behaviors of
source program compiled program

@ Formalize the behaviors of programs in the source language

@® Formalize the behaviors of programs in the target language

© Check that the behaviors of the compiled program are also behaviors of the source
program

® Notable example: CompCert in Coq/Rocq, compiles C to optimized machine code

cmpl $0, a(lrip)
. jl .LBBO_2
if (a >=0) Verified compiler et e
N eaq .L.str(%rip), %rdi
say_hello() 7 novb $0, %l
callq printf@PLT
.LBBO_2:
Human-readable code
that satisfies some safety Machine-readable code
properties that satisfies the same safety
properties

5/38

Many programming languages C Rust Swift

6,38

Many programming languages C Rust Swift

Many kinds of machine

x86 ARM RISC-V

(architectures)

6,38

Many programming languages C Rust Swift

Many kinds of machine

x86 ARM RISC-V

(architectures)

This is getting complex!

6,38

Many programming languages C Rust Swift
Intermediate representation % LLVM IR
Many kinds of machine ‘/ l \‘
. x86 ARM RISC-V
(architectures)

® LLVM IR: intermediate language that factors out many compilers!

1Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation”. In: CGO '04. USA: IEEE Computer Society, 2004.

LLVM IR

Many programming languages C Rust Swift

N

Intermediate representation g‘;" LLVM IR D
Many kinds of machine / l \‘

x86 ARM RISC-V

(architectures)

® LLVM IR: intermediate language that factors out many compilers!
® Many program transformations and optimizations defined on LLVM IR

® |nteresting starting point for a verified compilation infrastructure

1Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation”. In: CGO '04. USA: IEEE Computer Society, 2004.

Vellvm's goal: efficiently model the semantics of LLVM IR in Rocq

2012
|

|
Old Vellvm

v

7/38

Related work

Vellvm's goal: efficiently model the semantics of LLVM IR in Rocq?

2012 2020 2021
| | | N
1 1 1 ?
Old Vellvm I Trees Vellvm
hard to maintain based on ITrees

- Vellvm

2Yannick Zakowski, Calvin Beck, Irene Yoon, llia Zaichuk, Vadim Zaliva, and Steve Zdancewic.
“Modular, Compositional, and Executable Formal Semantics for LLVM IR". In: Proc. ACM Program.

Lang. 5.ICFP (Aug. 2021). por: 10.1145/3473572.

https://doi.org/10.1145/3473572

Related work

Vellvm's goal: efficiently model the semantics of LLVM IR in Rocq?

2012 2020 2021
| | | N
1 1 1 ?
Old Vellvm I Trees Vellvm
hard to maintain based on ITrees

Limitation: no support for concurrency

- Vellvm

2Yannick Zakowski, Calvin Beck, Irene Yoon, llia Zaichuk, Vadim Zaliva, and Steve Zdancewic.
“Modular, Compositional, and Executable Formal Semantics for LLVM IR™. In: Proc. ACM Program.

Lang. 5.ICFP (Aug. 2021). por: 10.1145/3473572.

https://doi.org/10.1145/3473572

Standard program: series of instructions
for the processor

Processor

Reads/wrijes "

Program

8/38

Standard program: series of instructions
for the processor

Reads/wri;es ‘ ‘

Processor

Concurrent program: contains several
tasks (or threads)

Processor

Processor

Program
task

8/38

What happens when two tasks access the same memory cell?

Write 1
toa

Processor

Program
task

® Many other subtleties, cf. weak memory models 9/38

Vellvm's goal: efficiently model the semantics of LLVM IR in Rocq

2012 2020 2021
| | | N
x x x ?
Old Vellvm I Trees Vellvm
hard to maintain based on ITrees

Our goal: efficiently model the semantics of concurrent LLVM IR in Rocq

2023 2024
| |

| | ?
CTrees Concurrent LLVM semantics
based on CTrees

10,38

Context: Interaction Trees

Interaction Trees (ITrees)?

Tree model for representing programs

Modular, reusable semantics

Executable semantics

Mechanized as a Rocq (formerly Coq) library

4 4
Vis e Step
4 ¢
O
v AR |
t]_ tn t
Return a value Interact with the Perform an internal

environment computation

3Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and
Steve Zdancewic. “Interaction trees: representing recursive and impure programs in Coq”. In: Proc.
ACM Program. Lang. 4.POPL (Dec. 2019). poI: 10.1145/3371119.

https://doi.org/10.1145/3371119

® Each Vis node represents an effect of the program
® Branches of a Vis node represent the possible answers from the environment

® Ret nodes are leaves returning a value

LLVM IR example with memory access effects:
Vis (Read "a")

2N
%x = load @Qa

store %x, @b Vis (Write "b" 0) Vis (Write "b" 1)

T

Ret 0 Ret 0

13/38

ITrees are coinductive, they can be infinitely deep.

while true do print

Vis Print
1
Step

1l
Vis Print
1
Step

~

® Unary Step nodes mark internal events such as loop iterations
14/38

ITrees: Interpretation

We can make the semantics appear by providing a stateful interpreter for Vis nodes.
® Write events update a memory state

® Read events return the corresponding value from memory

{a—1}
Vis (Print "performing b = a"') Vis (Print "performing b = a")
J {a—1}

V|s (Read "a")

interp {a—1}
—=

Vis (Write "b" 0) Vis (Write "b" 1)

| |

0 0

ITrees: Interpretation

We can make the semantics appear by providing a stateful interpreter for Vis nodes.
® Write events update a memory state

® Read events return the corresponding value from memory

{a—1}
Vis (Print "performing b = a") Vis (Print "performing b = a")
J Il ll {a = 1}
VIS (Read interp {a—1} Step
: npn npn {a—1}
Vis (Write "b Vis (Write "b" 1)

| |

0 0

ITrees: Interpretation

We can make the semantics appear by providing a stateful interpreter for Vis nodes.
® Write events update a memory state

® Read events return the corresponding value from memory

{a—1}
Vis (Print "performing b = a") Vis (Print "performing b = a")
H J/ n || {a ~ 1}
Vis (Read interp {a—1} Step
y \
Vis (Write "b" 0) Vis (Write "b" 1) {;;;}

J | !

0 0 {a—1,b— 1}

ITrees: Interpretation

We can make the semantics appear by providing a stateful interpreter for Vis nodes.
® \Write events update a memory state

® Read events return the corresponding value from memory

{a—1}
Vis (Print "performing b = a") Vis (Print "performing b = a")
J || || {a = 1}
V|s (Read interp {a—1} Step
\
: TN] npn {a—1}
Vis (Write "b" 0) Vis (Write "b" 1) Step

J | !

0 0 {a—1,b— 1}
{a—1,b—1},0)

| Trees: Interpretation and executability

® General methodology: successively
refine each kind of event node.

Memory event
interpretation

Print event
interpretation

® |n the end, we can execute the tree
Step

!

initial state — l
Step

l

final state

Vellvm applies this approach to LLVM, with 6 layers of interpretation

Choice Trees

Consider a Rand event that generates a random number. How to interpret it?

Vis Rand
YA

® No proper way to interpret it with [Trees
Vis Rand Vis Rand

® Not interpreting it is semantically wrong (\)/ \1 ot (\)/ \1

Ret 0 Retl Retl RetO

18/38

Nondeterminism

Consider a Rand event that generates a random number. How to interpret it?

Br Rand
VAN

® No proper way to interpret it with ITrees

Vis Rand Vis Rand
. L . 0 1 0 1
® Not interpreting it is semantically wrong ot
0 1 1 0

® Special Br nodes represent nondeterministic choices, we will give them appropriate
semantics later

¢ Infinite (coinductive) tree model for representing programs
® Rocq library that takes inspiration from ITrees, with nondeterminism support
® Collaboration between LIP and UPenn

)

¢ Vi Step B

Ret v Qf’/

<—':7§<—
N
F
— "«
o

ty t t1 ty

19/38

Choice Trees (CTrees)

¢ Infinite (coinductive) tree model for representing programs
® Rocq library that takes inspiration from | Trees, with nondeterminism support

® (Collaboration between LIP and UPenn

4 Vi

v “”/

0]
wn
o+
D
©
U:i

<—m%
\W
H
L
<—He
\W

th t

We can give nondeterministic semantics to Br nodes by defining a
fitting notion of equivalence of CTrees

An LTS consists of a set of states and a set of labeled transitions.

+ _ val v
Ret v O—>O

20 /38

An LTS consists of a set of states and a set of labeled transitions.

+ _ val v
Ret v O—0
Vlt e obs eV t
4 l e) — >
ob
S e v, th

20 /38

An LTS consists of a set of states and a set of labeled transitions.

+ _ val v
Ret v O—0
4 Obs e Vi tl
Vis e
N4 AR 5 — O<
ObS e Vn tl‘l
1
Step -
| - O >t
t

270 /38

An LTS consists of a set of states and a set of labeled transitions.

+ N val v
Ret v O—0
4 Obs e Vi t]_
Vis e . N
> A 5
" / l \ obs e tn
1 ty n
1
Step -
— O >t

b ® Collapsed in the LTS

® Does not generate a transition

\’?

—F.
28
L

270 /38

0 Br Rand 1
/ \
VisO(Read "13") VisO(Read "13")
/N /N

Ret 0 Ret 0 Ret 0 Ret 1

21/38

0 Br Rand 1
/ \
VisO(Read "1a") VisO(Read "1a")
/N /N

Ret 0 Ret 0 Ret 0 Ret 1

obs (Read 2) 0 val 0
’ val 0
obs (Read a) 1
obs (Read 2) 0 val 0
e 1
obs (Read a) 1 =

21/38

0 Br Rand 1
/ \
VisO(Read "1a") VisO(Read "1a")
/N /N

Ret 0 Ret 0 Ret 0 Ret 1

obs (Read 2) 0 val 0
’ val 0
obs (Read a) 1
obs (Read 2) 0 val 0
e 1
obs (Read a) 1 =

%

21/38

Definition of a strong bisimulation t R u, with two half-games

22/38

Definition of a strong bisimulation t R u, with two half-games

22/38

CTree equivalence: Strong bisimulation on the LTS

t u t u
R | | R
Legend | |
v a a al a
--- 3 -~ <~
t/,,,k,,, u/ t/,,,,],?;,, u/

Definition of a strong bisimulation t R u, with two half-games

Br nodes verify the algebraic laws of non-determinism

Equational proof principles for coinductive proofs
Many up-to principles, using the coinduction library from Damien Pous

® \We cannot reason about collapsed Br nodes,
which complicated some of my proofs.

® We can build an LTS in which they appear.

23/38

CTrees and the explicit LTS

Br Rand
® \We cannot reason about collapsed Br nodes, / \
which complicated some of my proofs. Vis (Read "a") Vis (Read "a")
® We can build an LTS in which they appear. 0 \1 0 \1
0 0 0 1

obs (Read 2) 0 val 0

obs (Read a) 1

Br nodes collapsed in the original LTS

Br as € transitions: explicit LTS

CTrees and the explicit LTS

Br Rand
® \We cannot reason about collapsed Br nodes, / \
which complicated some of my proofs. Vis (Read "a") Vis (Read "a")
® We can build an LTS in which they appear. 0 \1 0 \1
0 0 0 1

obs (Read 2) 0 val 0

How do we define bisimulation on this
alternative explicit LTS?
It should relate the same CTrees as the
original definition.

obs (Read a) 1

Br as € transitions: explicit LTS

24/38

24/38

Intertwined bisim. game R;N'R,

24/38

Intertwined bisim. game R;N'R,

24/38

€
—

@ Left:

Left half-game R, only

@ Left: 3

t u
R/ :

n

€ @ €
n

R, ¥

tl _______ ul

<

Intertwined bisim

. game Ry NR,

@ Left: S

Left half-game R, only

U

@ Left: 5

t u
p R
n
1 @ €
n
¥y R
t/____f__ J

24/38

@ Left: 2

Intertwined bisimulation on the explicit LTS

t u t
RI 1] *H Rr
I
€ @ €, o Q@ a
] |
R, Vv A RINR,
t/ ,,,,,,, u/ t ,,,,,,,

@ Left: 3 (3 Right: >

N\

Intertwined bisim. game R;N'R,

Left half-game R; only

@ Left: S @ Right: <
Right half-game R, only

U

@ Left: S

t u
. Re
G

v
t/ ,,,,,,, u/
3 Right: 3

U

@ Right: 5

Intertwined bisimulation on the explicit LTS

We define intertwined bisimulation using two mutually coinductive relations R; and R,.

® Proved equivalent to strong bisimulation on the original LTS

® Makes some proofs significantly easier, especially around the interpretation
combinator

® Equational theory similar to the original definition

CTrees — summary

CTrees capture a wide class of nondeterministic LTSs

Effects of a program can be handled in a modular way with interpretation

CTrees are executable
Paper at POPL'23%

Other personal contributions in the thesis

® Notions of refinement: Strong similarity, complete similarity

® Meta-theoretical results on interpretation and other combinators

“Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic. “Choice
Trees: Representing Nondeterministic, Recursive, and Impure Programs in Coq”. In: Proc. ACM
Program. Lang. 7.POPL (Jan. 2023). poI: 10.1145/3571254.

https://doi.org/10.1145/3571254

Concurrent pVellvm

define @main() {

store atomic 0, ©@x monotonic
store atomic O, Q@y monotonic
call @thrd_create(@f)

%1 = atomicrmw xchg ©@x, 1 monotonic Syntax:
%2 = atomicrmw xchg @y, 1 release ® Restricted subset of LLVM IR
ret O
} ® Thread management
(thrd_create and thrd_join)
define @f() { e Concurrent memory accesses
%yl = atomicrmw xchg Qy, 2 acquire
%x1 = load atomic @x monotonic
ret O
}

28/38

Interpretation stack

® We represent LLVM IR functions as CTrees with (VarE + ThreadE + MemE)
events

® Reusable interpretation passes give semantics to these events

spawn Qf ()

%1 = load @a

Y

Spawn "f"
1

Read a

~
LocalWrite "1" 0 LocalWrite "1" 1

® We represent LLVM IR functions as CTrees with (VarE + ThreadE + MemE)
events

® Reusable interpretation passes give semantics to these events

Variable
access

Thread

G Memory
creation

access

Variant VarE : Type — Type :=

| LocalWrite (id: ident) (v: value)
| LocalRead (id: ident)
| GlobalRead (id: ident)

: VarE unit
: VarE value

: VarE value

29/38

® We represent LLVM IR functions as CTrees with (VarE + ThreadE + MemE)
events

® Reusable interpretation passes give semantics to these events

Variable

Thread Memory
access

creation access

Variant ThreadE : Type — Type :=
| Spawn (f: fid) (arg: value) : ThreadE thread_id

29/38

Interpretation stack

® We represent LLVM IR functions as CTrees with (VarE + ThreadE + MemE)
events

® Reusable interpretation passes give semantics to these events

Variable
access

Thread

G Memory
creation

access

Variant MemE : Type — Type :=

| Load (o: ordering) (k: addr) : MemE value

| Store (o: ordering) (k: addr) (v: value) : MemE unit

| RMW (o: ordering) (k: addr) (f: value — value) : MemE value
| Fence (o: ordering) : MemE unit

| Alloc (sz: nat) : MemE addr

define @f() {

thread spawn @f ()
/'I'IR }store Qa 1
Representation | Zu Soawn '
Store "a" 1
Load "a"
K« s
LocalWrite "1" 0 LocalWrite "1" 1
Variables| =
Store "a" 1
Threads| Zowe Sched
<+
Sched
Load "a" Store "a" 1
<+
Sched Sched Sched
Memory | 7 I
Sched
<+
Sched
« >
Executable model UpdView a Rd UpdView a Wr
VRS e
Sched ’ Sched

30/38

With a proof of transport
of equivalences across the
interpretation passes

define @f() {

thread spawn @f ()
/'L[R }store @a 1
Representation | Zu Soawn '
Store "a" 1
Load "a"
' S
LocalWrite "1" 0 LocalWrite "1" 1
Variables| =
Store "a" 1
Threads | Zoe Sched
<+
Sched
Load "a" Store "a" 1
<+
Sched Sched Sched
Memory | 7 I
Sched
<+
Sched
x >
Executable model UpdView a Rd UpdView a Wr
VA VA
Sched ’

Sched

30/38

thread

Hir

Representation

Variables

% Threads

Memory

Y

repr

l

ar

Lenreaa

Toen

Executable model

spawn Of ()
%1 = load Ca

define @f () {
store Ca 1

¥

Spawn "f"

4
Load "a"

' ~
LocalWrite "1" 0 LocalWrite "1" 1

ore "a" 1
4

St

Store "a" 1
4

Load "a"

Sched

Sched
+
Sched
Store "a" 1
+

Sched Sched

-

Sched

Sched
4

Sched

UpdView a Rd UpdView a Wr
v o

Yo
Sched

31/38

Interpreting multithreading

Load "a" St P il
® To model the parallel composition of VRN ore @
n threads, we interleave their Store "b”" 0 Store "b” 1
CTrees, which gives a single CTree \
® A Br Sched node chooses which ——
thread to execute next Load "a" Store "a” 1
1
Sched Sched Sched
e N o
Store "b” 1 Store "a" 1

Interpreting multithreading

Load "a"

To model the parallel composition of VRN Store "a" 1

n threads, we interleave their Store "b” 0 Store "b" 1

CTrees, which gives a single CTree \

A Br Sched node chooses which

thread to execute next Load ,,a,,/ Store "a” 1

Thread creation adds one CTree to v ~ +

the interleaving th?d Sched S;Che».d
Y ’

Based on a co-recursive combinator Store "b” 1 Store "a” 1

interleave fns tasks : :

thread

Hir

Representation

Variables

Threads

% Memory

Y

repr

l

ar

Lenreaa

Toen

Executable model

spawn Of ()
%1 = load Ca

define @f () {
store Ca 1

¥

Spawn "f"

4
Load "a"

' ~
LocalWrite "1" 0 LocalWrite "1" 1

ore "a" 1
4

St

Store "a" 1
4

Load "a"

Sched

Sched
+
Sched
Store "a" 1
+

Sched Sched

-

Sched

Sched
4

Sched

UpdView a Rd UpdView a Wr
v o

Yo
Sched

33/38

-

Sched
0
Sched
e N
Load "a"® Store "a” 1!
e X 4
Sched Sched Sched
Sched
0
Sched
~
UpdView a Rd UpdView a Wr
v " v
Sched Sched
. . J

Interpreting memory events

CTrees are modular! We support SC, TSO and a
subset of Promising?, with simulation results.

Promising-based model

® A very complete operational concurrent memory
model

® \We support read, write, read-modify-write and
fence operations

® \We support most levels of atomicity

® Monotonic accesses partly left to future work

?Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis,
and Derek Dreyer. “A promising semantics for relaxed-memory
concurrency”. In: POPL’'17. ACM, 2017. DOT:
10.1145/3009837.3009850

https://doi.org/10.1145/3009837.3009850

thread
Hrp

spawn Of ()
%1 = load Ca

define @f() {
store Qa 1
i

Representation | Ze: p—
+ Store "a" 1
Load "a" 1
' ~
LocalWrite "1" 0 LocalWrite "1" 1
Variables|
Store "a" 1
4
Threads | Zoe Sched
+
Sched
Load "a" Store "a" 1
<+
S_che_d S_che;d S_che_d
Memory | 7 I
Sched
0
Sched
P
Executable model UpdView aRd UpdView a Wr
Yo Yo

Sched

Sched

® \We can still execute CTrees, but
we have to schedule the
remaining branching nodes

® Round-robin, random...

® Collecting interpreter written in
OCaml

35/38

Conclusion

Conclusion

Contributions

® Choice Trees: modular and executable semantics for nondeterministic programs
(POPL'23 paper)
® A novel notion of equivalence: intertwined bisimulation (paper in submission)

® Modular concurrency semantics, applied to LLVM (paper accepted at CPP'25)

Future work

® Meta-theoretical results on the interpretation stack
® |ntegration into Vellvm

® A verified compilation chain

1 1 L
n Vis e Step Brb
Ret v 4 l\b’f l f\/le’
t t1 th

Choice Trees

@ Left: 5N d Right: AN

N\

Intertwined bisim. game R; "R,

@ Left: 5 3 Right: >

L L Load "a" Store "a” 1
« e
PN
' ' Store "b” 1 Store "a" 1
@ Left: < @ Right: < : :
Intertwined bisimulation LLVM IR concurrency

ion!
Thanks for your attention! 38/38

	Introduction
	Context: Interaction Trees
	Choice Trees
	Concurrent Vellvm
	Conclusion
	Appendix

