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Abstract

Compensated algorithms improve the accuracy of a re-
sult evaluating a correcting term that compensates the finite
precision of the computation. The implementation core of
compensated algorithms is the computation of the rounding
errors generated by the floating point operators. We focus
this operator dependency discussing how to manage and to
benefit from floating point arithmetic implemented through
a fused multiply and add operator. We consider the com-
pensation of dot product and polynomial evaluation with
Horner iteration. In each case we provide theoretical a pri-
ori error bounds and numerical experiments to exhibit the
best algorithmic choices with respect to accuracy or perfor-
mance issues.

1. Introduction

Different techniques and several softwares aim to im-
prove the accuracy of results computed in a fixed finite pre-
cision, e.g., in IEEE-754 floating point arithmetic [10].
A natural way to improve the accuracy of a given com-

putation is to increase the working precision. For this pur-
pose, numerous multiprecision libraries are available when
the computing precision is not large enough to guarantee a
prescribed accuracy [4, 2, 14]. The computing-time over-
head of such arbitrarily precise computation limits its use
to applications for which running-time is not crucial. When
twice or four times the IEEE-754 double precision is suf-
ficient, actual and effective solutions are double-double or
quad-double libraries [8, 1]. For example a double-double
number is an unevaluated sum of two IEEE-754 double
precision numbers and its associated arithmetic provides
at least 106 bits of significand. These fixed-length expan-
sions are currently embedded in major developments such
as for example within the new extended and mixed precision
BLAS [12]. Such libraries benefit from good performances
in term of running-time and also from a wide applicability

since they provide extended precision for classic arithmetic
operators and elementary functions.
Compensating a given algorithm is a less generic process

than the simple plug-in of the extended precision facilities
previously mentioned. Nevertheless farther presented
results will exhibit that when available, compensated
algorithms run always faster than the corresponding ones
with extended precision libraries. Compensated algorithms
implement the computation of a correcting term that
approximates the errors generated by the finite precision
evaluation of the algorithm. This computation relies on
error-free transformations (EFT) as named in [16]. EFT
are properties that describe the final forward error such that
(an approximate of) this error can be computed only using
the current working precision. Such EFT for arithmetic
operators, dot product and polynomial evaluation will be
given hereafter. The core of the EFT computation depends
on low-level arithmetic properties (which is also the case
for extended precision libraries); most of them are clearly
defined by the IEEE-754 standard. Nevertheless new
questions raise when IEEE-754 compliant add or multiply
operators are implemented from a unique fused multiply
and add instruction. The fused multiply and add instruction
(FMA) is available on some current processors, such as
the IBM Power PC or the Intel Itanium. Given a, b and c
three floating point point values, this instruction computes
the expression a× b + c with only one final rounding error
[13].

The FMA can be used to improve algorithms based on
error-free transformations in two ways. First, it allows us
to compute the EFT for the product of two floating point
values in a very efficient way: algorithm TwoProd re-
called hereafter computes this EFT in only two flops when
a FMA is available [15, 13]. On the other hand, an algo-
rithm that computes an EFT for the FMA has been pro-
posed in [3]. In particular, it is proved that the EFT for
the FMA is the sum of three floating point numbers. As-
suming an IEEE-754 like floating point arithmetic with the
round to the nearest rounding mode, algorithm ThreeFMA



Table 1. Summary of algorithms
routine description

HornerFMA IEEE-754 double precision with FMA (Algorithm 5)
CompHornerFMA Compensated HornerFMA (Algorithm 7)

CompHorner Compensated Horner (Algorithm 9)
DDHorner Horner algorithm performed with the double-double format + FMA
DotFMA Dot product algorithm with FMA (Algorithm 11)

CompDotFMA Compensated DotFMA (Algorithm 12)
CompDot Compensated Dot (Algorithm 13)

DDDot Dot product with the double-double format + FMA

computes three floating point numbers x, y and z such that

a× b + c = x + y + z with x = FMA (a, b, c) .

In this paper we focus on the FMA dependency of com-
pensated algorithms. We discuss how to manage and to ben-
efit from this fused multiply and add operator. Notations are
presented in Section 2 and then error-free transformations
are introduced in Section 3.
We consider the compensation of polynomial evaluation

with Horner iteration and dot product, respectively in Sec-
tion 4 and Section 5. In each case we provide theoretical a
priori error bounds and numerical experiments to exhibit
the best algorithmic choices with respect to accuracy or
performance issues. A priori error bounds prove that the
FMA does not significantly improve the worst-case error –
even if implementations with FMA suffer from twice less
rounding errors than without. Experiments also illustrate
this similar behavior in terms of accuracy for both original
and compensated algorithms.
Running-time issues are different for compensated algo-

rithms. We conclude that FMA should be avoided in the
main computation (replacing it by add or multiply opera-
tors) but preferred in the compensating process (namely to
compute the error generated by the multiply operator). This
should motivate further research to less costly algorithms
or availability of low level primitives that compute the er-
ror generated by the FMA. Hence the whole computation of
compensated algorithms would benefit from the fused mul-
tiply and add instruction.

2. Notations

Throughout the paper, we assume a floating point arith-
metic adhering to the IEEE-754 floating point standard [10].
We constraint all the computations to be performed in one
working precision, with the “round to the nearest” round-
ing mode. We also assume that no overflow nor under-
flow occurs during the computations. Next notations are
standard (see [9, chap. 2] for example). F is the set of

all normalized floating point numbers and u denotes the
unit roundoff, that is half the spacing between 1 and the
next larger representable floating point value. For IEEE-
754 double precision with rounding to the nearest, we have
u = 2−53 ≈ 1.11 · 10−16.
The symbols⊕,� and⊗ represent respectively the float-

ing point addition, subtraction and multiplication. For more
complex arithmetic expressions, fl(·) denotes the result of
a floating point computation where every operation inside
the parenthesis is performed in the working precision. So
we have for example, a⊕ b = fl(a + b).
When no underflow nor overflow occurs, the following

standard model describes the accuracy of every considered
floating point computation. For two floating point numbers
a and b and for ◦ in {+,−,×}, the floating point evaluation
fl(a ◦ b) of a ◦ b is such that

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2),
with |ε1|, |ε2| ≤ u. (1)

To keep track of the (1+ε) factors in next error analysis,
we use the classic (1 + θk) and γk notations [9, chap. 3].
For any positive integer k, θk denotes a quantity bounded
according to

|θk| ≤ γk =
ku

1− ku
.

When using these notations, we always implicitly assume
ku < 1. In farther error analysis, we essentially use the
following relations,

(1 + θk)(1 + θj) ≤ (1 + θk+j), ku ≤ γk, γk ≤ γk+1.

3. Error Free Transformations (EFT)

First we review error free transformations (EFT) known
for the elementary floating point operations +, − and ×.
Let ◦ be an operator in {+,−,×}, a and b be two floating

point numbers, and x = fl(a ◦ b). Then it exists a floating
point value y such that

a ◦ b = x + y. (2)



Table 2. Summary of a priori bounds and flop counts.
Algorithm A priori bound for the relative accuracy Number of flop

HornerFMA γn cond(p, x) n
Horner γ2n cond(p, x) 2n

CompHornerFMA u + γnγn+1 cond(p, x) 19n
CompHorner u + γnγ2n+1 cond(p, x) 10n− 1

DotFMA γn cond(xT y)/2 n
Dot γn cond(xT y)/2 2n− 1

CompDotFMA u + uγn+1 cond(xT y)/2 19n− 16
CompDot u + γ2

n cond(xT y)/2 10n− 7

The difference y between the exact result and the computed
result is the rounding error generated by the computation of
x. Let us emphasize that relation (2) between four floating
point values only relies on real operators and exact equal-
ity. Ogita et al. [16] name such a transformation an error
free transformation (EFT). The practical interest of the EFT
comes from next Algorithms 1 and 2 that compute the exact
error term y for ◦ = + and ◦ = ×.
For the EFT of the addition we use Algorithm 1, the well

known TwoSum algorithm by Knuth [11] that requires 6
flop (floating point operations).
Usually, the well known algorithm TwoProd by

Veltkamp and Dekker (see [5]) is used for the EFT of the
product. TwoProd requires 17 floating point operations.
Nevertheless, TwoProd can be rewritten very efficiently
when a FMA is available. For a, b and c in F, FMA (a, b, c)
is the exact result a × b + c rounded to the nearest floating
point value. Thus, y = a×b−a⊗b = FMA (a, b,−(a⊗ b)),
and TwoProd now only requires two flop.
The next theorem exhibits the previously announced

properties of TwoSum and TwoProd.

Theorem 1 ([16]). Let a, b in F and x, y ∈ F such that
[x, y] = TwoSum(a, b) (Algorithm 1). Then, even in the
presence of underflow,

a+b = x+y, x = a⊕b, |y| ≤ u|x|, |y| ≤ u|a+b|.
Let a, b ∈ F and x, y ∈ F such that [x, y] = TwoProd(a, b)
(Algorithm 2). Then, if no underflow occurs,

a×b = x+y, x = a⊗b, |y| ≤ u|x|, |y| ≤ u|a×b|.
An algorithm that computes an EFT for the FMA has

been recently given by Boldo and Muller [3]. The EFT of a
FMA operation cannot be represented as a sum of two float-
ing point numbers, as it is the case for the addition and for
the product. Therefore, the following algorithm ThreeFMA
produces three floating point numbers. For efficiency rea-
sons, we slightly modify the algorithm from [3] such that
ThreeFMA here performs no renormalization of the final

result. Algorithm 3 requires 17 flop. It satisfies the follow-
ing properties.

Theorem 2 ([3]). Given a, b, and c three floating point val-
ues, let x, y and z be the three floating point numbers such
that [x, y, z] = ThreeFMA (a, b, c). Then we have

• a× b + c = x + y + z exactly, with x = FMA (a, b, c),

• |y + z| ≤ u|x| and |y + z| ≤ u|a× b + c|,
• y = 0 or |y| > |z|.
We notice that the algorithms presented in this section

only require well optimizable floating point operations.
They do not use branches nor access to the mantissa that
can be time-consuming.

Two error free transformations for polynomial evalua-
tion are introduced in next Section 4. Relation (7) exhibits
the exact rounding error generated by the Horner algorithm
when its inner iteration uses a FMA; Relation (10) applies
when no FMA appears in the Horner algorithm.

4. Polynomial evaluation

We consider the evaluation of p(x) =
∑n

i=0 aix
i, where

the data x and the polynomial coefficients ai are floating
point numbers. We study the two versions of the classic
Horner algorithm (without or with the FMA) and associated
compensated Horner algorithms.
We recall that the classic condition number of the evalu-

ation of p(x) is

cond(p, x) =
∑n

i=0 |ai||x|i
|∑n

i=0 aixi| =
p̃(x)
|p(x)| . (3)

4.1. Horner algorithms

For any floating point value x, Horner (p, x) is the re-
sult of the floating point evaluation of the polynomial p at x
using the Horner algorithm (Algorithm 4).



Algorithm 1. EFT of the sum of two floating
point numbers.
function [x, y] = TwoSum (a, b)

x = a⊕ b
z = x� a
y = (a� (x� z))⊕ (b� z)

Algorithm 2. EFT of the product of two floating
point numbers with a FMA.
function [x, y] = TwoProd (a, b)

x = a⊗ b
y = FMA (a, b,−x)

Algorithm 3. EFT for the FMA operation.
function [x, y, z] = ThreeFMA (a, b, c)

x = FMA (a, b, c)
(u1, u2) = TwoProd (a, b)
(α1, z) = TwoSum (b, u2)
(β1, β2) = TwoSum (u1, α1)
y = (β1 � x)⊕ β2

Algorithm 4. Horner algorithm

function r0 = Horner (p, x)
rn = an

for i = n− 1 : −1 : 0
ri = ri+1 ⊗ x⊕ ai

end

A forward error bound for the result of Algorithm 4 is
(see [9, p.95])

|p(x)− Horner (p, x) | ≤ γ2n p̃(x). (4)

So, the accuracy of the computed evaluation is linked to the
condition number of the polynomial evaluation as follows,

|p(x)− Horner (p, x) |
|p(x)| ≤ γ2n cond(p, x). (5)

Clearly, the condition number (3) can be arbitrarily large.
In particular, when cond(p, x) > γ−1

2n , we cannot guarantee
that the computed result Horner (p, x) contains any correct
digit.
If a FMA instruction is available on the considered archi-

tecture, then we can change the computation of ri = ri+1⊗
x⊕ai in Algorithm 4 by ri = FMA (ri+1, x, ai). This gives
the following algorithm HornerFMA (Algorithm 5).
Algorithm 5. Horner algorithm with FMA

function r0 = HornerFMA (p, x)
rn = an

for i = n− 1 : −1 : 0

ri = FMA (ri+1, x, ai)
end

This slightly improves the error bound since we write
now,

|p(x)− HornerFMA (p, x) |
|p(x)| ≤ γn cond(p, x). (6)

With the FMA, the number of floating point operations in-
volved in the computation is also divided by two and so is
the worst case error.

4.2. Compensating HornerFMA

As previously mentioned, next EFT for the polynomial
evaluation with HornerFMA exhibits the exact rounding
error generated by this algorithm. Following algorithm
EFTHornerFMA computes this EFT thanks to ThreeFMA
(Algorithm 3).
Algorithm 6. EFT for HornerFMA

function [u0, pε, pϕ] = EFTHornerFMA(p, x)
un = an

for i = n− 1 : −1 : 0
[ui, εi, ϕi] = ThreeFMA (ui+1, x, ai)
Let εi be the coefficient of degree i in pε

Let ϕi be the coefficient of degree i in pϕ

end

Theorem 3. Let p(x) =
∑n

i=0 aix
i be a polynomial of de-

gree n with floating point coefficients, and let x be a floating
point value. Algorithm 6 computes both

• the floating point evaluation HornerFMA (p, x) (Al-
gorithm 5), and

• two polynomials pε and pϕ, of degree n−1, with float-
ing point coefficients;

we write

[HornerFMA (p, x) , pε, pϕ] = EFTHornerFMA (p, x) .

Algorithm 6 requires 17n floating point operations.
We have the next EFT,

p(x) = HornerFMA (p, x) + (pε + pϕ)(x), (7)

with
˜(pε + pϕ)(x) ≤ γn p̃(x).

As before we have ˜(pε + pϕ)(x) =
∑n−1

i=0 |εi + ϕi||xi|.
Relation (7) means that EFTHornerFMA is an EFT for the
polynomial evaluation with the Horner algorithm when the
FMA is used. From this relation, the global forward error



affecting the floating point evaluation of p at x according to
the Horner algorithm is

p(x)− HornerFMA (p, x) = (pε + pϕ)(x), (8)

where the coefficients of the polynomials pε and pϕ are
exactly computed by EFTHornerFMA (Algorithm 6), to-
gether with the approximateHornerFMA (p, x). Therefore,
the key of the following compensated algorithm is to com-
pute an approximate c of the global error (8) in working
precision, and then to compute a corrected result

r = HornerFMA (p, x)⊕ c.

We say that c is a correcting term for the initial result
HornerFMA (p, x). The corrected result r is expected to
be more accurate than HornerFMA (p, x) as proved in the
sequel of the section. We compute the correcting term c by
evaluating the polynomial whose coefficients are those of
pε +pϕ rounded to the nearest floating point value, i.e., c =
HornerFMA (pε + pσ, x). We can now describe the com-
pensated algorithm for polynomial evaluation.
Algorithm 7. Compensated HornerFMA

function r = CompHornerFMA (p, x)
[h, pε, pϕ] = EFTHornerFMA (p, x)
c = HornerFMA (pε ⊕ pϕ, x)
r = h⊕ c

We state hereafter that the result of a polynomial evalu-
ation computed with Algorithm 7 is as accurate as if com-
puted by the classic Horner algorithm using twice the work-
ing precision and then rounded to the working precision
(proofs are detailed in [7]).

Theorem 4. Given a polynomial p(x) =
∑n

i=0 aix
i of de-

gree n with floating point coefficients, and x a floating point
value. We consider the result CompHornerFMA (p, x)
computed by Algorithm 7. Then,

|CompHornerFMA (p, x)−p(x)| ≤ u|p(x)|+γnγn+1 p̃(x).

CompHornerFMA requires 19n floating point operations.

It is interesting to interpret the previous theorem with re-
spect to the condition number of the polynomial evaluation
of p at x. Combining the error bound in Theorem 4 with the
condition number (3) for the polynomial evaluation gives
the following relation,

|CompHornerFMA (p, x)− p(x)|
|p(x)| ≤ u+γnγn+1 cond(p, x).

(9)

For practical purpose, just consider γnγn+1 as u2. In
other words, the bound for the relative error of the com-
puted result is essentially u2 times the condition number of

the polynomial evaluation, plus the inevitable summand u
for the final rounding of the result to the working precision.
In particular, while cond(p, x) � 1/u, then the relative ac-
curacy of the result is bounded by a constant of the order u.
This means that the compensated Horner algorithm com-
putes an evaluation accurate to the last few bits as long as
the condition number is smaller than 1/u. Besides that, Re-
lation (9) tells us that the computed result is as accurate as
if computed by the classic Horner algorithm with twice the
working precision. Of course no accuracy can be expected
for condition number larger than 1/u2.

4.3. Compensating Horner

The principle of next algorithm CompHorner is the
same as CompHornerFMA. Nevertheless we need an EFT
which computes the rounding error generated by Horner,
that is for polynomial evaluation without using the FMA.
Next results provide this EFT.
Algorithm 8. EFT for Horner.

function [q0, pπ, pσ] = EFTHorner(p, x)
qn = an

for i = n− 1 : −1 : 0
[pi, πi] = TwoProd (qi+1, x)
[qi, σi] = TwoSum (pi, ai)
Let πi be the coefficient of degree i in pπ

Let σi be the coefficient of degree i in pσ

end

Theorem 5. Let p(x) =
∑n

i=0 aix
i be a polynomial of de-

gree n with floating point coefficients, and let x be a floating
point value. Then following Algorithm 8 computes both

• the floating point value Horner (p, x) (Algorithm 4),
and

• two polynomials pπ and pσ , of degree n−1, with float-
ing point coefficients;

we write

[Horner (p, x) , pπ, pσ] = EFTHorner (p, x) .

Algorithm 8 requires 8n flops.
We have the next EFT,

p(x) = Horner (p, x) + (pπ + pσ)(x), (10)

with
( p̃π + p̃σ)(x) ≤ γ2n p̃(x).

We deduce another compensated evaluation algorithm
based on the previous EFT for Horner.
Algorithm 9. Compensated Horner algorithm.



function r = CompHorner (p, x)
[h, pπ, pσ] = EFTHorner (p, x)
c = HornerFMA (pπ ⊕ pσ, x)
r = h⊕ c

Theorem 6. Given a polynomial p(x) =
∑n

i=0 aix
i of de-

gree n with floating point coefficients, and x a floating point
value. We consider the result CompHorner (p, x) com-
puted by Algorithm 9. Then,

|CompHorner (p, x)− p(x)| ≤ u|p(x)|+ γnγ2n+1 p̃(x).

Algorithm 9 requires 10n− 1 floating point operations.

Again, combining the error bound in Theorem 6 with the
condition number (3) for polynomial evaluation leads to

|CompHorner (p, x)− p(x)|
|p(x)| ≤ u + γnγ2n+1 cond(p, x).

(11)
Since γnγ2n+1 ≈ u2, the previous remarks about error
bound (9) also apply to the previous one. While Com-
pHornerFMA needs almost two times more flop thanCom-
pHorner, we notice that the error bounds (9) and (11) are
similar.
Actually, our next experimental results confirm that

CompHorner is more efficient than CompHornerFMA in
terms of computing time while being similarly accurate.

4.4. Experimental scheme

All our experiments are performed using IEEE-754 dou-
ble precision. Since the double-doubles [8, 12] are usually
considered as the most efficient portable library to double
the IEEE-754 double precision, we consider it as a reference
in the following comparisons. For our purpose, it suffices
to know that a double-double number a is the pair (ah, al)
of IEEE-754 floating point numbers with a = ah + al

and |al| ≤ u|ah|. This property implies a renormaliza-
tion step after each arithmetic operation. We denote by
DDHorner our implementation of the Horner algorithm
with the double-double format, derived from the implemen-
tation proposed by the authors of [12]. We notice that the
double-double arithmetic naturally benefits from the avail-
ability of a FMA instruction: DDHorner uses TwoProd in
the inner loop of the Horner algorithm. DDHorner requires
20n floating point operations. Using the double-double li-
brary proposed in [8], we can slightly reduce this flop
count, but it has almost no impact on the measured com-
puting times.

4.5. Accuracy tests

We test the expanded form of the polynomial pn(x) =
(x−1)n. Accuracy of the evaluation is not guaranteed in the

neighborhood of the real root 1 of pn. Indeed the condition
number is

cond(pn, x) =
p̃n(x)
|pn(x)| =

∣∣∣∣
|x|+ 1
x− 1

∣∣∣∣
n

,

and cond(pn, x) grows exponentially with respect to n.
In the experiments reported on Figure 1, we have chosen
x = fl(1.333) to provide a binary floating point value
with many non-zero bits in its mantissa. The value of
cond(pn, x) varies from 102 to 1040, that corresponds to
degrees n range 3 to 42. These huge condition numbers
have a sense since the coefficients of p and the value x are
floating point numbers.
We experiment both HornerFMA, CompHornerFMA,

CompHorner and DDHorner (see Table 1). For every
polynomial pn, the exact value pn(x) is approximated with
high accuracy thanks to the MPFR library [14]. Figure 1
presents the relative accuracy |r − pn(x)|/|pn(x)| of the
evaluation r computed by each algorithm. We set to the
value one relative errors greater than one, which means that
almost no useful information is available in the computed
result. We also display the a priori error estimates (6) and
(9) – no difference between (9) and (11) appears on this fig-
ure. We observe that our compensated algorithms exhibit
the expected behavior: compensated results are roughly as
if the Horner algorithm is computed with twice more bits.
We identify no significant difference between the accuracy
provided by double-double implementation compared to
compensated ones. The full precision solution is computed
as long as the condition number is smaller than u−1 ≈ 1016.
Then, for condition numbers between u−1 and u−2 ≈ 1032,
the relative error degrades (linearly in the log scale) to no
accuracy at all as it was expected from the a priori error
bounds (9) and (11).
As usual, these a priori bounds are definitely pessimistic

especially when the condition number term becomes pre-
dominant in (9) and (11). More realistic bounds are pro-
vided by a dynamic analysis we describe in [7]. This lat-
ter reference also presents experiments with a more generic
choice of polynomials; results are still similar to those dis-
played on Figure 1.

4.6. Running-time tests

All the algorithms are implemented in a C-code. We use
the same programming techniques for the implementations
of the three routines CompHornerFMA, CompHorner
and DDHornerFMA. The experimental environments are
listed in Table 3. Our measures are performed with polyno-
mials whose degrees vary from 5 to 200 by step of 5. We
randomly choose the values of the coefficients and the ar-
guments. For each degree, the routines are tested on the
same polynomial with the same argument. Table 4 dis-
plays the time overhead of the algorithms with respect to
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Figure 1. Accuracy of the polynomial evaluations.

HornerFMA. We have reported the minimum, the mean
and the maximum of these ratios. The theoretical overheads
(resulting from the number of floating point operations in-
volved by each algorithm) are also reported.
Our compensated algorithms CompHornerFMA and

CompHorner are both significantly faster than DDHorner.
Algorithm CompHorner seems to be the most efficient al-
ternative to improve the accuracy of the Horner algorithm.
It runs about 1.8 times faster than CompHornerFMA and
more than two times faster than DDHorner that uses the
double-double library. We also notice that the measured
overheads are always significantly smaller than theoreti-
cally expected. This issue will be explained in last Sec-
tion 5.5.

5. Dot product

The purpose is now to compare the classic dot product
algorithm without and with the use of FMA and correspond-
ing compensated algorithms.

5.1. Classic dot product algorithm

Let x = (x1, . . . , xn)T and y = (x1, . . . , xn)T be n-
vectors with floating point elements. The classic algorithm
to compute a dot product is the following.
Algorithm 10. Dot product

function sn = Dot (x, y)
s1 = x1y1

for i = 2 : n
si = xiyi + si−1

end

Algorithm 10 requires 2n−1 flops. The computed result
satisfies [9]

|Dot(x, y)− xT y| ≤ γn|xT ||y|. (12)

FMA is suitable for dot product algorithm. We now look
at the dot product algorithm where we use the FMA instead
of the classic multiplication and addition.
Algorithm 11. Dot product with FMA.

function sn = DotFMA (x, y)
s1 = x1y1

for i = 2 : n
si = FMA (xi, yi, si−1)

end

As we can see, the number of floating point operations is
divided by two when the FMA is used: algorithm DotFMA
only requires n floating point operations. Nevertheless, the
FMA does not improve the worst case accuracy of the com-
puted dot product. Indeed, the two previous algorithms
share the same error bound (12). Let us remark that the
γn factor does not describe the number of floating point op-
erations but the length of the largest path from the data to
the result in the data flow graph.

5.2. Compensated DotFMA

Again x = (x1, . . . , xn)T and y = (x1, . . . , xn)T are
two n-vectors with floating point elements. We consider
the following compensated version ofDotFMA. The round-
ing errors generated by every FMA are computed thanks to
ThreeFMA (Algorithm 3).
Algorithm 12. Compensated DotFMA.



Table 3. Experimental environments
environment description

I Intel Itanium I, 733MHz, GNU Compiler Collection 2.96
II Intel Itanium II, 1.5GHz, GNU Compiler Collection 3.4.6
III Intel Itanium I, 733 MHz (16KB L1, 96KB L2 cache), Intel C++ Compiler v9.0.
IV Intel Itanium II, 1.6 GHz (32KB L1, 256KB L2 cache), Intel C++ Compiler v9.0.
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Figure 2. Measured overhead for CompHornerFMA, CompHorner and DDHorner with respect to the
polynomial degree (environment I on the left, and II on the right).
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Table 4. Measured running-time overhead compared to theoretical values for polynomial evaluation.
environment CompHornerFMA/HornerFMA CompHorner/HornerFMA DDHorner/HornerFMA

min. mean max. theo. min. mean max. theo. min. mean max. theo.
I 2.9 5.3 5.7 19 1.8 2.7 2.8 10 3.4 6.8 7.4 20
II 3.3 5.1 5.4 19 2.5 3.7 3.9 10 3.5 5.5 5.9 20

function r = CompDotFMA (x, y)
[s1, c1] = TwoProd (x1, y1)
for i = 2 : n

[si, αi, βi] = ThreeFMA (xi, yi, si−1)
ci = ci−1 ⊕ (αi ⊕ βi)

end
r = sn ⊕ cn

Proposition 7. The result computed by previous Algo-
rithm 12 satisfies

|CompDotFMA (x, y)− xT y| ≤ u|xT y|+ uγn+1|x|T |y|.
(13)

CompDotFMA requires 19n−16 floating point operations.

Proofs are detailed in [6].

5.3. Compensating Dot

The following algorithm for dot product computation is
due to Ogita, Rump and Oishi [16].
Algorithm 13. Compensated Dot.

function r = CompDot (x, y)
[s1, c1] = TwoProd (x1, y1)
for i = 2 : n

[pi, πi] = TwoProd (xi, yi)
[si, σi] = TwoSum (pi, si−1)
ci = ci−1 ⊕ (πi ⊕ σi)

end
r = sn ⊕ cn

The following proposition sums up the properties of this
algorithm.

Proposition 8 ([16]). If no underflow occurs, the result
computed by Algorithm 13 satisfies

|CompDot (x, y)− xT y| ≤ u|xT y|+ γ2
n|xT ||y|, (14)

CompDot algorithm requires 10n − 7 flops when the
FMA is available.

Let us note again that this proposition means that the
compensated algorithm returns a computed dot product as
accurate as if computed in twice the working precision.

Experimental scheme for the following testing of accu-
racy and running-time issues is similar to the one we have
described in Section 4.4.
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Figure 4. Accuracy of classic dot product al-
gorithm with and without FMA

5.4. Accuracy Tests

For testing the actual accuracy reached by the various
dot product algorithms previously presented, we need to
generate dot products with condition number up to about
1032. For this purpose, we use the random generator of ill-
conditioned dot product GenDot described in [16]. Here it
allows us to generate 720 dot products of length n = 100,
with condition numbers varying from 102 to 1035. We al-
ways use the same set of dot products in all our experiments.
Figure 4 presents the results for classic dot product algo-

rithm with and without FMA. We display the relative error
of the computed result with respect to the condition num-
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Figure 5. Accuracy of compensated dot prod-
ucts CompDotFMA and CompDot

ber. The dashed curves represent the relative error bounds
derived from Relations (13) and (14). As we can see, the use
of FMA does not significantly improve the accuracy of the
result. Even if the theoretical bounds are pessimistic, they
provide a reasonable estimate of the actual error bounds.
Figure 5 presents the results for compensated dot prod-

uctsCompDotFMA andCompDot. Again this figure illus-
trates that using the error-free transformation ThreeFMA
does not improve the accuracy of the result compared to the
error-free transformation TwoProd. Finally the accuracy of
the considered algorithms does not benefit from the use of
FMA as it was expected from the theoretical worst case
bounds.

5.5. Running-time tests

The measured execution times are reported with Table 5.
The timings are compared with ordinary dot product algo-
rithm DotFMA. Last row also reports the theoretical ratios.
These results show that the compensated algorithms

CompDotFMA andCompDot run both considerably faster
than DDDot.

Table 5. Running-time ratios of dot products.
Environment III (top) and IV (middle) are com-
pared to theoretical flop counts (bottom) for
various vector lengths n.

n CompDot
DotFMA

CompDotFMA
DotFMA

DDDot
DotFMA

50 1.4 2.3 8.24
100 1.29 2.37 8.98
1000 1.24 2.63 10.46
10000 1.25 2.63 10.5
100000 1.07 1.76 6.27
50 1.63 2.61 9.87
100 1.35 2.43 9.65
1000 1.26 2.6 10.86
10000 1.25 2.62 10.97
100000 1.25 2.35 9.8
Theoret. 10 19 22

As previously observed for polynomial evaluation, the
measured ratios of the compensating process overhead are
always smaller than the theoretical values. Theoretical ra-
tios just count the floating point operations and do not take
into account the complex instruction reordering the com-
piler or the processor perform. Most modern processors are
capable of executing several instructions in parallel, but it is
not always easy to exploit this feature in real programs. In
order to exploit the ability to perform multiple instructions
in parallel, both the compiler and the processor must recon-
struct the implicit parallelism in a program which is usually
written in a serial fashion. In particular, the main part of the
instruction scheduling is performed by the compiler to take
advantage of the instruction-level parallelism on Intel Ita-
nium architecture. On the other hand, the possibility of per-
forming parallel execution of instructions is not only lim-
ited by the architecture and the compiler performances, but
also by the instruction-level parallelism which is an intrin-
sic parameter of the algorithm. For instance a program may
require long sequences of serial instructions that can not be
performed in parallel with any other. Compensated algo-
rithms here exhibit a better intrinsic instruction-level paral-
lelism than double-double ones since they are implemented
with no normalization step.
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