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The settling behavior of individual spheres in a quiescent fluid was studied experimentally. The dynamics of
the spheres was analyzed in the parameter space of particle-to-fluid density ratio (/") and Galileo number
(Ga), with I" € (1.1,7.9) and Ga € (100, 340). The experimental results showed for the first time that the mean
trajectory angle with the vertical exhibits a complex behavior as Ga and I' are varied. Numerically predicted
regimes such as Vertical Periodic for low I' values, and Planar Rotating for high I values were validated.
In particular, for the denser spheres, a clear transition from planar to non-planar trajectories was observed,
accompanied by the emergence of semi-helical trajectories corresponding to the Planar Rotating Regime. The
spectra of trajectory oscillations were also quantified as a function of Ga, confirming the existence of oblique
oscillating regimes at both low and high frequencies. The amplitudes of the perpendicular velocities in these
regimes were also quantified and compared with numerical simulations in the literature. The terminal velocity
and drag of the spheres were found to depend on the particle-to-fluid density ratio, and correlations between
the drag coefficient and particle Reynolds number (Re,) as a function of Ga were established, allowing for
the estimation of drag and settling velocity using Ga, a control parameter, rather than the response parameter

Re,.

1. Introduction

Particles in fluids are representative of many natural and industrial
systems and therefore extensively investigated in a variety of scenar-
ios such as turbulence (Cabrera and Cobelli, 2021; Cabrera, 2022;
Falkinhoff et al., 2020), and low (Cabrera et al., 2022; Obligado and
Bourgoin, 2022) to moderate (Zhou and Dusek, 2015; Jenny et al.,
2004) Reynolds number such as this work. Particularly, and despite its
apparent simplicity, the physics of finite size spheres settling hides a
hierarchy of rich intricate phenomena, some of which are still shrouded
in mystery. We are for instance still unable to finely model and predict
the terminal velocity of a particle settling in a turbulent environment.
The role of linear and non-linear drag (Good et al., 2014; Rosa et al.,
2016), the link with possible scenarios enhancing the settling (Maxey,
1987) or hindering it (Nielsen, 1993), the influence of finite size
effects (Chouippe and Uhlmann, 2019) and the role of collective ef-
fects (Aliseda et al., 2002) are just some examples of subtle couplings
which still need to be further explored to improve our capacity to
predict the turbulent settling of spherical particles. Challenges are
particularly important for environmental issues such as the forecast of
particle and pollutants deposition in the atmosphere, rivers and seas.

Interestingly, even the non-turbulent situation, where a sphere set-
tles in a quiescent fluid, is already far from trivial and results in a

series of path instabilities (Jenny et al., 2004) not yet fully under-
stood. These path instabilities are related to a complex wake dynamics
which emerges for a sphere with a relative velocity with respect to
the surrounding fluid. It is indeed well known for instance that the
wake behind a fixed sphere of typical size d, in a steady stream
with velocity U and viscosity v, has a number of bifurcations that
depend on Reynolds number Re = Ud/v. These transitions have been
thoroughly explored in numerical and theoretical (Fabre et al., 2008;
Tomboulides and Orszag, 2000; Natarajan and Acrivos, 1993) and
experimental (Nakamura, 1976; Ormieres and Provansal, 1999) studies
for the case of fixed spheres in a steady stream for which the onsets of
different wake bifurcations are finely characterized.

When the sphere is not fixed (e.g. if it is settling under gravity or
rising due to buoyancy in a quiescent fluid), these wake instabilities
develop into path instabilities (Ern et al., 2012) as the momentum and
torque exerted by the perturbed fluid onto the particle will influence
its trajectory. A pioneering work regarding fluidized beds already high-
lighted the non-applicability of Newton’s free settling law on rising par-
ticles (Karamanev and Nikolov, 1992), caused by the aforementioned
wake effect on the particle trajectory. Jenny and coworkers (Jenny
et al., 2003, 2004) made the first systematic numerical study exploring
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the trajectory dynamics of a single spherical particle settling or rising
in a quiescent unconfined fluid. This study was refined later by Zhou
and Dusek (2015). The complex dynamics of rising or settling spheres
has also been characterized experimentally and theoretically (Bon-
nefis et al., 2023; Herrada and Eggers, 2023; Auguste and Magnaudet,
2018; Horowitz and Williamson, 2010; Veldhuis and Biesheuvel, 2007;
Raaghav et al., 2022).

Two dimensionless numbers control the free sphere settling prob-
lem: particle-to-fluid density ratio I' = p,/p, (with p, and p, the
particle and fluid densities respectively) and Galileo number Ga =
VI =1| gdf,/ 2 /v (with d, the particle diameter, g the local acceleration
of gravity and v the kinematic viscosity of the surrounding fluid). The
Galileo number was defined here as Ga = U,d, /v, where the character-
istic velocity is the buoyancy velocity U, = /[T — 1]gd,,. The different
regimes and bifurcations of single settling or rising spheres were then
assessed in a I' — Ga parameter space. While the regimes observed for
both density ratio below one (rising spheres and bubbles) (Bonnefis
et al., 2023; Herrada and Eggers, 2023; Karamanev and Nikolov, 1992;
Auguste and Magnaudet, 2018) and for density ratio above unity (par-
ticle settling) (Zhou and Dusek, 2015; Horowitz and Williamson, 2010;
Veldhuis and Biesheuvel, 2007; Raaghav et al., 2022; Jenny et al.,
2004) are interesting, we will restrict ourselves to density ratios larger
than unity in the present article. To keep this introduction concise, a
detailed review of previous investigations is provided in Section 3, to
which our experimental observations are systematically compared. We
specifically stress that a number of important regions of the parameter
space still remain experimentally unveiled and need to explored in
order to characterize the settling regimes and corroborate numerical
predictions. This is particularly the case for particle-to-fluid density
ratios larger than 3.9 for which no experimental data is available.

Besides the complexity of path instabilities, the drag force experi-
enced by the particles is an important element of the problem which
has interested the scientific community. Inquiring in particular on
whether the drag force of fixed spheres in a steady stream could be
used to estimate the terminal settling or rising velocity of freely moving
particles. Raaghav et al. (2022) have studied the drag of rising and
settling particles and concluded that for density ratios between 0.86
and 3.9, the particle settling drag estimated from the mean vertical
terminal velocity of the spheres does not differ significantly from that
of a fixed sphere in free stream flowing at the same velocity. The latter
implies that the drag coefficient C;, does not depend on particle-to-
fluid density ratio. This idea is used extensively in the literature, and
it has been widely used to obtain correlations and empirical models
assuming a simple dependency of C, on particle Reynolds number
Re, = v,d,/v (Brown and Lawler, 2003; Tran-Cong et al., 2004).
This has been proven incorrect for light particles where a marked
dependency appears when I' < 0.1 (Karamanev and Nikolov, 1992;
Auguste and Magnaudet, 2018).

Another practical issue is that the correlations for drag and settling
velocity available in the literature are usually given in terms of the par-
ticle Reynolds number. However, when the particles are free to move,
the velocity v, is not a control parameter but a response parameter.
For the case of settling particles, these correlations do not allow to
give an explicit expression for the terminal velocity in terms of the
drag coefficient Cp, because C, itself depends on the terminal velocity.
However, from a pure dimensional analysis approach, the natural ex-
pected dependencies of the drag coefficient for settling spheres are both
on I' and Ga, which are actual control parameters, only depending on
known physical parameter of the problem (densities of the particles and
the fluid, fluid viscosity, particle diameter and acceleration of gravity).
This brings the two following questions: (i) to which extent is the
approximation of Cj, not depending on density ratio valid? And (ii)
can a correlation of Cp, be given in terms of Ga rather than Re,? This
would allow to know the drag coefficient a priori without requiring to
know the terminal velocity beforehand.
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170 mm

Fig. 1. Experimental setup. Two cameras image the particles settling inside the water
tank. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

In the present article, we investigate experimentally the settling
of spherical particles in a quiescent fluid over a broad region of the
parameter space, namely 1 < I' < 8 and 100 < Ga < 350 (symbols in
Fig. 2 indicate all points explored in the parameter space). For all the
investigated conditions, we fully characterize the trajectory properties
of the particles as well as the drag coefficient derived from the particle’s
terminal velocity. The article is organized as follows. We first introduce
the experimental setup in Section 2. The results are then described in
Section 3. Finally, our conclusions are summarized in Section 4.

2. Experimental methods
2.1. Experimental setup and protocol

The experiments are performed in a transparent PMMA tank with a
square cross-section of 170 x 170 mm? and a height of 710 mm, shown
in Fig. 1. The tank is filled with different mixtures of pure glycerol
(Sigma-Aldrich W252506-25KG-K) and distilled water, ranging from
0% to 40% glycerol concentration. The viscosity of each mixture is
measured with a rheometer Kinexus ultra+ from Malvern industries
with a maximum uncertainty of 0.6%. The kinematic viscosity v ranges
from 107° to 1.05 x 10~ m?/s. Moreover, as the viscosity is dependent
on the temperature, an air-conditioning system keeps a constant room
temperature of (22 + 0.6) °C yielding a 2% uncertainty on the precise
value of the viscosity.

A 150 mm region of fluid above and below the visualization volume
is set to ensure both the disappearance of any initial condition imposed
on the particles release and the effects of the bottom of the tank.
Furthermore, a minimum distance of 20 mm between the tank walls
and the particles is maintained. In this configuration and using the
correlations proposed by Chhabra et al. (2003) the settling velocity
hindering due to wall effects is estimated to be lower than 3%.
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The trajectory of the settling particles is recorded using two high
speed cameras (model fps 1000 from The Slow Motion Camera Com-
pany Ltd) with a resolution of 720 x 1280 px*> and a frame rate of
2300 fps. The movies recorded from these two cameras allow the
implementation of time resolved 4D-Lagrangian Particle Tracking (4D-
LPT) to reconstruct the particle trajectories (Bourgoin and Huisman,
2020). This method tracks particles with an uncertainty of 90 pm which
is estimated from the disparity between rays when stereo-matching the
particle between the two cameras. This experimental noise on the par-
ticle position is short time correlated and gets significantly reduced by
the high temporal redundancy associated to the oversampling achieved
with the frame rate of 2300 Hz and the subsequent gaussian filtering
of the trajectories (further detailed below) used to estimate particle ve-
locity. As a consequence, the uncertainty on the instantaneous velocity
along trajectories is less than 4 mm/s (Bourgoin and Huisman, 2020)
while the associated uncertainty for the velocity averaged over a given
trajectory drops below a few hundred microns per second. Backlight
illumination was used, with two LED panels facing each camera on the
opposite side of the tank, as represented by the dark blue rectangles in
Fig. 1.

Various series of experiments were carried with different optical
magnification ratios, in order to access large scale properties of the
trajectories (with lower magnification) as well as higher resolution data
(with higher magnification). The magnification was varied by keeping
the same optics mounted on the cameras, and varying the distance
A from the cameras to the exterior of the tank’s wall. The datasets
corresponding to these different situations are detailed in the next
subsection.

In order to span the I' - Ga parameters space, we considered a
set of spherical particles with different diameters (d,) and densities
(p,), while varying the water-glycerol mixture in order to vary the
fluid viscosity v. Varying the fluid viscosity v allows to change Ga for
a given type of particle, at the expense of the slight modification of
the value of I' due to the associated variation of the fluid density.
The characteristics of the particles and the ranges of values Ga and I’
investigated in this articles are reported in Table 1. Overall, a total of
68 points in the I' - Ga parameters space has been explored (see Fig. 2).
For each point up to 25 independent drops were released in order to
test the repeatability of the observed regimes and the eventual presence
of bi-stable regions where different settling regimes could co-exist in
the same region of the parameters space. The particle’s diameter and
sphericity were measured using a microscope with a precision of 10 pm.

Table 1
Properties of the different settling particles investigated. See text for details.

Material (label) Py (kg/m?) d, (mm) r Ga Ra (pm)
Metal 7950 {1,2,3} 6.6-7.8 112-290 9

Glass 2500 3 2.1-2.5 130-270 15
Polyamide 1150 6 1.1-1.3 124-340 120

In particular, no significant deviation from the spherical shape or the
manufacturer’s documented diameter could be measured. The surface
roughness of the particles was also measured, with a Scanning Electron
Microscope ZEISS SUPRA 55 VP, over an area of 200 X 500 ym?. The
arithmetical mean height of rugosities Ra reported in Table 1 shows
a high degree of smoothness as Ra/d, < 0.05, therefore roughness is
not expected to alter the spheres dynamics (Zhao and Davis, 2003). In
particular, the following particles were used: Metal - Stainless Steel Ball
AISI 316 Grade 100 from COMAC Europe; Glass - Soda Lime Grade 60
and Polyamide - PA 6.6 Grade 2 both from Marteau & Lemarié.

The experimental procedure is the following: the tank is filled with
a water-glycerol mixture and after approximately 24 h the temperature
at different positions in the fluid’s bulk differs in less than 0.6 °C
thus thermal equilibrium is reached. Then a standard calibration of
the 4D-LPT system is performed (Bourgoin and Huisman, 2020). The
spheres are released at the center of the tank with standard Stainless
Steel Anti-acid and Anti-magnetic chemical tweezers. The tweezers are
completely submerged below the air-liquid interface and released after
approximately 20 s when the fluid free surface is at rest. A minimum
time of 120 s is taken between successive drops to ensure that the fluid
has no perturbations left from the previous drop. The waiting time is
chosen to be at least 12 viscous relaxation times 7 = dg /v. Note that
the viscous times vary between different cases and the resulting waiting
time is in between 127 and 10007, with a median value of 1507.

2.2. Data sets

The experiments were conducted using two different optical magni-
fications, resulting in various values of the non-dimensional trajectory
length /¥ = = h/d, ranging from 11.6 to 200 (see Fig. 1). Note that
the lowest values of /%~ (11.6 and 23.3) correspond to the larger
optical magnification, or small A (hence giving better spatial resolution,
but shorter tracks) while the larger values of I} = were obtained with

the smaller magnification, or large A (resulting in a larger field of
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view, hence giving access to longer trajectories, what is important in
particular to properly estimate the frequency of oscillating regimes).
The values of I are reported in the I'—Ga parameters space in Fig. 2.

All the relevant geometric (inclination and planarity) and dynamic
characteristics (spectral content and terminal velocity) of particle tra-
jectories cannot be equally addressed from the different datasets as
the accuracy of their estimate depends on the maximum accessible
track length ¥ . Empirically, we found that to reasonably resolve
trajectory inclination, a dimensionless trajectory length of at least /* >
10 (which is accessible with all datasets) is needed. This has been
tested by checking the estimation of the inclination angle using the
longest trajectories in the oblique regime and successively considering
shorter and shorter portions of those long tracks. On the other hand, the
quantification of the planarity via the eigenvalue method detailed in
Section 3, requires /* > 23 - a condition not met for plastic particles, due
to their large diameter. This conclusion has been reached by checking
the estimation of the planarity using the longest available trajectories
in the chaotic regime and successively considering shorter and shorter
portions of those long tracks. This effect will be explored further in
Section 3.3. Finally, the spectral analysis required long trajectories, an
issue further discussed in Section 3.4.

In order to reduce experimental noise (due to inevitable particle
detection errors in the Lagrangian Particle Tracking treatment Ouellette
et al., 2005), the raw trajectories are smoothed by convolution with a
Gaussian kernel of width ¢ = 12 frames. It behaves as a low-pass filter
with a cut-off frequency f, = fps/oc = 2300 Hz/c = 192 Hz. Spectral
analysis is therefore expected to be well resolved for frequencies up
to of the order of 80 Hz as to respect the Nyquist-Shannon sampling
theorem.

As previously mentioned, for each data point in the I' - Ga param-
eters space, at least 10 and up to 25 experimental repetitions were
executed and their trajectories analyzed. This is mandatory in order to
test the repeatability of the observed regimes, estimate uncertainties,
and eventually detect multi-stable regions of the parameters space
where multiple settling regimes may coexist. The uncertainties in quan-
tities extracted from this data (e.g. trajectory angle or planarity) are
taken as the standard deviation over the total set of drops for each
data point. For computed quantities (i.e. Reynolds number, Galileo
number and Drag coefficient) the errors are estimated from a standard
propagation of errors, see for instance Raaghav et al. (2022).

Finally, in the remainder of this article, dimensionless parameters
are denoted by a superscript asterisk. Spatial variables are normalized
by particle diameter x* = x/d,, velocities are normalized by the
buoyancy velocity v* = v/U, = v/+/IT —1|gd,, and time is normalized
by the response time of the particles z, = d,/U,.

3. Results

In this section, we first recall and present the different settling
regimes reported in the literature. Then, the features of the 68 points
experimentally investigated in the parameter space (Fig. 2) are de-
scribed. Particular emphasis is put on their geometric and spectral
properties, as well their terminal velocity and drag coefficient estima-
tion

3.1. Different regimes

The different regimes in the parameters space obtained from numer-
ical simulations by Zhou and Dusek (2015) are represented by different
colors in Fig. 2. Seven distinct regimes were numerically identified,
whose features are summarized in the following:

1. Rectilinear Regime (white), with planar vertical trajectories and
no inclination or oscillations;

2. Steady Oblique Regime (gray), with planar and oblique trajecto-
ries with respect to the vertical, and no oscillations;
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3. Oblique Oscillating Regime, with planar and oblique trajecto-
ries, and the presence of oscillations. The frequency of oscil-
lations f* depends on the particle-fluid density ratio I', with
a High-Frequency Regime (HF, orange) at f* =~ 0.18 and a
Low-Frequency (LF, green) at f* ~ 0.068.

4. Planar or Rotating Regime (yellow), a bi-stable region of the pa-
rameters space composed of oblique and (High or Low-
Frequency) oscillating trajectories, which could be either planar
or exhibit a slowly rotating symmetry plane (thus generating
helicoid-like trajectories), coexisting with Chaotic Regimes. The
High-Frequency Regime, Low-Frequency Regime, and Chaotic
Regime coexist in this zone.

5. Vertical Periodic Regime (blue), where the trajectories are pla-
nar, rectilinear and vertical, and oscillate at f* € (0.141,0.15);

6. and finally the Chaotic Regime (pink), with oblique and non-
planar trajectories with no periodic oscillations.

A systematic study of the bifurcations between regimes was per-
formed numerically by Zhou and Dusek (2015). That study narrowed
down the limits between regimes, in terms of Ga and I', and has
reported new regimes not previously detected in the simulations by
Jenny et al. (2003, 2004) (such as a Helical/Rotating Regime and a
Vertical Periodic Regime). They also demonstrate the existence of bi-
stable zone in the parameters space, where two regimes could co-exist.
For instance, for moderate particle-to-fluid density ratios I' < 2 a bi-
stable regime between a Chaotic and a Vertical Oscillating Regime are
reported, while for larger density ratios they report bi-stability between
Planar Oscillating and Helical Regimes. Furthermore, they have better
quantified trajectory parameters such as angle, velocities and spec-
tral content. Note that this description of the dynamics of individual
particles was later used as a benchmark for numerical investigations
of collective particle effects (Uhlmann and Doychev, 2014; Fornari
et al., 2016). Few analytical results have been derived regarding the
bifurcations between different settling regimes, one exception being
the transition between the Rectilinear and the Steady Oblique Regimes
which have been analytically shown by Fabre et al. (2012) to occur
at a critical Galileo number of the order of 155, independently of
the particle-to-fluid density ratio, in excellent agreement with the
numerical findings previously mentioned.

To the best of our knowledge, only three experimental studies (Veld-
huis and Biesheuvel, 2007; Horowitz and Williamson, 2010; Raaghav
et al., 2022) have explored the predictions made by aforementioned
simulations and theories.Horowitz and Williamson (2010) were mostly
interested in regimes for rising spheres or slightly denser than the
fluid and high Galileo numbers: they studied particle-to-fluid density
ratios I below 1.4 and Galileo numbers ranging from 10> to 10*. In
particular, they studied trajectory angle and drag following the work
of Karamanev and Nikolov (1992). Intriguingly, most findings from
this study deviate from numerical simulations by Zhou and Dusek
(2015), in particular for the case of settling particles which will be
investigated here. On the other hand, Veldhuis and Biesheuvel (2007),
although with some discrepancies, observed several of the dynamical
regimes observed in the numerical simulations. In particular, oblique
trajectories with no significant frequencies (Steady Oblique Regime
in simulations) were reported. They also report oblique trajectories
with oscillations at three dominant dimensionless frequencies of 0.07,
0.017 and 0.025 (Oblique Oscillating Regime in simulations), whose
presence depends on the particle-to-fluid density ratio I'. Finally, an
oblique chaotic regime with no dominant frequencies and random
trajectory curvature (Chaotic Regime) was described. These regimes
were measured for particle-to-fluid density ratios I of 1.3 and 2.3 at
various Galileo numbers spanned by varying the fluid viscosity. Finally,
in 2022, Raaghav et al. (2022) performed experiments on rising and
settling particles, with four particle-to-fluid density ratios (I" = 0.87,
1.12, 3.19 and 3.9) and Ga ranging from 100 to 700. They confirmed
and contradicted some results of previous numerical simulations and
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this figure legend, the reader is referred to the web version of this article.)

experiments. The low Ga regimes (up to the Steady Oblique Regime)
is unambiguously confirmed, in agreement with previous studies. For
higher Galileo numbers (typically above 200), they found however dis-
crepancies both with previous numerical and experimental studies. For
instance, they observed a bi-stable behavior (between the Oscillating
and Chaotic Regimes) for moderately dense spheres (I" ~ 1.1) in the
range 250 < Ga < 300 in agreement with by Zhou and Dusek (2015),
but for density ratios above 3, they did not observe the High-Frequency
Oblique Oscillating Regime reported by Zhou and Dusek (2015); they
confirmed though the existence of a helical mode, although no bi-
stability with the Chaotic Regime was observed, contrary to the findings
by Zhou and Dusek (2015) reported.

Our experiments confirm the existence of all the predicted regimes,
in regions of the parameters space in relatively good agreement with
the ones delimited by numerical simulations. Fig. 3(a—c) qualitatively
show some examples of trajectories. More specifically, Fig. 3(a—c) show
some representative 3D trajectories for I’ 7.9 particles, from the
I* .« = 200 dataset. The trajectories have been arbitrarily centered in
the horizontal axis. Sub-figures show top and side views.

Fig. 3(a) represents a case of planar and oblique type of trajectories
measured here at Ga = 200. Note that steady and oscillating regimes
are almost indistinguishable in such a representation by a simple visual
inspection of the trajectories as the amplitude of oscillations is of the
order of the particle diameter. The distinction between the two regimes
will be quantitatively discussed later, based on the estimation of the
particle velocity and their spectral analysis (the example shown in
Fig. 3(a) is actually an oblique oscillating case). It can also be noted
that the angle of the trajectories with the vertical in this oblique regime
remains almost constant for all drops (the angle will be quantitatively
investigated in the next subsection, and is of the order of 5° in the
present example), but each trajectory has its own direction so that the
ensemble forms a cone hence preserving the global symmetry of the
problem.

Fig. 3(b) represents a sample of trajectories of I ~ 7.9 particles at
Ga = 217. By combining the side and top views, it can be seen that
several of these trajectories are consistent with portions of helicoids
(for instance the red and the dark blue curves, which appears as quasi
circular from the top view, although even with the /¥ = 200 dataset,
we only catch half of the period at most). Those co-exist with non-
planar chaotic trajectories (as for instance the black and yellow curves).
These measurements fall in the tri-stable regime previously mentioned.

Finally, Fig. 3(c) presents several trajectories that fall in the Chaotic
Regime: all trajectories are different and no pattern of planarity or
oscillations is present.

After this brief qualitative description of some observed trajectory
regimes, the next Subsections present a systematic quantitative analysis

~
~

of the different properties used to characterize trajectory geometry and
dynamics: angle with the vertical, planarity, spectral content, terminal
velocity, and drag.

3.2. Trajectories angle

For each recorded trajectory we define the settling orientation as
the angle between a 3D linear fit of the trajectory and the vertical,
and for each given set of parameters (Ga,I') we define the mean
settling orientation as the ensemble average of settling angles over
all trajectories recorded at those parameters. Fig. 4 shows the mean
settling orientation as a function of Ga for the three different classes
of particles investigated (I’ 79, I 25 and I’ 1.1). Besides,
the different settling regimes as reported from numerical simulations
and previously shown in Fig. 2 are delimited by the dashed vertical
lines and identified by colored rectangles that respect the color code in
Fig. 2. Furthermore, the type of symbols represents the value /%, also
following the nomenclature of Fig. 2.

A smooth transition from rectilinear to oblique (primary regular
bifurcation) is seen around the expected critical Galileo number of 150
for I' ~ 1.1 and I" ~ 7.9 particles and, although there is a lack of data
points in this region of Ga for I' ~ 2.5 particles, the available data points
are consistent with a similar transition also occurring in the same range
of Ga for those particles. More precisely, if the threshold between this
regimes is defined as the Galileo number value at which the angle of
the mean settling orientation has a non-zero angle, I' ~ 1.1 and I" ~ 7.9
particles present threshold values of (125 + 10) and (115 + 10) respec-
tively, leading to a joint threshold at Ga = (120 + 15). The trajectory
angle is then found to continuously vary with the Galileo number; see
for example I' ~ 7.9 particles: the angle varies monotonously from 0
to 6 degrees in the Ga range 110-190. With this respect, the transition
between the rectilinear regime and the steady oblique regime in our
experiment somewhat appears as an imperfect bifurcation rather than
a sharp bifurcation with a critical Galileo number Ga ~ 155. The origin
of such an imperfect bifurcation remains unclear and would deserve
further future investigations.

Additionally, the maximum observed angles are (5.7° +0.2°), (5.1° +
0.2°) and (5.1° + 0.2°) for density ratios 7.9, 2.5 and 1.1, respectively.
This maximum angle is reached around Ga = 200 in all cases in the
region of parameters space that has been identified in numerical simu-
lations by Zhou and Dusek (2015) and previous experiments (Horowitz
and Williamson, 2010; Raaghav et al., 2022) as corresponding to the
Oblique Regimes, although the distinction between steady and oscil-
lating regimes requires further analysis of the spectral content of the
trajectories, which will be presented later. We note also that, although
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the detailed trend of the settling angle with Ga as presented here has
not been systematically explored in previous studies, the values we
observe for the maximum settling angle are in good agreement with
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the range of angles previously reported: “of about 4 to 6 degrees”
in the Steady Oblique and Oblique Oscillating Regimes in numerical
simulations by Zhou and Dusek (2015), “approximately 4° to 7.5°”
in Horowitz and Williamson (2010) and “approximately 2.8° to 7.4°”
in Raaghav et al. (2022).

It can be seen in Fig. 4 that for large Galileo numbers (typically
Ga > 200) multiple values of the average settling angle can be observed
for similar values of Ga. These situations are generally consistent
with regions of the parameters space which have been identified in
numerical simulations either as multi-stable (yellow) or chaotic (pink).
For the denser particles, such multi-values of the settling angle are
for instance pronounced in the range Ga € (200,230) encompassing
both the HF-Oblique Oscillating (orange) and tri-stable Planar/Rotating
(yellow) regions of the numerical parameters space, what may suggest
that the multi-stable Planar/Rotating Regime, identified numerically
around Ga =~ 220, may actually extend further into the HF-Oblique
Oscillating region at lower Galileo numbers. For the lightest particles,
the trend to observe multiple values of the settling angle is very clear in
regions of Ga expected to correspond to the Chaotic Regime (pink), in
particular in the range Ga € (200,260). For the intermediate density
case (I' ~ 2.5), this trend is observed in the vicinity of the LF-
Oblique Oscillating Regime (green), what may be a sign that as for
the dense particles case, the region numerically identified as bi-stable
Planar/Rotating (yellow) may actually extend to lower values of Ga
particularly into the LF-Oblique Oscillating region.

It is also interesting to see that for the I' ~ 1.1 particles the drop
of the settling angle in the range Ga € (250, 300) is consistent with the
numerical prediction of a Vertical Periodic Regime (blue) appearing in
that range and surrounded by Chaotic Regimes.

Overall, measured settling angles are consistent with what is ex-
pected from the numerical parameters space. With the exception of
a probably more extended multi-stable region (yellow) overlapping
(partially or totally) the Oblique-Oscillating regions.

3.3. Trajectories planarity

The trajectory planarity is quantified by the ratio of eigenvalues
Ay/4; (with A4, > 4,) of the dimensionless perpendicular (to gravity)
velocity correlation matrix defined as:

%2 * %
vy v = [ o wxl;y)] 7 ¥
(o) (%)

with v* = v/U,. Perfectly planar trajectories yield 4,/4; = 0, while non-
vanishing values of this ratio indicate a departure from planarity (Zhou,
2016). Note that the analysis of the planarity only yields meaningful
results for trajectories with /¥ > 33.3. Fig. 5 shows the ratio oy
versus Ga number, for the three types of particles. As in previous
figures, the different regimes are delimited by dashed vertical lines and
identified by colored rectangles.

Planarity is lost at Ga = (220 = 15) for I' ~ 7.9 particles and
at Ga = (220 = 15) for I ~ 2.5 particles. At these points the ratio
between the eigenvectors of the velocity correlation matrix \/4,/4;
increases from approximately 0.15 to 0.50 for I ~ 7.9 particles (0.30
for I' ~ 2.5 particles). The range of Galileo number where planarity is
found to be lost is consistent with the transition towards the Planar or
Rotating Regime reported in numerical simulations by Zhou and Dusek
(2015), with a possible overlap with the LF-Oblique Oscillating region
for I' ~ 1.1 particles and with the HF-Oblique Oscillating region for
I' ~ 2.5 particles. On the other hand, no clear transition between planar
and non-planar trajectories is observed for I" ~ 1.1 particles, which may
be due to too small values of I .

In the case of I' ~ 7.9 particles, the loss of planarity seems to be
associated to the emergence of helicoidal trajectories. Fig. 3(b) presents
indeed a sample of trajectories for I' ~ 7.9 particles, representative of
the ensemble of trajectories at Ga ~ 217, that are consistent with a
half-helicoid. Similar trajectories are found at Ga = {215, 217, 221}
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and Ga = {228,233}, for several values of [ ~ > 33.3. Hence the
aforementioned loss of planarity for data with Galileo numbers larger
than (220 + 15) (see Fig. 5) can be related to the appearance of these
helicoid-like trajectories. Limitations of the measurement volume, even
in the I == 200 configuration, do not allow to be fully conclusive as
only a portion of the helicoid’s period is recognizable. However, assum-
ing that these trajectories are helicoids, the radius of their horizontal
projection (Fig. 3(b) top view) would be roughly 7 particle diameters,
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and their pitch would be approximately 500 particle diameters. Similar
helicoid-like trajectories have also been seen experimentally in previous
studies, although for smaller density ratios, I" < 3.9 (recall that metallic
particles in the present study have a density ratio I' ~ 7.5, which
has not been investigated in previous works): Veldhuis and Biesheuvel
(2007) reported what are possibly helicoidal trajectories for particles
with density ratio of the order of I ~ 2.5 (hence close to the present I' ~
2.5 particles), while Raaghav et al. (2022) found similar trajectories for
particles with I = {3.2, 3.9}. Their results show a pitch of the order
of 430 d, which is comparable to the one of 500 d, found here. In this
sense, the results of this work confirm the existence of such non-planar,
very likely helicoidal, regime for Ga € (215,233) at larger particle-to-
fluid density ratios, in the range of metallic particles (I" ~ 7.9). Recall
that the short /* in the data sets of I' ~ 2.5 and I" ~ 7.9 particles do not
allow to see a portion of an helicoid long enough to make such claims.

Fig. 5 for I' ~ 2.5 an I' ~ 7.9 particles also shows signatures of
non-planarity in the region numerically identified as chaotic (Ga >
230), in agreement with the sample trajectories shown in Fig. 3(c),
where several trajectories show a clear departure from simple portions
of helicoids. A clear distinction between non-planar helicoidal and
chaotic trajectories, with a systematic characterization of the pitch and
radius of the helicoids and of the frontier with the Chaotic Regime
would nevertheless require further dedicated experiments with a taller
visualization volume.

3.4. Trajectories oscillations

We analyze the emergence of oscillatory dynamics by studying the
fluctuations of the horizontal (i.e. perpendicular to gravity) dimension-
less velocity: v/ 1 = v} —(v}). In particular, while oblique-oscillatory
regimes have been experimentally reported for density ratios below 3.9,
we want to confirm here their existence at higher density ratios (i.e.
for the I' ~ 7.9 particles, with I = 7.9) and in that case evaluate
the corresponding frequency. On the other hand, the existence of a
Vertical Periodic Regime (light blue region in Fig. 2) for density ratios
below 1.8, as predicted by Zhou and Dusek (2015) was only very re-
cently corroborated experimentally (Raaghav et al., 2022). This regime
is expected to have trajectories with zero angle and Low-Frequency
Oscillations. Recall that the regime has been already discussed in
the previous section where a sharp decrease in trajectory angle was
found. We will therefore confirm here that the oscillations are at the
Low-Frequency f* = 0.06.

Numerical simulations by Zhou and Dusek (2015) predict the ex-
istence of Oblique-Oscillatory Regimes for Ga of the order of 200,
with a characteristic dimensionless frequency f* which depends on
the density ratio I'. More specifically, the simulations by Zhou and
Dusek (2015) predict a transition from a Low-Frequency Regime (with
a dominant dimensionless frequency f* = 0.07, corresponding to
green regimes in previous graphs) to a High-Frequency Regime (with
f* =~ 0.18, corresponding to orange regimes in previous graphs) oc-
curring at I’ ~ 2.3. However, previous experiments by Veldhuis and
Biesheuvel (2007) and Raaghav et al. have only partially confirmed
this scenario. Veldhuis and Biesheuvel (2007) for instance did observe
Oblique-Oscillating Regimes in the expected range of Galileo number
for particles with density ratios I' ~ 1.5 and I' ~ 2.5, but they
report a dominant characteristic frequency of f* ~ 0.25 for the lower
density ratio case (i.e. about three times higher than the numerical
prediction) while two main frequencies, of the order of 0.07 and 0.25,
were detected for the larger density ratio. On the other hand, Raaghav
et al. consistently report a Low-Frequency Oblique-Oscillating Regime
(with f* =~ 0.06) for particles with density ratio I" ~ 1.1, but did not find
any planar High-Frequency Oblique-Oscillating Regime for particles
with I = 3.9, for which only non-planar helical trajectories (similar
to those reported in the previous section of this work) were observed.
The existence of Oblique-Oscillating Regimes (and eventually the value
of their frequency) for high density ratios therefore remains open.
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Fig. 6, shows a sample of perpendicular velocity fluctuations versus
time for I' ~ 7.9 particles at Ga = 200, and I' ~ 1.1 particles for
Ga = 208. They exhibit a clear oscillatory dynamics, which is oblique
(remember that § ~ 5° for particles at these Ga) with marked frequency
and amplitude differences. I' ~ 7.9 particles show higher frequency and
smaller amplitude than I' ~ 1.1 particles. These observations are in
qualitative agreement with numerical predictions. The amplitude ratio
between the High and Low-Frequency perpendicular dimensionless
velocity oscillations of approximately 5 times is found however to be
substantially smaller than what is reported in numerical simulations
by Zhou and Dusek (2015) where a ratio of 12 is observed. From the
oscillations reported in Fig. 6, it is possible to estimate the typical
dimensionless frequencies f* for both regimes which is found to be of
the order of 0.07 for the Low-Frequency case (I" = 1.1 particles) and of
the order of 0.2 for the High-Frequency case (I" =~ 7.9 particles). These
values are in good agreement with the numerical prediction, and the
spectral analysis that follows.

A more accurate and systematic analysis of the oscillatory dynamics
in the different regimes can be performed by computing the Power
Spectral Density (PSD) of the velocity fluctuations averaged over mul-
tiple realizations in a narrow range of Ga. Fig. 7 presents various
PSD of velocity fluctuations at different values of the Galileo number,
for the I =~ = 200 data-set of I' ~ 7.9 particles. Both parallel and
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perpendicular components of velocity fluctuations have been analyzed.
Each sub-figure presents the ensemble average of all PSDs in ranges
of Ga where the spectral content was found to be robust: Ga = {187,
195, 198, 202, 205} for Fig. 7(a), Ga = {215, 217, 221} for Fig. 7(b),
Ga = {227, 233} for Fig. 7(c), and Ga = 235 for Fig. 7(d). We note
that the spectral resolution, limited by the accessible trajectory length,
is 0.01. All measurements with Ga smaller than 187 have no spectral
content (settling is then stationary, either vertical or oblique), therefore
not shown.

The perpendicular velocity fluctuations PSDs presented in Fig. 7(a)
show that for Ga € (187,205) oscillations have a broad frequency
peak centered around a dominant frequency f* = (0.19 +0.01), and a
secondary frequency around f* = (0.27+0.01). The dominant frequency
confirms the High-Frequency nature of the oscillations qualitatively
discussed in the previous paragraphs for I' ~ 7.9 particles at Ga = 200,
corresponding to the perpendicular velocity signal shown in Fig. 6.
It is also in agreement with the frequency predicted in numerical
simulations by Zhou and Dusek (2015) for such dense particles in this
range of Galileo number, where a High-Frequency Oblique Oscillating
Regime, with f* = 0.18 has been reported by Zhou and Dusek (2015).

The main difference between these experiments and the simulations
by Zhou and Dusek (2015) is the non-negligible intensity of the peak at
f* =~ 0.27 (and possibly a sub-harmonic of f* ~ 0.13). The existence of
the frequency peak at f* = 0.27 reminds of the observation by Veldhuis
and Biesheuvel (2007) who reported a similar frequency for particles
both the Low and High-Frequency Regimes and was interpreted as a
possible fourth harmonic of the Low-Frequency f* = 0.07.

When Ga is increased to the range (215, 221), the trajectories lose any
significant spectral signature. Neither the parallel, nor the perpendicu-
lar velocity PSD in Fig. 7(b) show any marked peak. Only a mild peak at
f* = (0.01+0.01) is present for both parallel and perpendicular velocities
and a mild peak at f* = (0.19 + 0.01), with an intensity 6 times smaller
than in the previous Ga range for the parallel velocity. The angular and
planarity analysis in the previous Subsection suggest that trajectories of
I' ~ 7.9 particles in this range of Ga might fall in the Planar or Rotating
Regime, with some evidence of the existence on helicoidal trajectories
in this regime. The estimated pitch of the helicoids (~ 500d,) would
correspond to a frequency of oscillation of f* = vﬁ /(500) ~ 0.002, in
principle out of reach of the 0.01 resolution of the present spectral
analysis. The mild peak at f* ~ 0.01 might however be a reminiscence
of this slow helicoidal motion.

At higher Ga, in the range Ga € (225, 235), the perpendicular velocity
fluctuations PSD presented in Fig. 7(c) have a marked peak at the
frequency f* = (0.055 + 0.010) with a broad base extending towards
lower frequencies, down to the spectral resolution of 0.1. This behavior
is similar to the one reported by Raaghav et al. (2022) for particles with
density ratio I' ~ 3.9 at Ga ~ 210, where a peak at f* ~ 0.05 and a
peak at f* ~ 0.005 were reported. This was interpreted as a probable
superposition of Low-Frequency oblique oscillations and a slow helical
rotation. This scenario is consistent with the combined analysis of an-
gle, planarity and spectral content in the present study. Indeed Fig. 4(a)
shows that trajectories in the range Ga € (225,235) are oblique, while
Fig. 5 indicates coexistence of planar and non-planar (hence compatible
with helical motion) trajectories in this range of Ga. Intriguingly while
both, Raaghav et al.’s and the present experiments seem to observe this
co-existence of Low-Frequency Oblique and helicoidal trajectories for
high density ratio particles, such a behavior has not been reported in
numerical simulations by Zhou and Dusek (2015).

At the largest Ga explored, Fig. 7(d) presents the PSDs for the case
Ga = 235. It does not present any dominant frequency, as it is expected
for Chaotic dynamics.

Overall, our study of oscillations for the high density ratio particles
(I' =~ 79), is in good agreement with numerical simulations apart
from the range Ga € (227,233) where Low-Frequency oscillations,
possibly co-existing with non-planar helical motion, were observed but
not reported in simulations. Reasonable agreement is also found with
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previous experiments by Raaghav et al. at density ratio I' ~ 3.9,
although we do confirm the existence of the High-Frequency oscillating
region for Ga € (187,205), which they did not observe, but is predicted
by the simulations by Zhou and Dusek (2015). We do not observe
however the same regimes as in the study by Veldhuis and Biesheuvel
(2007) at I' ~ 2.5; in particular in the Oblique Oscillating Regimes,
they report a Low-Frequency behavior (at f* ~ 0.07) rather than a
High-Frequency one, as predicted by the simulations. It is likely that
is due to the fact that the density ratio they considered is very close to
the Low/High-Frequency transition, found to occur around I' ~ 2.3 in
the simulations.

Fig. 8 presents PSDs of velocity fluctuations for I' ~ 1.1 and I' ~ 2.5
Particles, at different values of the Galileo number corresponding to the
following data sets: [} = 23.3 for I' ~ 2.5 particles; and [ = 11.6
for I' ~ 1.1 particles. Both parallel and perpendicular components of
velocity fluctuations have been analyzed. Each sub-figure presents the
ensemble average of all the PSDs in the following Ga regimes: I" ~ 2.5
Particles in the L-F Oscillating Regime showed in Fig. 7(a); and I' ~ 1.1
Particles in the L-F Oscillating and Vertical Periodic Regimes, presented
in Fig. 8(b) and (c), respectively.

The perpendicular velocity fluctuations PSDs presented in Fig. 8(b)
show that for Ga = 208 oscillations have a broad frequency peak
centered around a dominant frequency f* = (0.043 + 0.021). While the
parallel velocity presents a peak at the same frequency but with 10
times less energy. Note that the uncertainty is considerably higher here
since the trajectories are shorter (/5 = 11.6 or 23.3). The dominant
frequency confirms the Low-Frequency nature of the oscillations qual-
itatively identified in the velocity signal shown in Fig. 6. This is also
in agreement with the frequency predicted by numerical simulations by
Zhou and Dusek (2015) and observations from Veldhuis and Biesheuvel
(2007).

On the other hand, Fig. 8(c) presents the perpendicular and parallel
velocity PSDs of I' ~ 1.1 particles in the range Ga € (269, 272). We
observe a single broad frequency peak centered around f* = (0.085 +
0.021), that overlaps with the Low-Frequency. As for the sub-figure (a),
the parallel velocity presents a peak at the same frequency but with
10 times less energy. This peak is at frequencies slightly lower than
the frequency identified by Zhou and Dusek (2015) for the vertical
periodic regime (of the order of f* ~ 0.15). Overall, given the small
(although not strictly zero) angle previously reported for particles in
this range of parameters, our observations are globally consistent with
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the existence of such a Vertical Periodic Regime. It is worth noting
that the experiments of Raaghav et al. also measured non-strictly-zero
angles of 0.3° for similar range of parameters. Raaghav et al. have mea-
sured a frequency of f* = 0.15 very close to the numerical prediction
by Zhou and Dusek. Besides they have shown that in this region of
the parameters space both Chaotic and Vertical Oscillating trajectories
may co-exist. This may be a possible explanation for the broader than
expected peak at lower frequency here measured; given the low spectral
resolution of the present measurements (for this particular dataset) we
might actually be seeing a combination of Chaotic (broad spectra) and
Vertical Periodic trajectories (with, a priori, f* = 0.15).

Finally, Fig. 8(a) presents the perpendicular and parallel velocity
PSDs of I' ~ 2.5 particles in the range Ga € (190, 210). The per-
pendicular velocity fluctuations PSD presented in Fig. 8(c) shows that
oscillations have a broad frequency peak centered around a dominant
frequency f* = (0.054 + 0.013). Additionally, note that, as the trajecto-
ries are longer than for I' ~ 1.1 (Ir .« € (33.3, 100)), the uncertainty in
this case is smaller (though still larger than for I" ~ 7.9). This spectral
content is in agreement with the Low-Frequency Regime predicted in
numerical simulations by Zhou and Dusek (2015), and what Veldhuis
and Biesheuvel (2007) have measured for particles in this area of
the parameters space. A difference with the experiments of Veldhuis
and Biesheuvel (2007) is however seen as they have found harmonic
contributions at around f* = 0.27 (Veldhuis and Biesheuvel, 2007).

3.5. Settling velocity & drag

In this last section we investigate the terminal settling velocity of
the particles which results from the balance of the drag force and net
gravity (i.e. gravity plus buoyancy). The measure of terminal velocity
therefore allows to estimate the drag coefficient of the falling spheres
and compare it to tabulated values for fixed spheres.

As previously discussed, the dimensional analysis of the problem of
a sphere falling in a quiescent viscous fluid, yields two dimensionless
control parameters: Ga — I'. When addressing the further question of
the terminal vertical velocity v,, an additional dimensionless parameter
emerges: the terminal particle Reynolds number Re, = v,d,/v. It is
important to note that Re, is a response parameter of the problem
which depends on the control parameters I' and Ga (we shall write
then Re,(Ga, I), therefore implying a possible impact of the path
instabilities (which depend on both Ga and I') previously discussed on
the terminal velocity of the spheres. Similarly, when it comes to address
the question of the drag force experienced by the falling sphere, this
introduces another dimensionless parameter, the drag coefficient Cp),
which shall also be considered a priori as a function of both Ga and I
(we shall write C(Ga, I)). This situation therefore contrasts with the
case of the drag force of a fixed sphere in a prescribed mean stream,
as in that situation, the density ratio is not a relevant parameter, and
Reynolds number is then the unique control parameter of the problem.
The drag coefficient solely depends in that case on the sphere Reynolds
number C, p(Rep).

This then raises several points for the case of settling spheres:

(i) Are the usual correlations for the drag coefficient Cp(Rey) (not
explicitly dependent on the density ratio I') still valid for the case of
falling spheres (where Re,, and Cp, may have explicit dependencies on
both Ga and I')? Recall that explicit dependency on density ratio is
known to be potentially major for light particles with I' < 1 (Auguste
and Magnaudet, 2018; Karamanev and Nikolov, 1992);

(ii) Re, being a response parameter, usual correlations for the drag
coefficient of fixed spheres Cj(Re;,) are impractical as Re,, is not known
beforehand: correlations directly implying the actual control parame-
ters (Ga, I') (eventually only Ga if explicit dependency on density ratio
is found not to be important) would be more practical;

(iii) If density ratio is found to play a role, how important are the
associated effects?
We address here these questions.
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3.5.1. New correlation relations between Galileo number and terminal
particle Reynolds number/Drag coefficient

Consider a settling particle within a given point of the parameters
space (Ga,I'), with a terminal settling velocity v,(Ga, I'). From the
definition of the terminal particle Reynolds number Re, = v,d,/v and
of the Galileo number Ga = U,d, /v, we can define the dimensionless
particle terminal velocity v¥, which can be rewritten in terms of Ga and
Re,, (Cabrera, 2022):

. v Rep(Ga, I
Us'(Ga,F) = — = —
U, Ga

@

Regarding drag, considering that in the terminal settling the drag
force Fp = % psCpnd;v} equals the gravity-buoyancy force F, = Z(p, -
py)d3g = Zp,d>U2, from relation (2) the drag coefficient can be simply
expressed as (Cabrera, 2022):

Ga

2
Re, (I, Ga) ) ’ 3

Cp(Ga, I') = % (

Note that in this expression, the particle Reynolds number Re,(Ga,
I') a response parameter of the problem, which is not known a priori
and needs to be measured. As further discussed below it can be ana-
lytically expressed only in the vanishing Galileo number limit, which
corresponds to the steady vertical Stokes settling regime.

Fig. 9 presents the measurements of Re, versus Galileo number,
for all particles (of all density ratios and for all the settling regimes)
explored in the present study. The points appear to be relatively well
packed on a main common trend, implying a minor direct dependency
of Re, on the density ratio I' (note that an implicit dependency on

I still exist via Ga = /(I — l)gd;/v). Some scatter of the points
is however visible, which may still reflect a possible explicit (minor)
correction to the main trend due to the density ratio (this aspect will
be further discussed in the next Subsection).

Before addressing such possible corrections, let first consider as a
first approximation that Re, is independent on the density ratio and
only explicitly dependent on Ga. According to (3), that implies then that
the drag coefficient Cj, is itself also independent of the density ratio,
and solely dependent on Ga. Since Re, and Ga are then related, Cj, can
be equivalently considered as Ga-dependent or Re,-dependent. This is
in agreement with previous studies by Horowitz and Williamson (2010)
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and Raaghav et al. (2022) who measured the drag coefficient of falling
spheres and did not observe, within the scatter of their measurements,
a significant deviation compared to the fixed sphere case.

It can be noted that the empirical finding that neither Cp, nor Re,
explicitly depend on I', while they are univoquely related via Ga, is
trivial in the Stokes settling regime (in the limit of vanishing Ga and
Re,). In this limit, analytical solutions of Stokes equations, lead indeed
to Cp(Re,) = 24/Re,, that combined with Eq. (3) yields Re, = %Gaz.

For non vanishing Ga and Re,,, a univoque relation between Re,
and Ga supports then the idea that an explicit correlation Re,(Ga)
between these two parameters (via (6)) can be derived using classical
correlations for Cp(Re,) for fixed spheres. We propose here to use the
correlation by Brown and Lawler (2003), which accurately fits the drag
coefficient for spheres over a broad range of Reynolds number (up to
Re, $2x10°):

0.407

8710 °
Rep

Cp(Re,) = %(1 +0.150Re, 81 + @

P

By including this expression of Cp(Re,) into (3), we can indeed
provide a direct correlation for the terminal particle Reynolds number
(and hence for the particle terminal velocity) only depending on the
actual control parameter of the problem which is the Galileo number:

Re "(Ga) = Ga%(22.5 + Ga'*™) .
P 0.0258Ga*>%7 +2.81Ga*%% 4 18Ga'*%* + 405

This expression is represented in Fig. 9 by the solid line, and is
found in very good agreement with the global trend measured for the
settling particles in our experiments (what essentially confirms that
the drag coefficient for fixed spheres reasonably applies to the case
of falling spheres). Beyond this agreement, the above correlation is of
great practical interest as it allows a direct determination of the settling
velocity of a sphere from the sole a priori knowledge of its Galileo
number (which is a true control parameter, only requiring to know the
particle-to-fluid density ratio, the sphere diameter, the acceleration of
gravity and the ambient fluid’s kinematic viscosity), without the need
of using the traditional Cp(Rey) correlation to solve (numerically) the
non-linear equation (3): RePZCD(Rep) = %Gaz.

Similarly, a direct correlation between the drag coefficient and
the actual control parameter of problem (Ga) (rather than the usual
correlation Cp(Re,), which connects two response parameters) can be
derived by re-introducing expression (5) back into (3):

)

0.0258Ga*>%7® + 2.81Ga2%3% 4 18Ga!-364 + 405 )2 ©)

5 4
Cl(Ga)= = <
b 3 Ga(22.5 + Ga'3%)

3.5.2. Density ratio effect

The new correlations (5) and (6) we just proposed assume that both
the terminal Reynolds number Re, and the drag coefficient Cj, only
depend on Ga and do not depend explicitly on I'. Based on Fig. 9,
this seems a reasonable global assumption, though some scatter of the
points in Fig. 9 and small deviations (in particular for the less dense
particles, I' ~ 1.1 particles, represented as squares in the figure) with
respect to relation (5) cannot rule out a possible (minor) effect of
density ratio.

To better test possible deviations due to density ratio effects, we
show in Figs. 10 and 11 the terminal Reynolds number and the drag
coefficient compensated respectively by relations (5) and (6) such that
a value of zero would correspond to a perfect match (hence with no
density effects).

Fig. 10 (for the compensated terminal Reynolds number) shows
that although the measurements for all different datasets obtained in
this work are indeed distributed around zero, they can deviate from
this density-independent trend with a scatter of typically +10%. More
importantly it can be seen that (apart for two outliers out of the 68
independent measurements we carried) the scatter of the points present
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Fig. 10. Galileo number versus particle Reynolds number compensated by the em-
pirical correlation from Eq. (5). The symbols represent the different density ratios
(i.e. particle material): squares — I' ~ 1.1; triangles — I" ~ 2.5; circles — I ~ 7.9.
Whereas the edge colors represent the different trajectory regimes, as in Fig. 2: black
— Rectilinear & Oblique; green — Low-Freq.; orange — High-Freq.; yellow — Planar
or Rotating; and magenta — Chaotic & Vertical Periodic.
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Fig. 11. Drag coefficient compensated by the empirical correlation from Eq. (6)
versus Galileo number. The symbols represent the different density ratios (i.e. particle
material): squares — I" ~ 1.1; triangles — I' ~ 2.5; circles — I" ~ 7.9. Whereas the edge
colors represent the different trajectory regimes, as in Fig. 2: black — Rectilinear &
Oblique; green — Low-Freq.; orange — High-Freq.; yellow — Planar or Rotating; and
magenta — Chaotic & Vertical Periodic.

a systematic trend with the density ratio, where less dense particles
(notably I' ~ 1.1 particles and, to a less extent, I' ~ 2.5 particles) are
systematically below the correlation derived from fixed spheres, while
heavy particles are systematically above. The density-independence
approximation seems therefore to give a reasonable average trend to
predict the terminal Reynolds number using relation (5) though denser
particles will have a positive bias (settling up to 10% faster in the range
of densities explored here) and lighter particles a negative bias (up to
13% slower in the range of densities explored here).

Similarly Fig. 11 shows that (apart for the same two outliers out of
the 68 independent measurements we carried), a systematic effect of
density ratio can be observed on the drag coefficient Cp,, where less
dense particles (notably I' ~ 1.1 particles) have a systematic positive
bias (i.e. their drag coefficient is larger, up to + 15% in the range of
densities we explored) compared to the correlation derived from fixed
spheres, while heavy particles have systematic negative bias (i.e. their
drag coefficient is lower, up to —15% in the range of densities we
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explored) compared to the correlation derived from fixed spheres. The
overall drag coefficient spread is 30%.

These results challenge the widespread idea that the drag coefficient
(and eventually then its connection to the terminal settling velocity
via relation (6)) of freely settling spheres (i.e. with I > 1) do not
explicitly depend on the density ratio I'. Previous studies are however
not in contradiction with this claim (Auguste and Magnaudet, 2018;
Horowitz and Williamson, 2010; Raaghav et al., 2022; Veldhuis and
Biesheuvel, 2007). Indeed, while these studies did not specifically focus
on a quantitative estimation of possible fine deviations from the fixed
sphere case, small systematic deviations can actually be observed in the
reported data. In particular, we find a systematic explicit dependence
on I', as Cp and Re, vary in 25% to 30% between the less dense
(I' ~ 1.1) and the denser particles (I ~ 7.5). It is worth to remark
that the results from the denser particles (I" ~ 7.9 particles) and
the intermediate density ratio ones (I =~ 2.5 particles) are hardly
distinguishable (in particular regarding the drag coefficient in Fig. 11).
This suggests that the I' dependency might be most relevant for I’
values close to one, i.e. closer to the rising particle case where a clear
dependency with I' was reported for the drag coefficient (Karamanev
and Nikolov, 1992; Auguste and Magnaudet, 2018) and has been found
to be systematically larger compared to the case of fixed spheres.
Deviations for light particles with I < 1 remain small and comparable
to the ones we report here for I" ~ 1.1 particles with I" > 1, and become
important for very light spheres with I' « 1.

4. Conclusions

We presented in this article an experimental study on the settling of
single spheres in a quiescent flow, with a systematic characterization
of settling regimes, settling terminal velocity and drag coefficient of
spheres with density ratios up to I' ~ 8 (previous similar studies were
limited to I' < 4). The spheres dynamics is analyzed in the parameters
space I' — Ga, with particle-to-fluid density ratios I' € (1.1,7.9) and
Galileo numbers Ga € (100, 340).

Overall, our results on the settling regimes are in very good
agreement with the numerical simulations by Zhou and Dusek (2015)
and in partial agreement with previous experiments by Veldhuis and
Biesheuvel (2007) and Raaghav et al. (2022) over a narrower range of
density ratios.

In particular, we confirm that for all situations, trajectories even-
tually become chaotic in the high Galileo number limit (typically for
Ga > 250) although the details of the route to chaos depends on the
density ratio of the particles. For the lowest density ratio, we observe
all the regimes predicted by Zhou and Dusek (2015) simulations. In
particular we confirm the Low-Frequency nature of Oblique Oscillating
Regime (for Ga < 200 for I' = 1.1 and around Ga =~ 200 for
I' = 2.5) with a dominant dimensionless frequency f* ~ 0.06. While
this regime (predicted by Zhou and Dusek (2015)) was reported by
Raaghav et al. (2022), it was not clearly observed in experiments by
Veldhuis & Biesheuvel. We also confirm that particles with density
ratio close to unity (Plastic Particles with I = 1.1) exhibit a “pocket”
of vertical periodic settling in the range Ga € (250,300). This regime
predicted in simulations by Zhou and Dusek (2015) was also reported in
experiments by Raaghav et al. although it was not observed by Veldhuis
& Biesheuvel.

For the densest particles we investigated (Metallic Particles with
I = 7.9), which are also the densest reported for such experimental
studies, we confirm the existence of a High-Frequency Oblique Oscil-
lating Regime, around Ga ~ 200 with f* =~ 0.18. This regime was
not observed in experiments Raaghav et al. (2022) at I' = 3.9 who
only reported helical/rotating trajectories. We also observe such helical
trajectories (around Ga = 220), which we find to co-exist with the High-
Frequency Oblique Oscillating Regime for Ga < 220, in agreement with
what Zhou and Dusek (2015) identified as a multi-stable Planar-or-
Rotating Regime, where both planar (oblique oscillating trajectories)
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and non-planar (helical trajectories) could be observed. We find how-
ever that the range of multi-stability is probably larger than what is
reported in the numerical study by Zhou and Dusek (2015), as helicoids
were randomly observed over almost the entire range of Galileo num-
bers a priori corresponding to the High-Frequency Oblique Oscillating
Regime. This may explain why the High-Frequency Oblique Oscillating
Regime was not reported in Raaghav et al. (2022), who may have only
(randomly) observed helical trajectories in this range. Concerning the
helical trajectories, although the limited extent of the measurement
volume in our experiment did not allow to fully characterize the helical
properties, raw estimates of the radius (about 7 particle diameters)
and the pitch (several hundreds particle diameters) of the portion of
helicoids we observed are consistent with previous values reported in
experiments by Raaghav et al. (2022) and simulations by Zhou and
Dusek (2015).

Finally, our study of the spheres terminal settling velocity (v,)
and drag coefficient Cj, carries two important results. First, neglecting
density ratio dependencies, we have proposed two new correlations
directly relating the terminal Reynolds number Re, = v,d,/v and the
drag coefficient Cj, to the Galileo number Ga. For the case of settling
spheres, these relations are more handy to use compared to classical
correlations between the Cp and Re, as, contrary to Ga which is a
true control parameter of the problem, Re, is a response parameter
which cannot be determined beforehand. Secondly, we have shown
that the usual approximation to neglect an explicit dependency on the
density ratio I' (other than the implicit dependency through Ga of the
terminal Reynolds number and drag coefficient) for settling spheres
is not justified from the dimensional analysis and not fully supported
by experimental findings. In particular, a trend was observed were
the drag coefficient of the lightest particles was systematically larger
than for the densest particles, with a difference up to about 30% over
the entire range of parameters we investigated. This indicates that, at
least in the range of Galileo numbers explored here (with rich and
complex settling regimes), while using the drag coefficient from usual
correlations tabulated for fixed spheres (which can be considered as
infinitely dense) at the corresponding Reynolds number may give the
good order of magnitude of the terminal velocity, an accurate estimate
would require to account for finite density ratio effects. Beyond the case
of spheres settling in quiescent fluid addressed here, such corrections
may also play a role in the context of modeling the drag force coupling
of finite size inertial particles advected and settling in turbulent flows.
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