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a b s t r a c t

The relaxation dynamics of a weathercock free-to-rotate, in the presence of a uniform
flow, as it aligns with the flow direction, is investigated experimentally in a wind-tunnel.
The dynamics is observed to conveniently follow a damped harmonic oscillator behavior.
At first order, the frequency is set by the aerodynamic coefficients. We show that a
quasi static approach fails to precisely describe the relaxation dynamics and that non-
stationary corrections are required to model the dynamics. A first strategy is to introduce
added mass, added stiffness and added damping to the quasi-static approximation,
following what is usually done in the context of vortex-induced vibrations. A second
strategy is to introduce empirical corrections, whose scaling is obtained from the analysis
of the experimental data. Finally, these two strategies are compared and we discuss the
physical interpretations of the non-stationary corrections.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Flows and wind in particular have the particularity of bringing objects to life, by breathing movement onto them.
good example for this is how wind makes buildings sing (Berhault, 1977) and leaves whistle (Fegeant, 1999a,b) in

he audible spectrum, also known as wind-induced vibrations. The description of the dynamics of these objects moving
n a flow requires unsteady aerodynamics models, that have been extensively developed over the last century due to
heir importance in aircraft design, prediction of aeroelastic stability, or development of control strategies, and with the
ecent emergence of energy harvesters based on unsteady aerodynamics (Lu et al., 2019; Wu et al., 2021; Allen and Smits,
001; Olivieri et al., 2017; Tavallaeinejad et al., 2021). The field of unsteady aerodynamics dates back to the pioneering
orks of Wagner (1925), Theodorsen (1935) and their variants (von Kármán and Sears, 1938). Theodorsen model includes
dded-mass forces and idealized wake vorticity to incompressible thin airfoils in two-dimensions, assuming inviscid flow
nd infinitesimal motions. Wagner’s model belongs to the class of indicial response models (Truong and Tobak, 1990),
here the lift coefficients are computed as a response to a given time dependent angle of attack, knowing the indicial
esponse to a step function of the angle of attack. These models have been extensively studied and developed due to the
mportance of unsteady dynamics for various applications (see for instance the reviews (Peters, 2008; McCroskey, 1982).
n the other hand, the ever-increasing complexity of data obtained using modern numerical simulations or experimental
haracterization led to the development of reduced-order models expressed in the form of state–space representation
see Brunton et al. (2013), Taha et al. (2014) for detailed discussions). The reduced-order models are thus usually built
pon parameter identification from experimental or numerical data. Note that Theodorsen’s model can be recast into the
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state–space representation (Brunton and Rowley, 2013). The use of quasi-static versus unsteady aerodynamic modeling
s usually quantified using the reduced velocity Ur or equivalently the reduced frequency k. For a body oscillating at a
requency f , the reduced velocity is defined as U/(fD) with D the characteristic dimension of the object and U the mean
wind velocity. The reduced frequency is defined as k = π/Ur. When Ur ≫ 1 (Ur > 20 in practice (Blevins, 1990)), a
uasi-static approach usually becomes relevant, using for instance drag and lift coefficients as traditionally measured in
ind-tunnels for static objects and steady wind conditions. While criteria for the validity of quasi-static approaches have
een proposed in oscillatory motion such as flapping flight (Taha et al., 2014), no consensus has yet been found for general
pplication of quasi-static approximation in aeroelasticity (Haddadpour and Firouz-Abadi, 2006).
In this article, we investigate wind induced oscillations in a system which is aerodynamically stable, but which exhibits

amped oscillations in the path towards its final stable equilibrium state when initially put far from equilibrium. More
pecifically, we consider the dynamics of a simple free-to-rotate object, a balanced disk pendulum, subject to a uniform
low. When the pendulum is initially placed with the disk facing the wind, it experiences self-oscillations until it eventually
eaches its final natural equilibrium position aligned with the wind, similar to the response of a weathercock to a cross
low. We address here the question of the dynamics of the weathercock through its path to equilibrium, and the relevance
f quasi-static or unsteady descriptions of the dynamics. Studying a balanced pendulum was motivated by features of the
ynamics of a weighted pendulum immersed in a flow (Obligado et al., 2013; Gayout et al., 2021) for which the equilibrium
osition is set by a balance between the torque of the weight and the aerodynamic torque. The non-monotonic dependency
f the aerodynamic coefficients of an inclined circular disk facing a uniform flow (Flachsbart, 1932), especially at the
tall angle, then leads to a multistable system. Studying the relaxation of such a weighted pendulum would thus lead to
trongly non-linear dynamics — and the estimate of the validity of quasi-static approaches would then be an extremely
ifficult task due to the static non-linearities and the possible occurrence of strong dynamic stall (Corke and Thomas,
015). Contrary to a weighted pendulum, the balanced pendulum has no prescribed natural frequency f which can be
sed a priori to estimate the reduced velocity Ur of the system in order to know beforehand the importance of non-
tationary effects. As we will see, the natural self-oscillating frequency is itself an aerodynamic response whose order of
agnitude can be reasonably estimated based on the quasi-static normal drag coefficient, while the overall dynamics still

equires to account for non-stationary corrections. This article is organized as follows. The experimental setup, consisting
f a balanced pendulum immersed in a wind tunnel, is described in Section 2. Signal analysis of the measurements of
he time evolution of the relaxation of the weathercock towards its equilibrium position, and of their interpretation is
lso detailed in Section 2. Non-stationary corrections are then introduced in Section 3. These corrections are compared
n Section 4, while the physical interpretations of each of the correction parameters are discussed in the same section.
inally, Section 5 concludes this article.

. Material and methods

.1. Experimental setup

A schematic view of the experimental setup is provided in Fig. 1. A balanced disk pendulum, acting like a weathercock,
s placed in a wind tunnel. The disk pendulum consists of a thin disk of diameter d, surface area S = πd2/4, and thickness
e, made of aluminum or Vivak

®
and glued to a sanded saw blade of length 31 cm. The pendulum is balanced by coinciding

the pivot with the center of mass. Frictionless rotation is ensured by an air bushing (OAVTB16i04 from OAV Labs) equipped
with a contact-less rotary encoder that records the angular position α of the blade with minimal friction (DS-25, 17-bit
digital encoder from Netzer). The typical length L between the center of mass and the center of the disk is 10 cm. In
order to vary the moment of inertia of the weathercock, the blade can be weighted on the opposite side to the disk with
a thin circular magnet, aligned with the wind. In this article, we investigate the influence of the disk diameter d, the
length L, the moment of inertia J on the dynamics of the weathercock relaxation. As discussed in Section 4, the influence
of these parameters is understood using a single dimensionless parameter, the reduced velocity, defined in Eq. (8). As
further discussed below, for moderate wind velocities, the magnet also allows to non-intrusively impose the initial out-
of-equilibrium position of the weathercock and release it on demand. Table 1 summarizes the various parameters used
in the experiments presented in this article.

The wind tunnel in which the weathercock is placed is a closed-loop wind tunnel with a square test section of
51×51 cm2. The turbulence rate of the wind tunnel (defined as the ratio of the velocity standard deviation to the mean)
is about 2% after the flow has been conditioned through a 6mm honeycomb. The experiment is conducted with the
weathercock in the center of the wind tunnel so that the dynamics of the weathercock is not affected by effects from the
walls.

In order to carry a statistically significant characterization of the return to equilibrium of the weathercock, several
realizations are repeated for each set of weathercock parameters (according to Table 1) and for different mean wind
velocities.

The exact same protocol is followed for all these experimental realization. First, the weathercock is set at the vertical
(α = 90°). This is achieved either using the magnet and a coil placed below the test section of the wind tunnel (see Fig. 1
or manually using a stick. Then, the flow velocity is increased to its desired test value. The weathercock is finally released
(by turning off the magnetic field or removing the stick) and left free to oscillate and to reach its final equilibrium position,
2
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Fig. 1. (a) Experimental setup showing the test section of the wind-tunnel, the pendulum made of a thin disk and the coil for setting the pendulum
o the vertical. (b) Details on the pendulum for setting the initial position with the coil. (c) Definition of the effective flow velocity Ueff and effective
ngle of attack αeff acting on the moving disk.

Table 1
Physical characteristics of the different weathercocks used in the experiment. Each disk enables for two sets of
experiments, one with a magnet at the blade’s opposite end and the other without. Al stands for aluminum.
Diameter ddisk (cm) 3 4 5 6 8 9 10

Material Al Al Al Al Al Vivak
®

Vivak
®

Thickness e (mm) 0.3 0.3 0.3 0.3 0.3 0.6 0.6
Distance L (cm) 13.5 13.8 13.3 12.9 11.8 12.5 12.1
Inertia J (kg cm2) 1.34 1.57 1.66 1.89 2.24 2.57 2.90
Equivalent Ur 91.2 55.0 36.9 27.8 17.8 14.6 12.8
Equivalent k 0.034 0.057 0.085 0.11 0.18 0.22 0.25

L with magnet (cm) 17.4 17.5 17.3 16.9 16.2 16.5 16.0
J with magnet (kg cm2) 2.36 2.63 2.86 3.25 3.95 4.31 4.82
Equivalent Ur 107 63.3 42.5 31.8 20.1 16.5 14.3
Equivalent k 0.029 0.050 0.074 0.10 0.16 0.19 0.22

which by static considerations is at the horizontal. Note, that the maximum available magnetic torque limits the magnetic
release to low wind velocities (typically U < 2m s−1 for the 6 cm disk). This protocol is then repeated for about 10 times
for around 8 to 14 values of U for each of the 14 weathercock configurations, leading to 751 independent realizations
of the relaxation dynamics, which are analyzed in the following. The magnet being a 30 mm in diameter, 1 mm thick
NdFeB disk magnet, its cross section seen by the flow is very small. The aerodynamic contribution of the blade and of the
magnet will thus be neglected.

A typical time series obtained following the above-detailed protocol is shown in Fig. 2(a). This signal shows that
the weathercock dynamics resembles that of a damped harmonic oscillator, sinusoidal oscillations modulated by an
exponential attenuation as evidenced in Fig. 2(b). This signal can be parameterized by two characteristic times, its period
T = 2π/ω and its attenuation time τ = 2/β , with ω the pulsation of oscillation and β the damping coefficient. The
weathercock dynamics could then be described by a simple damped harmonic oscillator equation:

α̈ + βα̇ + ω2α = 0 (1)

This is not trivial, as the overall aerodynamic forces acting on the weathercock have complex angular dependencies, as
illustrated in Fig. 2(c) which represents the normal static drag coefficient CNst (α) of a fixed inclined disk as a function of
he angle of attack (Flachsbart, 1932). We show in the next sub-section that the damped harmonic oscillator behavior is
ualitatively expected in a quasi-static description of the aerodynamics of the weathercock in the limit of small oscillations
more precisely in the range of linearity of CNst (α), i.e. for α ∈ [−40◦

; 40◦
]). In Section 3 we will show however that a

uantitative description requires non-stationary aerodynamic effects to be accurately accounted for.
3
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Fig. 2. (a) Example of an experimental signal: the pendulum is set to the vertical and left to oscillate (ddisk = 4 cm, J = 2.63 kg cm2 , and U = 3m s−1).
(b) Semi-log presentation of the signal amplitude over time. A pulsation ω can be defined from the period T of oscillation and a damping coefficient
β can be extracted from the exponential decrease of amplitude of characteristic time τ . (c) Static CN coefficient for a disk (Flachsbart, 1932), stall
is represented by the dashed green lines.

2.2. Quasi-static momentum equation

In the absence of any weight and any external forcing other than the aerodynamic forces on the disk, the momentum
equation governing the weathercock dynamics can be written as:

Jα̈ = Γaero(t, α, α̇) (2)

with Γaero the instantaneous aerodynamic torque. Note that in a fully non-stationary situation the dependency of
aerodynamic quantities as Γaero may depend on higher order temporal derivatives of the angular dynamics α(t) (added-
mass effects, further discussed in the sequel, involve for instance acceleration dependent corrections). For the simplicity
of notations we shall however only write f (t, α, α̇) when referring to any instantaneous quantity f eventually subject to
non-stationary aerodynamic effects.

In the range of Reynolds numbers Re investigated here (i.e. between 103 and 104, based on the mean wind velocity and
the disk diameter, the aerodynamic coefficients are Re-independent. It is convenient to introduce the normal aerodynamic
coefficient CN as CN = −CL sin(α) + CD cos(α), with CL and CD being respectively the lift and drag coefficients. A standard
expression for Γaero based on dimensional analysis then reads Γaero(α(t), t) =

1
2ρSU

2LCN (α(t), t), with ρ the air density,
nd the notation α(t) refers to non stationary mechanisms depending upon α, α̇ and α̈. We stress here that the flow
elocity and the angle of attack need to be corrected to account for the actual relative velocity between the disk and the
ean stream (Chiereghin et al., 2019), resulting in an effective flow velocity Ueff and an effective angle of attack αeff (see
ig. 1c):⎧⎨⎩ U2

eff = U2
+ 2LU α̇ sin(α) + L2α̇2

αeff = α + arctan
(

Lα̇ cos(α)
U + Lα̇ sin(α)

)
(3)

A first approximation for the expression of normal drag coefficient CN (αeff(t), t) is to use its static value CNst (αeff),
hich is tabulated in the literature for static inclined disks (Flachsbart, 1932), and is displayed in Fig. 2(c). The quasi-static
4
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weathercock dynamics then follows the equation:

Jα̈ =
1
2
ρSLU2

effCNst (αeff(t)) (4)

A Taylor expansion in α around the equilibrium position α = 0° (considering the expressions for αeff and Ueff in Eq. (3)),
hen leads to a damped harmonic oscillator equation,

α̈ + βst α̇ + ω2
stα = O(α3) (5)

reminding of Eq. (1) with⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω2

st =
ρSLU2

2J
dCNst

dα

⏐⏐⏐⏐
0

βst =
ρSL2U
2J

dCNst

dα

⏐⏐⏐⏐
0

=
L
U

ω2
st

(6)

We note here that the pulsation of the quasi-static regime is given by the slope of the CN coefficient at the origin. We
expect the expansion around α = 0° to hold over the entire linear regime of CNst , i.e. up to the stall angle (α ∼ 40°, see
ig. 2a), which means that this approximation should hold for the observed relaxation dynamics after the first minimum
or the signal shown in Fig. 2 (i.e. for t > 1.2 s). We also stress that the quasi-static modeling does not take into account
he unsteadiness behavior due to vortex shedding and is thus expected to fail for the lowest values of the reduced velocity,
s developed in the next section.

. Results

Following the previous considerations, it is tempting to compare the measured weathercock relaxation dynamics
owards equilibrium to the quasi-static damped oscillator dynamics associated to Eq. (5). Fig. 3 shows the experimental
alues for ω2 and β (computed by fitting the experimental signals as a damped harmonic oscillator dynamics) as functions
f their estimations using the static coefficient approximation ω2

st and βst (Eq. (6)). It can be seen that, for the range of
xplored parameters, both the oscillating pulsation ω and the damping coefficient β are linearly related to the quasi-
tatic predictions. The quasi-static damping coefficient βst slightly underestimate the actual damping coefficient β , while
he quasi-static estimate of the pulsation ωst systematically overestimate the actual pulsation ω. This suggests that,
lthough the quasi-static approximations ωst and βst give the correct order of magnitude for the oscillating frequency and
amping, corrections to the quasi-static model are still required. The quasi-static values for the oscillating frequency and
he damping coefficient can therefore be considered as a reasonable first order approximation, from which quantitative
orrections are to be derived in the frame of a refined modeling of the weathercock dynamics. In the following, we propose
wo ways of recovering the experimental dynamics by extending the quasi-static dynamics given by Eq. (4), first in the
ontext of a time-domain expansion, second by introducing an empirically determined dynamical normal drag coefficient
Nin . According to Eq. (2), the corrections are expected to depend not only on the angular position α, but explicitly upon
he time t and/or the higher time derivatives of α(t) (angular velocity and acceleration). In the following, we introduce
uch corrections that can be computed a priori, and we show that they only depend upon the reduced velocity Ur or the
low velocity U .

.1. Time domain correction

We propose in this section a refinement of the quasi-static model accounting for possible non-stationary corrections
hat would be responsible for the deviations observed for the weathercock dynamics, in particular regarding the expected
scillation frequency. When such frequency shifts are observed in unsteady aerodynamics, a common theoretical approach
s the addition of stiffness and mass to the dynamics equation, thus taking into account the effective global impact of
ortex shedding on the free dynamics. We note that for a rotating system as the one investigated here, the equivalent of
n added mass would correspond to an added moment of inertia.
This approach, widely used in vortex-induced vibration theory, assumes that the behavioral dynamics depends on

he ratio between the vortex shedding frequency and the frequency of natural oscillation of the system. Non-stationary
erodynamic corrections are expected to be dominant when natural oscillations are rapid or comparable to vortex
hedding, while a quasi-static approach should hold for slow oscillations. As already stated in Section 1, this competition
etween natural oscillations and vortex shedding is usually quantified by the reduced velocity Ur, a characteristic
imensionless number which characterizes the unsteadiness of the aerodynamic couplings:

Ur ≡
1
St

fvs
f

=
U
df

, (7)

where fvs is the vortex shedding frequency, f the natural oscillation frequency of the structure in the wind and St = dfvs/U
the Strouhal number.
5
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Fig. 3. (a) Experimental measured pulsation ω2 with respect to the static estimated pulsation ω2
st . (b) Experimental measured damping coefficient β

ith respect to the static estimated damping βst . Dash-dotted lines represent identity and the color codes for the Ur parameter of each experiment
on both graphs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In the present situation, as the weathercock is perfectly balanced, it has no structural natural oscillation frequency
associated to its rotational dynamics (contrary to a weighted pendulum for instance). The linear relation between ω and

st shows indeed that the oscillation frequency has an aerodynamic origin, whose order of magnitude and trends are
easonably captured by the quasi-static Eq. (6). In the present case, the reduced velocity is therefore defined using the
uasi-static oscillating frequency: f = fst ≡ ωst/2π . This leads to the following expression for Ur:

Ur =
1
St

fvs
f

=
U
d

2π√
1
2

ρSU2L
J

dCN

dα

⏐⏐⏐⏐
0

=
4
d2

√ 2π J

ρL
dCN

dα

⏐⏐⏐⏐
0

. (8)

Remarkably, Ur is found to be independent of the flow velocity U , linked to the fact that the natural oscillations of
he balanced weathercock are self-induced by aerodynamic couplings. As such, Ur is varied in the experiments by the
odifications of parameters d, J and L of the weathercock. The range of explored Ur in this study spans from 14 to 120

see Table 1). We note that this broad range of accessible values of reduced velocity confirms that the observed oscillations
f the weathercock are not primarily driven by vortex shedding, what would lead to values of Ur = O(St−1) ≃ 10 (since

the Strouhal number for flat disks as investigated here is of order 10−1 (Gayout et al., 2021)). Vortex shedding is however
expected to contribute to the observed deviations of the weathercock dynamics when compared to the quasi-static
description. Modeling its contribution to the weathercock dynamics is the goal of this subsection.

In unsteady aeroelastic models, added mass, stiffness and damping are appended to the system dynamics equation in
the simplest possible way, as additive linear corrections to the quasi-static equation Eq. (5), which becomes:

(1 + m)α̈ + (βst + γU)α̇ + (ω2
st + k)α = 0 (9)

with m the added mass (added moment of inertia in the present case), γU the added damping and k the added stiffness,
ll normalized by the moment of inertia J . It follows that in the context of this refined model, the corrected predictions
or the oscillation pulsation and damping coefficient are:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ω2
td =

ω2
st + k

1 + m

βtd =
βst + γU
1 + m

(10)

Fig. 4 shows the three added parameters (k, m and γ ) as functions of the reduced velocity Ur (the parameters are
obtained by fitting the measured oscillation pulsation and damping with expressions (10)).

A similar behavior is observed for the three parameters: their values decrease as Ur increases. Numerical simulations at
low Reynolds number reported the existence of St≃ 0.07 for subharmonic transverse vortex shedding for a disk (Gao et al.,
2018). While the existence of a similar value for the Strouhal Number at larger Reynolds number is an open issue, a peak at
6
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Fig. 4. Added stiffness k, mass m and damping γ obtained for each Ur parameter in the experiments. Dash-dotted line represents 1/St with St
≃ 0.07.

Ur ∼ St−1
≃ 15 cannot be ruled out in the data shown in Fig. 4. The existence of a maximum for the corrections at Ur∼ 15

would then be in agreement with the intuitive expectation that non-stationary corrections become preponderant when
the oscillation frequency approaches that of vortex shedding. As expected these corrections then rapidly decrease as the
reduced velocity increases (i.e. as the oscillation frequency becomes significantly smaller than vortex shedding frequency).
The available data does not allow to be fully conclusive on whether the corrective parameters would decrease to zero as
Ur keeps increasing or would tend to a finite, non-vanishing, asymptotic value. Hence, the quasi-static approximation is
approached but not fully recovered even for Ur ∼ 100, while it is expected to hold in the limit Ur → ∞. We cannot rule
out the blade to be at the origin of these non-vanishing values of the added coefficients for Ur ∼ 100, especially since
the largest values of Ur were probed using the smallest 3-cm diameter disk.

Another observation is that the maximum value of the added mass is close to 0.5, which reminds of the added mass
coefficient found for a sphere immersed in fluid.

3.2. Empirically corrected CN coefficient approach

We now investigate an empirical model, which, contrary to the previous approach, does not assume a priori a
damped-harmonic oscillator behavior. It is indeed possible to empirically retrieve an instantaneous normal drag coefficient
CN (αeff(t), t) using Eq. (4) and the experimental measurement of the angular dynamics of the weathercock.

The experimental instantaneous CN coefficient is compared to its static equivalent CNst computed from reported
measurements for a fixed disk (Flachsbart, 1932) (dashed blue line) in Fig. 5(a), as a function of the effective angle of
attack αeff, shown here for U > U∗, U∗ being defined in Eq. (11). Interestingly, the instantaneous CNin recovers (after the
first oscillation) a simple linear angular dependency, in the range αeff ∈ [−40°; 40°], reminiscent of the linear region for
the static coefficient CNst . We observe however that the slope of the linear region is strongly dependent on experimental
conditions: it is consistently close to the static case for the lowest tested wind velocity U , but then systematically decreases
when U is increased. This dependency on U is less pronounced on the initial oscillation starting at α = 90°, although the
global behavior on this part of CN strongly deviates from the static behavior. This initial phase, which is strongly affected
by the effects of stall, is out of the scope of the present study and shall be further explored in the future.

Another interesting observation is that the evolution of the ratio of the slope of the instantaneous CNin (αeff ) coefficient
o the slope of the static CNst (αeff ) coefficient exhibits a U−1/2 power as a function of the flow velocity U (see Fig. 5b).

Overall, these observations suggest that, in the range of interest (αeff ∈ [−40°; 40°], i.e. after the first oscillation) a
imple empirical correction to the quasi-static approach can be formulated using an effective instantaneous normal drag
oefficient, with a linear angular dependency whose slope is related to the static case as:

dCNin

dα

⏐⏐⏐⏐
0

=

(
U∗

U

)1/2 dCNst

dα

⏐⏐⏐⏐
0
, (11)

here the coefficient U∗
= U

(
dCNin
dα

⏐⏐⏐⏐
0

/
dCNst
dα

⏐⏐⏐⏐
0

)2

≃ 3.7m s−1 is obtained by the fit shown in Fig. 5(b). To better

understand the effect of the corrected drag coefficient, we can consider the same linearization of Eq. (4) previously
introduced for the quasi-static approximation and leading to Eq. (5), but using relation (11) as normal drag coefficient.
The additional U1/2 factor in CN then modifies the linearized dynamics of Eq. (5) which now reads:

α̈ + β α̇ + ω2 α = O(α3), (12)
em em

7
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Fig. 5. (a) Dynamic (solid lines) vs static (dashed line) CN coefficients as function of the angular position αeff given by Eq. (3) for various flow
elocities U > U∗ . (b) Ratio between the slope of the dynamic CNin coefficient and the static coefficient CNst with respect to flow velocity. The value
= U∗ is highlighted with the dashed line. Color codes for the flow velocity U > U∗ similarly on (a) and (b). (c) Damping coefficient βem , estimated

rom the empirical correction on the CNst coefficient, compared to the experimental damping β . (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

here ωem and βem are respectively the empirically predicted oscillation pulsation and damping:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω2

em = ω2
st
dCNin

dα

⏐⏐⏐⏐
0

/
dCNst

dα

⏐⏐⏐⏐
0

βem = βst
dCNin

dα

⏐⏐⏐⏐
0

/
dCNst

dα

⏐⏐⏐⏐
0

(13)

The damping coefficient βem is plotted against the experimental damping coefficient in Fig. 5.(c), from which it is clear
that an additional damping term is necessary to correctly describe the observed experimental dynamics. Remarkably, the
strength of this additional damping is close to the added damping γU from the previous model (not shown here). While
ts origin is not clear, the strength of this additional damping as a function of ddisk is discussed further in Section 4.

. Discussion

In this section, we briefly discuss possible physical interpretations of some of the additional parameters introduced to
mprove the non-stationary modeling of the weathercock dynamics and then compare the performances of the different
odeling strategies (quasi-static, time-domain correction, empirical drag coefficient).

.1. Physical interpretation of the modeling parameters

Let us first discuss the terms added in the model introduced in Section 3.1. In particular, the added mass (or added
nertia) can be interpreted as the mass of fluid displaced and dragged by the disk during its motion. We can therefore
ompute the diameter dair of an equivalent air sphere around the disk centered at the center of the disk and of moment
f inertia mJ (we recall that m is normalized added moment of inertia):

d3air

(
L2 +

d2air
10

)
=

6 mJ
πρ

(14)

As shown in Fig. 6(a), this diameter dair is almost linear in the diameter of the disk ddisk (with a plateau at the smaller
values probably due to the influence of the rod holding the disk), consistent with the idea that larger disks drag a
proportionally larger equivalent sphere of air.

Regarding the added damping in the time-domain corrected model, we define a corrective term ϵ =
γU
βst

, such that

td = βst
( 1
1+m + ϵ

)
. ϵ represents the correction required with respect to the quasi-static description, regardless of the

added mass modification 1 to the quasi-static damping. The evolution of ϵ as a function of the pendulum diameter
1+m

8
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Fig. 6. Evolution of the interpreted added terms dair (a), ϵ (b left axis) and ξ (b right axis) as functions of the diameter of the disk ddisk .

ddisk for each pendulum configuration is displayed in Fig. 6 (b). The value for the smaller disk is close to 0.7, and despite
large error-bars, ϵ tends to converge at higher ddisk towards a constant value ϵc , represented by the dash-dotted lines.

Strikingly, a good candidate for this value is ϵc =
π
8 (dark line), which can be related to the damping of unsteady

aerodynamic flutter models using potential flow theory (Fung, 2008; Blevins, 1990).
Let us now discuss the empirical model presented in Section 3.2. Fig. 5.c shows that the empirical damping βem is lower

than the experimentally observed damping β . It is convenient to introduce a multiplicative corrective factor ξ = β/βem.
he values of ξ computed for three configurations, selected for having the largest number of runs and largest number
f total oscillations to minimize the systematic errors, are displayed in Fig. 6.(b), and are, as expected from Fig. 5.(c),
lways larger than unity. We note that this corrective factor on the damping is formally equivalent to the introduction of
correction on the relative velocity Lα̇ in Eq. (3) and Fig. 1. A physical interpretation of this corrective factor would thus
e an change of the relative velocity from Lα̇ to ξLα̇, resulting in modified effective parameters as:⎧⎨⎩ U∗2

eff = U2
+ 2ξLU α̇ sin(α) + ξ 2L2α̇2

α∗

eff = α + arctan
(

ξLα̇ cos(α)
U + Lξ α̇ sin(α)

)
.

(15)

n this context, the dynamics of the weathercock now reads:

Jα̈ =
1
2
ρSLU∗2

effCNst (α
∗

eff)
dCNin

dα

⏐⏐⏐⏐
0

/
dCNst

dα

⏐⏐⏐⏐
0

Though the uncertainty on the damping and empirical correction makes it difficult to be fully conclusive on the value
of ξ and its trend, ξ being higher than 1 would mean that the air around the pendulum moves at a higher velocity than
the pendulum its self. This could be explained by the fact that not only the air behind the pendulum is dragged away but
the air ahead is deviated as well, and may induce a supplementary advection for the air behind.

4.2. Comparison of models

Here we aim explore the accuracy of the different modeling strategies (quasi-static, time-domain corrected, empirical
CN ) in capturing the experimental behavior of the weathercock. We compare the solution of the modeling equations
and the experimental signal for the same initial conditions as in the experiment (α(0) ≃ 90° and α̇(0) ≃ 0 ° s−1). The
orresponding signals are shown in Fig. 7 (a). To quantify the discrepancy between the experiment and the modeling we
ompute the quadratic angular error

√
⟨∆α2⟩ between the experimental signal and each of the models.

While the time-domain corrected model collapses almost perfectly on the experiment with
√

⟨∆α2⟩ ≤ 2°, the empirical
N model happens to be quite wrong as

√
⟨∆α2⟩ ≃ 10°. This is due to the lack of capacity the this model to reasonably

reproduce the transient dynamics of the first oscillation, which is strongly impacted by the complex behavior of CN when
he disk passes the stall angle. The good capacity of the time-domain corrected model to reasonably capture this transient
hile the corrective model and coefficients (added inertia, damping and stiffness) have only been derived based on the

inearized dynamics past the first oscillation, is striking. The static model exhibits a relatively small global deviation from
he experimental signal, of about

√
⟨∆α2⟩ ≃ 5° only, despite the lack of fidelity in both frequency and damping.
9
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Fig. 7. Comparison between the experimental signal and the models with initial conditions (a) at the vertical and (b) at the first minima of oscillation.
Phase portraits for the experiment and models: (c) experiment, (d) static coefficient model, (e) empirical dynamic coefficient model with added
damping and (f) time-domain expansion model. The color codes for the flow velocity, with the lighter being the smaller velocity. All presented curves
were obtained from the 4 cm weathercock with magnet attached, similar results were obtained for the other weathercocks. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

In order to ignore the impact of the transient dynamics, we have considered the situations where the initial condition is
aken at the first minimum of oscillation (t1), hence already past the stall angle and in the linear part of the CN coefficient.
The corresponding signals, both experimental and from the models, are shown in Fig. 7 (b) as a function of (t − t1). It can
be seen that in that case, the time-domain corrected model and the empirical CN model capture almost perfectly (with√

⟨∆α2⟩ ≃ 1°) the relaxing dynamics of the weathercock. The quasi-static dynamics is on the contrary at odds, indicating
that the moderate error noted for the previously discussed initial conditions was fortuitous.

Finally, for a deeper insight into the dynamical fidelity of the modeling we consider the phase portraits (in (α, α̇) space)
f the weathercock dynamics (Fig. 7.c–f). From this point of view, while all models reasonably capture the qualitative
ehavior of the experiment, the match seems to be greater for the empirical CN model, especially regarding the flow
elocity dependence.
10
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Hence to conclude, for small oscillations, the two models we propose in this paper to account for non-stationary
erodynamics correctly reconstruct the dynamics of the system. However if large oscillations are observed, the time-
omain corrections transcribe better the behavior of stabilization, although further dedicated investigation focusing on
he dynamics near stall would be required to clarify whether this is a reliable or a fortuitous observation.

. Conclusion

We have presented two very different approaches to incorporate non-stationary effects into the static aerodynamic
odeling of a relaxing weathercock made of a balanced pendulum composed of a flat disk at the end of a freely
ivoting rod. Past the first oscillation, the weathercock dynamics was found to be well approximated by a damped
armonic oscillator behavior, hence characterized by its oscillation frequency and exponential damping coefficient. In
he limit of small angles (|α| < 40°) this dynamics is qualitatively retrieved by a simple quasi-static model considering
nly the (linear) angular dependency of the static normal drag coefficient CNst of a fixed inclined disk. This model
easonably captures the qualitative dynamics, but fails capturing the accurate values for the oscillation frequency and
amping coefficient. The deviations increase as the frequency of oscillation increases, hence suggesting that non-stationary
erodynamics effects must be considered to accurately model these situations.
To do so, we have first considered a time-domain corrected approach, where effects of non-stationarity are modeled

ased on added moment of inertia, added damping and added stiffness. Our results show that the importance of these
orrections increases when the reduced velocity Ur (which in our case does not depend on the wind-speed and is
ntirely defined by the weathercock geometry) decreases and approaches a value close to the inverse St−1 of the Strouhal

number associated to transverse vortex shedding, suggesting a strong coupling between shedding and oscillations of
the weathercock in such conditions. As Ur increases, the non-stationary corrections decrease, and remain finite even for
Ur ∼ 10St−1 hence pointing that even at high values of Ur (i.e. when oscillations are slow compared to vortex shedding
the effective normal drag coefficient to be considered for a quasi-statically freely rotating disk may still deviate from the
case of fixed disk.

As a second modeling strategy of the weathercock dynamics, we have introduced an empirically determined instanta-
neous normal drag coefficient. Our results suggest that, in the angular region of interest (|α| < 40°) this instantaneous drag
oefficient follows the same angular dependency as the static drag coefficient, but that a velocity dependent factor should
e introduced. This factor was found to scale as (U1/2) possibly pointing to a possible role played by skin friction effects,
lthough future studies would be required to gain insight into this observation. The comparison of the performances of
he two modeling strategies with respect to the experimentally measured weathercock dynamics shows that in the linear
egion (|α| < 40°), both models very accurately reproduce the motion of the weathercock. Interestingly, the time-domain
orrected model also behaves reasonably well beyond the linear domain for which it has been built, in particular when
he weathercock passes by the static stall angle, a transient that the empirical CN model fails to capture. Whether the
ood behavior of the time-domain corrected model in this transient is real or fortuitous would require further dedicated
tudies around the stall angle.
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