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How dirt cones form on glaciers: Field observation, laboratory experiments, and modeling
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Dirt cones are meter-scale structures encountered at the surface of glaciers, which consist of ice cones covered
by a thin layer of ashes, sand, or gravel, and which form naturally from an initial patch of debris. In this article, we
report field observations of cone formation in the French Alps, laboratory-scale experiments reproducing these
structures in a controlled environment, and two-dimensional discrete-element-method—finite-element-method
numerical simulations coupling the grain mechanics and thermal effects. We show that cone formation originates
from the insulating properties of the granular layer, which reduces ice melting underneath as compared to bare
ice melting. This differential ablation deforms the ice surface and induces a quasistatic flow of grains that leads
to a conic shape, as the thermal length become small compared to the structure size. The cone grows until it
reaches a steady state in which the insulation provided by the dirt layer exactly compensates for the heat flux
coming from the increased external surface of the structure. These results allowed us to identify the key physical
mechanisms at play and to develop a model able to quantitatively reproduce the various field observations and

experimental findings.
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I. INTRODUCTION

Differential ablation of ice or snow (a disparity in the melt-
ing or sublimation rate) is a powerful driving force governing
the formation of various natural structures. The mechanism
of ablation can be sublimation in the case of blue ice ripples
observed in Antarctica [1], elongated snow structures called
penitentes found in the Andes mountains [2—4], or zen stones
observed on Lake Baikal which consist of a pebble sitting on
a centimetric ice foot caused by an umbrella effect [5]. Ice
melting patterns are observed in various situations: scallops
appear at the interface with water under the effect of turbulent
flow [6,7], while suncups form on snow surfaces exposed to
solar radiation [8,9]. For the latter, the presence of grains in
the snow can play a role in their formation [10].

The surface of glaciers can be partially or completely cov-
ered by a layer of debris (rocks, gravel, ashes, etc.) which
affects the ablation rate of the ice underneath and has to be
taken into account in models attempting to predict the global
melt water discharge of glaciers. If thick enough (typically
more than 0.5 cm), a debris cover acts as an insulation layer
and reduces the ice ablation rate. On the contrary, a thin layer
enhances the ablation rate compared to a bare ice surface [11].
This later effect has been explained by the patchiness of thin
layers [12] and by their porosity to air flow [13], although
the lower surface albedo of debris can also play a role, es-
pecially in the case of ashes [14]. The effect of the presence
of a debris layer on the ice ablation rate was well-captured
by detailed energy balance models (taking into account the
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various heat fluxes reaching the surface) [12,15], as well as
simpler enhanced temperature index models [16,17] (relying
on empirical formulations of the incoming heat fluxes).

On temperate glaciers, two type of structures are related
to the presence of debris. On the one hand, glacier tables are
rocks supported by an ice foot that forms due to a decrease in
the melting rate underneath the stone [18-22]. On the other
hand, dirt cones (see Fig. 1) are conical ice structures covered
with a thin layer of ashes, grains, or gravel [18,23-27]. Their
height typically ranges from 10 cm to 10 m and they form,
depending on their size, over the course of a few days to a
few weeks in the ablation zone of glaciers, and they can last
for a few months. In 1972, a quantitative field study [27] of
natural and artificial cones (triggered by the deposition of
patches of gravel) showed the existence of an optimum in
grain size (1-10 mm) that maximizes the structure formation
rate: fine grains are easily washed out by melting water (and
possibly rain) while coarse ones do not form a homogeneous
protective layer. The author proposed the following qualitative
explanation: the thermal protection of the ice by the dirt layer
leads, through differential ablation, to the growth of a cone.
This causes the debris layer to get thinner as it covers a larger
surface area, which reduces its protective effect and ultimately
causes the decay of the structure. This process is affected by
the evolution of the relative slopes of the ice cone and of
the debris layer that modulate the slow granular creep flow,
and by the fact that the deformation of the layer reduces its
shear strength. The complexity of the overall process did not
allow for a quantitative comparison with field observations.
In 2001, a theoretical study [8] focused on the initial growth
of dirt cones on snow by performing a linear stability anal-
ysis. The instability results from the adhesion of grains on
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FIG. 1. (a) Dirt cones (red dashed contour) of height H observed
at the surface of a temperate glacier (Mer de Glace, Alpes). The
vertical position of the ice surface is denoted by zi.. (b) Same
structure cleaned of its dirt layer, showing an ice cone of height &.
e, = H — h is the thickness of the dirt layer at the top.

the snow surface, which causes them to accumulate at the
top of the cone, locally reducing snow melting. This model
cannot be extended to steady-state regimes of ice cones for
which the grains do not adhere to the surface and flow along
the cone.

In this article, we report a quantitative study of the for-
mation dynamics of dirt cones. We have conducted field
observations at Mer de Glace, a temperate glacier in the
French Alps, where the formation of dirt cones was monitored
over the course of a week. Moreover, we have performed
laboratory-scale experiments in simple and well-controlled
conditions, and we reproduced the first stage of cone forma-
tion. To gain insight on how the deformation of the granular
layer is coupled to the evolution of the ice surface, we have de-
veloped two-dimensional (2D) numerical simulations taking
into account both the quasistatic flow of the granular material
forming the dirt layer and the heat transfer across it. Finally,
we have developed an analytical model that quantitatively
captures the experimental and numerical results and allows
a better understanding of the physical processes at play. The
article is organized as follows. In Sec. II, we first detail the
field observation methods and the laboratory experiments, and
we provide a description of the 2D numerical model. The re-
sults from the field observations, laboratory experiments, and
numerical simulations are then presented in Sec. III. A model
of cone formation in the laboratory, for which the heat fluxes
received by the ice and debris cover can be considered as
proportional to the surface temperature of the receiving body,

(b) t = 14 days, zj,e = 1.1 m

FIG. 2. Formation of a dirt cone. (a) Initial gravel pile (artificially
made). (b) Cone formed after 14 days (red contour).

TABLE 1. Initial characteristics of the cones studied in the field.
Vo is computed using Eq. (A9) with 6, = 55° & 10°.

Cone Ry () Vo

index (cm) (cm) L)

1 24 + 2 45 +£ 02 7T+1
26 + 2 10.0 £ 0.5 19 + 4

3 12 £ 1 49 + 0.2 1.5+ 03

is described in Sec. IV and accurately predicts the evolution
of the dirt-cone observed in the laboratory. This model is then
refined to take into account solar radiation and albedo of the
ice and of the debris, which successfully reproduces the field
observations. Conclusion and perspectives are then presented
in Sec. V.

II. MATERIALS AND METHODS

Field observations were performed on the Mer de Glace
glacier in the French Alps at an altitude of 2000 m located
at 45°54'48.8"" N, 06°56’10.9” E. To follow the initial for-
mation of a cone, we built three initial piles using small
gravel (millimetric grain size) found on the side of the glacier.
Grains were compacted into circular shapes of radius Ry and
uniform thickness ey [see Fig. 2(a), schematics in Fig. 8, and
values of the parameters in Table I]. The evolution of the
piles was followed using time-lapse images produced by an
autonomous solar-powered camera (Enlaps Tikee), positioned
on three 1.5-m-long wood rods set into the ice. Pictures (4608
pxx3456 px) were taken every 1 h between 5 a.m. and 10 p.m.
between June 7 and June 19, 2019 (see Figs. 1 and 2), until the
camera fell on the ice due to the melting around the supporting
rods. The residual motion of the device was corrected by
tracking two fixed points on the background of each image.
The positions of the top of the cone and of the bottom of its
left and right sides were then manually pointed out on each
image (see video C in the Supplemental Material [28]). The
air temperature T,;; (3 m above ground), solar radiative flux &,
and wind speed u,;; were measured at the Requin automatic
weather station (AWS) [29] located 600 m higher and 3 km
away from the measurement site (see Fig. S-3b-d and Ref. [22]
for a discussion on the validity of the assumptions made to
compute the local temperature, solar radiative flux, and wind
speed).

Small-scale experiments were performed in a laboratory-
controlled environment protected from parasite air flow and
held at constant temperature T;oom = 25.5°C. The granular
media consisted of a plastic blast media purchased from
Guyson, made of 66—70% urea amino polymer and 33-30%
cellulose (density 1.5) with irregular shapes and size lying
between 0.84 and 1.20 mm (16/20 mesh size). To pre-
vent cohesion and to minimize the thermal conductivity by
avoiding water absorption by the medium, these grains were
made hydrophobic using a two-step coating with Rust-Oleum
NeverWet multisurface spray. Clear ice blocks (cylinders of
diameter 30 cm and height 20 cm) were obtained through
unidirectional freezing inside a container thermally isolated
on its sides and bottom, and placed inside a —35°C freezer
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(b)t=13h

FIG. 3. Formation of an artificial dirt cone in a laboratory-
controlled environment. A vertical stick (red) allows us to measure
the thickness of the granular layer at the summit of the cone, and to
therefore follow the vertical position of the ice surface at the center of
the structure (horizontal red line). (a) Initial pile of plastic granular
media on a flat ice surface. (b) Cone formed after 13 h. (¢) Same
cone with its granular cover removed, revealing the surface of the ice
(blue line).

for 3 days. To ensure a homogeneous temperature 7;.e = 0 °C,
the ice block was then left at ambient temperature before the
beginning of the experiments.

For each experiment, a flat pile of grains was deposited at
the surface of the ice block [see Fig. 3(a)]. The altitude of
the ice far from the cone, zic.(¢), and the height of its summit,
H (1), were monitored. At the center of the pile, a wooden stick
was mounted on a small plastic foot lying on the ice surface,
allowing us to measure the thickness of the granular layer,
ei(t). It was checked at the end of the experiment that the
plastic foot did not penetrate into the ice surface more than
0.5 mm. The pile was illuminated from the sides using two
LEDs, and its evolution was followed by taking a picture every
6 min using a D5600 Nikon with a 200 mm lens placed 3.5 m
away from the system. Both the 3D field configuration and
the 2D numerical configuration (see below) were reproduced:
3D structures were obtained from an initial circular pile of
thickness eg, radius at the bottom, Ry, and angle of repose,
6p = 36.0° £ 2.5°. Pseudo-2D structures were obtained from
initial rectangular piles of half-width Ry and length 4R,. The
duration of the experiments was constrained by the melting of
the edges of the ice block that limited the maximum lateral
extension of the cones.

2D numerical simulations were performed by combining
the discrete element method (DEM) to model the granular me-
chanics with a finite element method to compute the thermal
fluxes. The granular media are modeled as an assembly of 2D
deformable disks of average radius (r) = 0.25 mm (with 20%
polydispersity), assembled in dimers by adding a constant

(b)

00 7t 05 Zice

FIG. 4. (a) Principle of the 2D numerical simulations. The gran-
ular quasistatic creep flow is determined using a soft-disk discrete
element method (top). The temperature distribution in the media is
computed using a finite element method (bottom). The displacement
of the ice surface v, is locally proportional to the heat flux (j., black
arrows). (b) Results of a 2D numerical simulation for an initial piles
of thickness ey equal to the thermal length § = A/he. Only the
interfaces [ice/grains (in red) and grains/air (in blue)] are shown.

attractive force within a pair of grains [see Fig. 4(a), top].
The use of dimers is a way to mimic grains of aspect ratio
larger than 1, which helps to reach a higher angle of repose
[30]. In addition, disks experience gravity and contact forces
(normal inelastic repulsion and frictional tangential force).
From the sum of all forces and torques acting on each disk, its
translational and rotational motion is computed at each time
step by classical granular DEM techniques [31]. The values
of all numerical parameters are summarized in Table S-I and
Table S1. The initial state consists in a trapezoidal pile of
thickness ey, half-width Ry, and angle 6, close to the angle
of repose of the grains (see Fig. 8) with ey/(r) € [40, 120]
and Ry /(r) € [80, 240]. This pile lies on an initially horizontal
layer of fixed grains (of size 0.6(r)), representing the first
layer of grains glued to the ice surface. At each time step
dt, each of these fixed grains (i.e., the local position of the
ice surface) is moved downwards by a distance v, xdt, which
varies along the pile as it results from the heat flux within
the uneven granular layer. Outside the granular pile, the bare
ice surface moves at the ablation velocity vi., whose value
is small enough to lead to a quasistatic granular flow. Below
the pile, ice melting is controlled by the heat flux through
the granular layer, treated as an effective medium of thermal
conductivity A exchanging heat with air at temperature T
with an effective heat exchange coefficient g and in contact
with melting ice at temperature 7;.. The heat flux j. delivered
to the ice is computed every 5x 10* time steps by solving the
heat equation with the finite element solver FreeFem++- [32]
[see Fig. 4(a), bottom]. The ice velocity below the pile is then
Ve = Vice X je/ [hett (Tair — Tice)]-

III. RESULTS

In the field and 3D laboratory experiments, initially flat
piles of granular media turned into conical structures (see
Fig. 2) after the bare ice was ablated by a thickness zjce>ey
(far away from the structure). Removing the grain cover
showed that these dirt cones consist in ice cones covered
by a thin layer of grains [see Fig. 1(b)]. The 2D laboratory
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TABLE II. Cone angle & measured from pictures or profiles and
angle 0 and decompaction factor f used in the model. The x symbol
denotes the parameter kept adjustable in the model.

Context 6 meas. 6 model f model
Lab 25° £ 5° 23.5° () 1
Simulations

n=0.6 26° + 2° 27° (%) 1
n=0.3 19° £ 2° 19° (%) 1
Field 49° £ 4° 49° 1.4 (%)

experiments and numerical simulations displayed a similar
behavior: the cross section of the ice surface went from flat to
triangular [see Fig. 4(b)]. Both in 2D and 3D, the evolution of
the structure can be divided into two stages, clearly visible in
the numerical simulation of Fig. 4(b) (see also video B in the
Supplemental Material [28]): first, a transient regime which
lasts until the flat region at the center of the pile disappears
and the shape becomes conical (or triangular), then a stable
regime in which the cone keeps growing while keeping a
constant slope. It is visible in the film that the grain flow is
not limited to avalanches at the surface but also takes place
in the bulk of the cover layer. The quantities used in the
following to quantitatively characterize the structure evolution
are shown in Fig. 1: & denotes the height of the ice dome, e, is
the thickness of the grain layer at the top, and H = h + ¢ is
the total height. In the cone regime, the slope of the ice cone
and that of the dirt cone differ by only a few degrees [27]: in
the following, this difference will be neglected and a unique
value 0 is used. This value strongly depends on the nature of
the granular medium: the measured values are displayed in
Table II and range from 19° for dry, low friction grains in the
simulation, to 49° for wet gravel in the field. Let us note that
these angles are systematically lower than the repose angle of
the grains by 5°—10°.

In our field observations, only the evolution of the total
height H with time (and therefore with zjce = vice t) Was ac-
cessible and is plotted in Fig. 5. In numerical simulations and
laboratory experiments, all quantities 4, e;, and H could be
monitored: Figs. 6 and 7 show H (z;.e) and e;(h) for different
initial pile shapes. All these data qualitatively display the same
behavior: first, the growth rate of the cone height dH/dzic. is
maximum during the transient regime. For the largest initial
radius, this rate keeps a constant value for a little while, mean-
ing that the height first evolves linearly. This is particularly
visible on the field data. In this first stage, in the laboratory and
in the simulations, the thickness at the summit, ¢;, diminishes
only slightly ($10%). Once the cone regime is reached, the
growth rate of the cone strongly decays, while the granular
cover on top quickly thins down. At long times (i.e., for
Vice ! 3> Ry), we observe in the field experiments (red markers
in Fig. 5) and in the simulations [blue line in Fig. 7(b)] that
the growth rate tends to zero. This corresponds to a cone that
dynamically keeps the same shape and size while its internal
ice is melting at the same rate as the bare ice surface. In the
laboratory experiments, this last regime is not accessible due
to the limited size of the ice blocks.

051 Obs. Model
Conel O ||
Cone2 O =
0471 Cone3 o =
0.3 A
£
T
0.2 A
0.1 Cone regime
~~——Transition regime A
0.0 T T T T T
0.0 0.2 0.4 0.6 0.8
Zice (M)

FIG. 5. Cone formation dynamics on the Mer de Glace for the
three gravel piles described in Table I. The total cone height H is
shown as a function of the total ice ablated thickness z.. (markers).
The model is plotted by a solid line for each initial state (ey, Vp, the
shaded area corresponds to the uncertainty on these parameters) with
adjustable parameter f = 1.4.

IV. MODELING AND DISCUSSION
A. Cone formation in the laboratory and in simulations

In the following, we develop a simple model of the forma-
tion of a cone from an initial flat pile of grains (see Fig. 8).
We first concentrate on the simpler case in which all the heat
fluxes coming from the environment can be considered as
proportional to the surface temperature of the receiving body.
As discussed below, this applies well to our laboratory ex-
periments and was implemented in the numerical simulations
presented in this work. On a natural glacier, however, the
process is also affected by direct solar radiation, and this case
will be treated in the next subsection.

(a) 0.0 (b)

Exp. 2D Ry = 5.5 cm
001 -— Model 2D D — | o Ry = 6.4 cm
’ e e Exp.3D - e Ry =3.8cm
== Model 3D = €t
0.00 T . ~  0.00 : : .
0.00 0.02 0.04 0.06 0.00 0.01 0.02 0.03
Zice (M) h (m)

FIG. 6. (a), (b) Cone formation in the laboratory-controlled en-
vironment (markers) in a 2D (red) and 3D (blue) configuration. The
total cone height H is shown as a function of the ablated ice thickness
Zice (a) and the granular thickness as the top of the cone ¢, as a
function of its height & (b). The model (see Sec. IV) is plotted as
a dashed line for the corresponding geometry (2D/3D) and for each
initial state (e,, Ro) with adjustable parameter 6 = 23.5°.
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FIG. 7. Results of 2D numerical simulations (solid lines) for
= 0.6. The quantities plotted are the same as in Fig. 6. The model
is plotted as a dashed line for each initial state (e, Ry) with ad-
justable parameter 6 = 27°.

1. Ice melting

The ice surface away from the granular pile gets lower due
to melting under the effect of a positive net incoming heat flux
Qenv.—sice coming from the environment. Its vertical position
Zice(t) can be expressed, assuming that the melting process
is instantaneous, as Zice(f) — Zice(0) = Lius f(j Oenv.—ice(t)dt,
where L, = 303 MT m 3 is the volumetric enthalpy of fusion
for ice. In a laboratory-controlled environment, the incoming
heat flux has two main origins [21]: the net infrared radiation
coming from the enclosure walls (at temperature Tioom) and
the natural convection of air (also at temperature Tiyon ). Since
Troom — Tice K Tice, its expression can be linearized as

Qenv.—>ice = heff(Troom - Tice)v (1)

where Ao = 8 =2 WK~ m~2 is an effective heat exchange
coefficient that was measured by monitoring the melting of an
ice block (see the Supplemental Material [28]).

2. Early stage of the transition regime

At the very beginning of the process, the structure consists
in a flat pile of grains that acts as an insulating cover: the dirt

Zice=0

~
1S
-
X
S
P
<
a
o

FIG. 8. Schematics of an initial pile of grains (top) and of the
cone forming when the ice surface melts (bottom). The blue curve
corresponds to the ice surface and the red curve to the top of the
granular cover.

surface being warmer than the ice, it receives less heat from
the environment, and therefore Qi ice < Qenv.—sice-

As long as Ry > ey, the process at the center of the pile
can be considered as one-dimensional (1D), which leads to
a simple analytical formulation. Assuming that the effective
heat exchange coefficient A is the same for the dirt and the
ice surfaces, the ratio of melting velocity between covered and
bare ice is, att = 0,

Vo Qdirt—ice _ 1
- — - )
Vice Oenv.—sice I +eq/d

where § = A /h¢gr is a thermal characteristic length and A is the
effective thermal conductivity of the dirt layer (Bi = ey/§ is
the Biot number). This differential ablation of ice leads to the
growth of an ice foot under the dirt pile (in the referential of
the bare ice surface) at a rate

dh U

—1— 3
dZice Vice ( )

2)

where v, is the vertical melting velocity below the center of the
structure. In the early stages, the top of the pile remains flat:
there is no driving force leading the grains to move laterally
and we can assume that e, & ¢;y. Combining Eqgs. (2) and (3)
leads to

Bi
1+ Bi

Using the measured value of the thermal length for the plas-
tic grains § = 10.8 & 0.3 mm (measured in an independent
experiment; see Fig. S-1), this prediction is plotted (with no
adjustable parameter) in Fig. 6(a) as dashed straight lines. For
the wider piles (Ry = 5.5 and 6.4 cm), for which the 1D ap-
proximation is most valid, the prediction fits the observations
for 0 < zice < 2 cm. For the smallest pile (Ry = 3.8 cm, light
blue), the model overestimates the initial growth rate, and the
linear growth regime is not observed. But even large piles
eventually reach a point where the assumptions made above
are no longer valid: the grains at the center are affected by
the lateral flow induced by the deformation of the sides. As a
consequence, e, decreases and the thermal problem is not 1D
anymore. This induces a complex dynamics that ultimately
leads to the formation of a conic structure and which is only
described qualitatively here. Differential ablation deforms the
ice surface at the periphery of the pile, which induces a qua-
sistatic flow in the grain cover whose free surface adopts a
slope Ograins. The flow modifies the cover thickness and cou-
ples back with the deformation of the ice surface, which takes
a slope Gice < Ograins [see Fig. 4(b)]. As the cover is thinner
on the outside, the ice melts faster on the outside, causing the
two angles to converge to the same value 6. The conic shape
is obtained when the deformation reaches the center. The fact
that the final structure is a cone rather than a smooth dome
results from the fact that as the structure grows, its typical
dimensions (radius and height) both exceed the thermal length
8 (=11 mm), which controls the scale over which the ice
profile can vary. In the laboratory, due to the experimental
constraints on the size of the ice block, § was made as small
as possible by using rather insulating grains, yet the ratio H/é
is still significantly smaller than in the simulations or on the
field. This explains (alongside with the difference in ) the

H = l’l =+ e = X Zice- (4)
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different shape of the ice cones obtained in the laboratory
[Fig. 3(c): smooth with low angle], in simulations [Fig. 4(b):
conic with low angle], and in the field (Fig. 1: conic with large
angle).

3. Cone regime

In the following, we focus on a structure that has already
reached the cone regime (i.e., e;, e; < H). Let us assume that
the approximations e; = ¢y and v, & vy [given by Eq. (2)]
are valid throughout the whole transition phrase: the cone
regime is then reached for a total ablation zjee = z; = 1 /(1 —
U0/ Vice )s Where h is the initial height of the cone at the end
of the transient regime. Considering that the total volume V
of the granular cover is conserved, /; can be expressed (in 2D
or 3D) as a function of initial parameters 6y, Ry, and ey [see
Egs. (A10) and (A11) in the Appendix].

To develop a simple analytical model of the later stage, the
following assumptions are made:

(1) The thermal problem can be considered 1D for the dirt
on the sides of the cone: vg/vice = 1/(1 4 ¢5/§). This is valid
far away from the transition regime, when e; << i/ tan6.

(i1) The angle of the cone, as well as the shape of the
top of the ice cone, are stationary. This is supported by
the numerical simulations [see Fig. 4(b)]. From this, we can
relate the melting velocity at the summit to that on the side of
the cone: vy = v/ cos 6.

(iii) The ratio A = ey/e; is a constant. Although not ob-
vious (since this ratio results from the granular flow and the
melting on top of the cone), this assumption is supported by
the numerical simulations where A is observed to be constant
and independent of the cone angle (for & = 19° and 26°):
A =0.6£0.1. In laboratory experiments and in the field A
can only be measured at the end of the evolution, but this final
value is equal to the numerical value and independent of the
initial shape of the pile (see Fig. S-5).

From these assumptions, the growth rate of the cone height
can be expressed as a function of e(h):

dh 1 1

daee  cosf  1+Ae(h))s

(&)

The state at the end of the transient regime is defined
by Zice = 21, h(z1) = hy, and ei(h;) = ey. Through volume
conservation, we express the quantity e; both in the 2D and 3D
cases (see the Appendix). Finally we solve Eq. (5) numerically
with 6y, Ry, ey, A, and & as input parameters. We keep 6
as the only adjustable parameter, due to the high sensibility
of the model to this quantity. Furthermore, the value of 6
results from a complex feedback between the evolution of the
ice surface and the creep flow in the granular cover, which
prevents us from predicting a simple a priori estimate.

The best-fitting resulting evolution is shown for laboratory
experiments in Fig. 6 (§ = 23.5°) and for numerical simula-
tions in Fig. 7 (8 = 27° and p = 0.6) (see the Supplemental
Material [28] for results concerning ;o = 0.3). The values of
the adjustable parameter 6 (see Table II) are within the range
of the values that were measured independently.

The good agreement in the e (k) plots of Figs. 6(b) (in
2D and 3D) and 7(b)-7(d) (in 2D) supports in retrospect the
assumption of volume conservation in the cone regime. This

also shows that the difference in the cone formation dynamics
between the 2D and 3D cases is mainly related to the volume
conservation. This justifies the relevance of the 2D simula-
tions in testing the other assumptions (i)—(iii) of the model,
related to mechanical and thermal processes. Our description
of the transition regime (constant ¢;) is too simplistic: since
e, shows a perceptible decrease, the model overestimates the
growth rate dh/dzi.. but underestimates z;. Remarkably, these
errors compensate, which leads to a good agreement between
the prediction and the observed evolution H (zjc.) in the cone
regime.

4. Steady state

At long times, Eq. (5) predicts the existence of a steady
state in which e; o = §(1/cos8 — 1)/A. This value is inde-
pendent of the initial conditions (which is not the case of the
steady-state height and radius of the cone) and is represented
in Figs. 6(b), 7(b), and 7(d) using dotted horizontal lines. One
can see that only the numerical simulation with the smallest
initial thickness approaches its final state. In the laboratory
experiment, it was not possible to reach the steady state since,
given the low cone angle, the finite size of the ice block was
quickly limiting the maximum value of Zjc.

B. Natural cone formation on a glacier

The formation of natural dirt cones occurring at the surface
of a glacier is slightly more complex than the process tak-
ing place in the well-controlled laboratory conditions, mainly
because the heat flux coming from the environment cannot
simply be described using an effective heat exchange coeffi-
cient. Indeed, in the previous model the heat flux received by
the ice and dirt surfaces is governed by their temperatures.
This is not the case for the solar heat flux, which plays a
crucial role in the field. In the following, we show that the
previous model can be adapted to these conditions with only
minor modifications.

1. Ice melting

In the field, the main heat source is direct solar irradiation.
For our field data, it represented 60% of the total incoming
flux, the rest coming from the turbulent fluxes (convection
and sublimation or condensation due to the wind), whereas
the net infrared radiation was almost null (but negative) [22].
While it is possible to model in detail these physical processes,
another approach classically used in glaciology is to rely on an
empirical relation known as an enhanced temperature index
model [16,17,33]. Let us assume that all contributions other
than net solar radiation can be described by an empirical
term proportional to the difference between air and surface
temperature:

Oeny.—ice = (1 — ttice)P() + her ((Tair) — Tice), (6)

where . is the ice surface albedo, ®(¢) is the incoming
solar radiation, (T;) is the mean air temperature, Ti,.=273 K
is the melting ice temperature, and h.s iS an empirical
coefficient that has the dimension of an effective heat ex-
change coefficient. The data of zj(#) are shown in the
Supplemental Material [28] (see Fig. S-3) and are used to
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determine the values of «jc. and heg by adjusting the model
of Eq. (6). A good overall agreement, given the simplicity
of the model, is obtained with o = 0.32 £ 0.02 and her =
14.8 4+ 0.5 WK'm~2, which is consistent with common
values found in the literature for alpine glaciers [34,35]. As
detailed in the Supplemental Material [28], /¢ depends on the
mean wind speed on the glacier, which was constantly high in
the period of interest.

2. Early stage of the transition regime

The heat flux received by the dirt layer can be split into
two parts: one that depends on its surface temperature (less
than what is received by bare ice if the dirt is warmer than
Ti.e) and one received from the sun, which depends on the dirt
albedo ogir;. The calculation leading to Eq. (2) can be adapted
for the daily averaged ratio of melt velocities in the presence
of solar radiation:

<&>_ I 14— aain){P) 7

C14Bi T 14— ae)(d)

where (®) = (®(1))/[heir((Tair) — Tice)] 7 2.4 is a dimen-
sionless number accounting for the effect of solar radiation.
This means that the albedo difference has only a correcting
effect, and that the insulating effect acts on the total heat flux.
This can be interpreted as follows: the solar incoming flux
induces a strong thermal gradient across the dirt layer (whose
bottom stays at Ti.). This, in return, reduces (or even changes
the sign, if the surface temperature is higher than 7;;) the other
heat fluxes (wind induced, infrared, etc), ultimately reducing
the heat flux received by the covered ice.

The effective thermal conductivity of wet gravel collected
on the Mer de Glace was measured in the laboratory and found
to be AGravel = 0.73 =0.05 Wm~! K~! (see the Supplemen-
tary Material [28]). Given the mean effective heat exchange
coefficient during the studied time period, this corresponds to
a thermal length § = 4.9 &= 0.4 cm. On the field data of Fig. 5,
an initial linear regime is clearly visible for zj.e < 0.2 m, with
a higher slope (corresponding to a more insulating behavior)
for the thickest pile. Assuming that e; ~ ey, Eq. (7) can be
used to extract the last unknown parameter ogj; from these
data. The best-fitting value is «giry = 0.20 &£ 0.05 (see Fig. S-
1), which is compatible with values commonly used for gravel
[36] or granite rock [22,37].

Vice

3. Cone regime

We assume that conditions (i)—(iii) of the previous model
(Sec. IV A) remain valid in the field. The hypothesis of vol-
ume conservation, however, needs to be adapted. Indeed, due
to the cohesive nature of wet gravel and to the fact that the
initial piles were compacted by hand, a decompaction can
occur during the transition regime: the dirt volume V in the
cone regime is therefore larger than the initial volume V.
We characterize this process by the parameter f = V/V;. By
comparing its dimensions in the initial and final states, we
measured f = 1.4 £ 0.3 for the cone shown in Fig. 1 (see
the Supplemental Material [28]). We also noticed that the dirt
covering natural cones on the glacier could easily be com-
pacted by hand by ~20-40%. In the following, we keep the
assumption that the dirt volume is conserved throughout the

cone regime, with the value V = fV{. The melting velocity vs
on the side of the cone also has to be adapted in order to take
into account the presence of solar radiation and the fact that
the corresponding heat flux reaches the sides of the cone with
an angle (averaged over a day and compared to a flat surface)
which reduces the flux by a factor cos 6. This leads to

dh 1 1

1+ (1 — otgin)(P) cos 0
dzice cosO 1 + Ae(h)/8 '

I+ (1 - aice)<d))
(3)

By following the same steps as in Sec. IV A, H(Zic.) can be
computed for each cone, as shown by solid lines in Fig. 5.
The computation uses the parameters A, Aefr, Xice, Xdirts AGravels
(®), and @ given previously, and eg and V, are given for
each cone in Table I. The only adjustable parameter here is
the decompaction factor f, and the best-fitting value was f =
1.4. The main source of uncertainty on the model prediction,
shown using a shaded area in Fig. 5, is the inaccuracy on Vj
(15-20%).

The beginning of the cone regime is well predicted for the
thinnest cones (1 and 3) but is a bit premature for cone 2,
which leads to a systematic underestimation of H. In the cone
regime, the growth rate of the height is very well predicted for
all three cases. Cone 2 starts with a dirt thickness about three
times higher than the fixed point of Eq. (8): e &~ 3.4 cm,
which leads to a rapid growth in the cone regime as a lot of
dirt will flow before the protective layer gets thin enough to
reach the stationary regime. The model predicts a final height
H,, =~ 57 cm reached within 5% at z;.. ~ 2.2 m. Cones 1 and
3, however, start with a dirt thickness ey g, close to e; », which
explains why they do not grow much in the cone regime, as
they have already almost reached their maximum height.

4. Steady state

As the cone height grows causing the dirt to flow, the
cover gets thinner and less insulating. At some point e, = e,
which corresponds to vy = vjc, and a steady state is reached.
This final thickness is independent of the initial state and is
fixed by the properties of the cover layer (thermal conductivity
and mechanical properties) as well as the characteristics of the
incoming heat (mainly /. and to a lesser extent (®) and the
ice and dirt albedo). It is worth noting that the final thickness,
which controls the dynamics, can vary substantially over time
on a glacier as he depends on the average wind speed. The
growth rate of a dirt cone can thus keep evolving even long
after its formation. For example, a cone that forms and reaches
a stationary state during a calm period (low /g and high §)
will start growing again during a windy period (high Aer and
low $§).

V. CONCLUSION AND PERSPECTIVES

In this article, we described small-scale experiments re-
producing dirt cone formation in a well-controlled laboratory
environment as well as time-resolved observations of the
formation of three cones on the Mer de Glace. Dirt cone
formation was also studied through 2D numerical simula-
tions taking into account both the grain mechanics and the
thermal heat exchanges that are able to reproduce well the
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cone formation process. A simple model was developed and
led to a quantitative agreement with the laboratory and field
observation as well as the simulations. This combination of
approaches allowed us to gain insight into the physical mech-
anisms governing this structure formation.

A dirt layer lying at the surface of a glacier acts as an
insulation cover that reduces the ice melting under it. The
differential ablation causes the ice surface to deform, which
induces a quasistatic flow of the dirt, starting from the edge
of the pile. The structure acquires its conic shape when the
deformation reaches the summit. The angle of the cone is de-
termined by the mechanical properties of the grains (friction,
cohesion) but does not correspond to a repose angle and is
probably dependent on the history of stress distribution during
the cone formation. As long as the dirt layer covering the cone
is thick enough to reduce ice melting, the cone height will
grow causing the dirt to creep along the sides and get thinner
and less insulating. Finally, a stationary state is reached in
which the insulating dirt cover exactly compensates for the
fact that the structure received heat on a higher surface or with
a lower albedo. In the model we developed, this final state is
stable, which can explain the month-long lifetime of dirt cones
on glaciers (while they typically form within a week).

Our field observations along with the modeling open the
possibility to use dirt cones as a proxy to estimate environ-
mental parameters such as the heat exchange coefficient of
the glacier ablation rate. On glaciers, the lifetime of dirt cones
is limited (to a few months) and the process by which this
happens remains unexplained. It may be related to the pro-
gressive degradation of the dirt layer under the effect of rain
or melt water, but clearly it deserves further attention. Another
question that remains open is the formation of a “cone forest”
observed on glaciers, consisting of several cones of various
height, all in contact with each other. They clearly emerge
from an initial large patch of dirt, but whether individual
cones appear due to thickness inhomogeneity or from a more
puzzling physical instability remains to be clarified.
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APPENDIX: VOLUME CONSERVATION

In the model developed in the main text, one important
assumption is the volume conservation of the granular cover.
In the following, we detail the corresponding calculation.

In the cone regime, the dirt cone is assumed to have a
constant thickness e; = Ae;. In 2D, the dirt layer has a length
~ (h+ e;/2)/sin 6 on each side. The volume per unit depth
can thus be approximated as

A
Vop = —— (2h + ey)e;. (AD)
sin 6

This quantity is assumed to be constant, dV,p = 0, leading to
the following differential equation:

h dh
1+—+—=0 (A2)
[ det
whose solution is
€0 €0 €t
h =—|h — |- = A3
(er) et<l+2) > (A3)
which can be inverted in
o 5 €10
eiop(h) = [h? + 2eq| by + 5 )~ h. (A4)
In 3D, the same approximation leads to a volume
TA e 2
Vip=———¢l|h+—=] . A5
P sin9tan9€t< +2> (&9)
The condition dVsp = 0 corresponds to
3+h+2dh—0 (A6)
2 [ de[ B
whose solution is
hi/ 321y
h(e) = hiyeoteg /2 e« (A7)

Ja 2
The expression of e 3p (/) is then obtained by keeping the only

real solution of the cubic equation with unknown x = ,/e,.
The volume of the initial pile in 2D and 3D is

€10
Vopo = | Ro — e,
0 0~ Gangy )€

3
T et()
Vipo = — tanby| R} — ( Ry — . A9
3po = = tan o|:o (o tan@o)i| (A9)

If the volume is assumed to be conserved from the initial flat
pile state to the cone regime, the parameter #; = h(ey) can be
expressed as

(A8)

hopy = Ry — —<0 )00 _ @0 (A10)
D1 "7 2tane, ) A 2’
" _ Vosinftanf ey (ALD)
L= Amey 2
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