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Rappel : notion d’anneau euclidien




Définition : anneau euclidien
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— Définition (Anneau euclidien)

Un anneau euclidien est un anneau intégre (A, +,-) muni d'un stathme, c'est a dire une

v:&a

telle que Va € A, Vb € A" , il existe(@YP)< A vérifiant :

|a*b q+rs avecu‘v < v(b S
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Rappel : division euclidienne

— Exemple

67 =5-13 + 2,
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Exemple : division euclidienne dans Q[X]
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Les anneaux de polynémes




L'anneau (A[X],+,")

d. La formulation formelle de I'anneau et ses opérations est lourde. Si vous &tes motivés, écrivez-la et montrez-la moi
pour validation.
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Degré d'un polynéme

— Proposition
Soit (A, +,-) un domaine d(intégrité. Soient P(X), Q(X) € A[X]. Alors,
ldeg(P(X) - Q(X)) = deg(P(X)) + deg(Q(X))- ‘

— Démonstration.

Fastidieuse. On traite d’abord les cas particuliers ou P ou @ sont 0. Ensuite, on déduit que

si (ai)i—o et (bj)Zo sont les coefficients de P et Q,gréce a la propriété

doy dapeong et ¢ SO, VLY,

d’intégrité de A.
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Propriétés d’anneaux de polynémes

— Question
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1. A quelle condition est-ce que (A[X], +,-) est commutatif ? =) u’iv\




Propriétés d’anneaux de polynémes

— Question

. A quelle condition est-ce que (A[X], +,-) est commutatif ?
A quelle condition est-ce que (A[X], +, ) est intégre?
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Propriétés d’anneaux de polynémes

— Question

1. A quelle condition est-ce que (A[X], +,-) est commutatif ?
2. A quelle condition est-ce que (A[X], +,-) est intégre ?

3. A quelle condition est-ce que (A[X], +,-) est euclidien?
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Propriétés d’anneaux de polynémes

— Question
1. A quelle condition est-ce que (A[X], +,-) est commutatif ?
. A quelle condition est-ce que (A[X],+, ) est intégre?
(
(

)
2 )
3. A quelle condition est-ce que (A[X], +, ) est euclidien? A um <o (ps
4 )

. A quelle condition est-ce que (A[X],+,) est un corps? 6W K“\&f
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(inneaux quotients)




Disclaimer

La définition d’anneau quotien demande I'introduction de la notion dlidéal) Etant
donné que cela demande un niveau d’abstraction (encore) plus important, nous
allons voir une version simplifié de cette notion : le quotient d'un anneau par (I'idéal
généré par) un élément, et, plus particuliérement, le cas ou I'anneau est un domaine

euclidien.
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Quotient d’'un domaine euclidien

— Proposition

Si@est un domaine euclidien, alors kI/ J’ X“ =X (Kg'\'q') -3

E%(A‘)z [-—?’)Cj

ou ry est le reste de la division euclidienne de x par a.
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Exemples

Les deux exemples qu’on va utiliser sont :



Exemples

Les deux exemples qu’on va utiliser sont :

Exemple

Z/nZ = 7/(n)

C’est le cas qui inspire cette construction.




Exemples

Les deux exemples qu’on va utiliser sont :

— Exemple

Z/nZ = 7/(n)

C’est le cas qui inspire cette construction.

— Exemple

Soit P(X) € A[X]. On peut défini(A[X]/(P(X)).)

£ li[x}/a @




Exemple : Q[X]/(X? —1)

— Exemple

Considérons I'anneau quotient

7‘ / 27 . 1_— - 1—.
A;,&[X]/(x 1) : X7~—\V\=0 ¥X'= 1




Exemple : Q[X]/(X? —1)

— Exemple

Considérons I'anneau quotient
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Exemple : Q[X]/(X? —1)

— Exemple

Considérons |'anneau quotient

Tout élément de A s’écrit de maniére unique (pourquoi ?) de la forme

[a+bX], a,beqQ.

Regardons deux éléments particuliers :

[X —1]#[0], [X+1]#][0], et [X —1]- [X +1] = [X* — 1] = [0].

(\("“ H) = L——\—O 2
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Exemple : Q[X]/(X? - 1)

— Exemple

Considérons |'anneau quotient
A=QIX]/(X* —1).

Tout élément de A s’écrit de maniére unique (pourquoi ?) de la forme

[a+bX], a,beqQ.

Regardons deux éléments particuliers :

[X —1] #[0], [X+1]# (0], et [X —1]- [X +1] = [X* — 1] = [0].

D. . au A = Q[X]/(X? — 1) contient des diviseurs de zéro : c'est donc un anneau
non intégre.




Exemple : R[X]/(X?+1)

— Exemple

Considérons maintenant |'anneau quotient




Exemple : R[X]/(X?+1)

— Exemple

Considérons maintenant |'anneau quotient

A =R[X]/(X*+1).

Tout élément de A peut s'écrire sous la forme [a+ bX], a,b€R.etona
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Exemple : R[X]/(X?+1)

— Exemple

Considérons maintenant |'anneau quotient

A =R[X]/(X?+1).

Tout élément de A peut s'écrire sous la forme [a+ bX], a,b€R.etona

[X* +11=[0] = [X - X] + [1] = [0] = [X]* = —[1]




Exemple : R[X]/(X?+ 1) X% 2

— Exemple

Considérons maintenant |'anneau quotient

A =R[X]/(X*+1).

Tout élément de A peut s'écrire sous la forme [a+ bX], a,b€R.etona
[X* +1] = [0] = [X - X] + [1] = [0] = [X]* = —[1]

Les opérations s'écrivent

[a+ bX]+[c+dX]=[(a+c)+ (b+d)X]

[a + bX] - [c + dX] = [ac + (ad + bc)X + bdX?] = [(ac — bd) + (ad + bc)X]
~




Exemple : R[X]/(X?>+1) Quad, N& concds L ST o"(’%—l 2l
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— Exemple =
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Tout élément de A peut s'écrire sous la forme [a+ bX], a,bER.etona
[X* +1] = [0] = [X - X] + [1] = [0] = [X]* = —[1] d
Les opérations s'écrivent
[a+ bX] + [c + dX] = [(a+ ¢) + (b + d)X]
[a+ bX] - [c + dX] = [ac + (ad + bc)X + bdX?] = [(ac — bd) + (ad + bc)X]

— Question
o). (7 P
Ca vous rappelle quelque chose ? CC "'A)O I !
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Algorithme d’Euclide étendu et
coefficients de Bézout
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Principe de I'algorithme d’'Euclide

Idée clé

&0 - C, .
Pouanneau euclidien), on effeci€ des |V|$|ons|:uccesswes :
bi@}l-@ e




Principe de I'algorithme d’'Euclide

— ldée clé

Pour a, b € A (anneau euclidien), on effectue des divisions successives :

a=b-q+n,
b=nr"-q2+ r,

r'n—2 = r'n—1 - Qn + I'n,

rn—1 I'n* Qnt1.

Le dernier reste non nul r, est le PGCD de a et b.

— Version étendue

On exprime a chaque étape ry = a- ux + b - vk : les coefficients (ux, vk) sont les coefficients
de Bézout.
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Exemple détaillé en Z : (a, b) = (56, 15) 2 S
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G=U=ax-1a+bx\4y

56 = 3:15+11 = 11 = 56 -3
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Exemple détaillé en Z : (a, b) = (56, 15)

— Exemple
Divisions Substitutions

56 = 3-15+11 = 11 =56 —3-15 [1=4-1-3

15=1-1144 = 4=15-1-11 =4-(11-2-4)=3-4—-1-11
11=2-44+3 = 3=11-2-4 =3(15—-1-11)—1-11=3-15—-4-11
4=1-341 = 1=4-1-3 =3.15—4(56 —3-15)

=15-15—-4-56
Ainsi PGCD(56, 15) = 1.




Exemple détaillé en Z : (a, b) = (56, 15)

— Exemple
Divisions Substitutions

56 = 3-15+11 = 11 =56 —3-15 1=4-1-3

15=1-11+4 = 4=15-1-11 =4-(11-2-4)=3-4-1-11

11=2-44+3 = 3=11-2-4 =3(15—-1-11)—1-11=3-15—-4-11

4=13+1 = 1=4-1-3 =3.15—4(56 — 3-15)
=15-15—4-56

Ainsi PGCD(56, 15) = 1.

[1=(-4)56+15-15 | = [u=—4 v=15]




Inverse modulaire dans un corps fini Z/pZ

Probléme
Etant donné un nombre premie@t un élément [a] € Z/pZ, on cherche son inverse modu-

R (G-
laire [a] 7", c’est a dire I'élémentTel que :

[a] - [a] " = [1].
e —




Inverse modulaire dans un corps fini Z/pZ

Probléme

Etant donné un nombre premier p et un élément [a] € Z/pZ, on cherche son inverse modu-
laire [a] ™%, c'est a dire I'élément tel que :

&l [l = [,

Condition d’existence : L'élément [a] est inversible si et seulement si PGCD(a, p) = 1. C'est

toujours vrai si p est premier et [a] # [0].



Inverse modulaire dans un corps fini Z/pZ

Probléme

Etant donné un nombre premier p et un élément [a] € Z/pZ, on cherche son inverse modu-
laire [a] ™%, c'est a dire I'élément tel que :

Condition d’existence : L'élément [a] est inversible si et seulement si PGCD(a, p) = 1. C'est
toujours vrai si p est premier et [a] # [0].

Principe : algorithme d’Euclide étendu et calcul des coefficients de Bézout.

(oo

En passant a la congruence modulo p :
Az laprvea = [0 [l+ [ [ =0 11
[ S ;J

Ainsi :
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L’anneau des entiers de Gauss :




Définition de Z]i]

PAVS Ay C A YN

— Définition

avec les opérations usuelles :

L'anneau des entiers de Gauss est : Acl

Zlil={a+bi|abeZ},

(a+ bi)+ (c+di)y=(a+c)+ (b+d)i, (a+ bi)(c+di)=(ac— bd)+ (ad + bc)i.




Définition de Z]i]

— Définition
L'anneau des entiers de Gauss est :
Zlil={a+bi|abeZ},
avec les opérations usuelles :

(a+ b))+ (c+d)=(a+c)+(b+d)i, (a+ bi)(c+di)=(ac— bd) + (ad + bc)i.

— Stathm euclidien

@init v(a+bi):32+b2.> (0\4-(-(9) (a -:(0> = a+L*




Comment on réalise la division euclidienne ?

Idée de l'algorithme dans Z[i]

Soient a, b € Z[i] avec b # 0. On cherche q, r € Z][i]
tels que

a=b-q+r, v(r) < v(b).



Comment on réalise la division euclidienne ?

Idée de l'algorithme dans Z[i]

Soient a, b € Z[i] avec b # 0. On cherche q, r € Z][i]

tels que
a=b-q+r, v(r) < v(b).
Procédure :
1. On calcule le quotient complexe § = x + iy € C.

2. On arrondit séparément les parties réelles et
imaginaires pour obtenir un élément de Z[/] :
q=[x]+ilyl

3. On calcule le reste r=a—b-q.

4. Par construction?, v(r) < 1v(b) < v(b).



2R

; . .. .y = .
Comment on réalise la division euclidienne? - = WM/)- z
Ay S ———

. %4—; - jdi'h"c"
Idée de I'algorithme dans Z[i] Remarque : Cette méthode revient a A;, T

jet b sur le point de la grille d
Soient a, b € Z[i] avec b # 0. On cherche q, r € Z[i] projeter /b sur le point de a grille de

Gauss le plus proche.
tels que
a=b-q+r, v(r) < v(b).
Procédure :
1. On calcule le quotient comple C.
2. On arrondit séparément les parties réelles et

imaginaires pour obtenir un élément de Z[/] :
CCJ e 22y
3. On calcule le restg

4. Par construction",‘v(r) < Zv(b) < v(b).

a. Si vous &tes motivés, faites les calculs ou demandez-moi
de l'aide.
Vi, e 7 o







Les premiers de Gauss
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That's All Folks!
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