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Rappel : notion d'anneau euclidien



Dé�nition : anneau euclidien

Dé�nition (Anneau euclidien)

Un anneau euclidien est un anneau intègre (A,+, ·) muni d'un stathme, c'est à dire une

fonction

v : A∗ −→ N

telle que ∀a ∈ A, ∀b ∈ A∗ , il existe q, r ∈ A véri�ant :

a = b · q + r , avec r = 0 ou v(r) < v(b).

Exemple

▶ (Z,+, ·) avec v(n) = |n|

▶ (Q[X ],+, ·) avec v(P) = deg(P)

▶ (Z[i ],+, ·) avec v(a+ bi) = a2 + b2
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Rappel : division euclidienne

Exemple

Division euclidienne de 67 par 5.

6 7 5

−(5 0) 1 0

1 7

−(1 5) + 3

2 1 3

67 = 5 · 13+ 2, q = 13, r = 2, v(r) = |2| = 2 < 5 = |5| = v(5) .



Wooclap !



Exemple : division euclidienne dans Q[X ]

Exemple

On divise A(X ) = 3X 4 + 1X 3 + 7
2
X 2 + 2 par B(X ) = 2X 2 + 1.

3X 4 + 1X 3 + 7
2
X 2 + 0X + 2 2X 2 + 1

−(3X 4 3
2
X 2 ) 3 · 2−1X 2

+ 1X 3 + 2X 2 + 0X +2)

− (1X 3 1
2
X ) + 1 · 2−1X

2X 2 − 1
2
X + 2

− (2X 2 + 1) +1

− 1
2
X + 1 3

2
X 2 + 1

2
X +1

A(X ) = B(X ) · Q(X ) + R(X ), Q(X ) =
3
2
X 2 +

1
2
X + 1, R(X ) = −1

2
X + 1,

v(R(X )) = degR(X ) = 1 < 2 = degQ(X ) = v(Q(X )) .



Wooclap !



Les anneaux de polynômes



L'anneau (A[X ],+, ·)

Dé�nition

Soit (A,+, ·) un anneau. On note (A[X ],+, ·) l'anneau des polynômes à coe�cients en A

avec les l'addition et la multiplication de polynômes classiques a.

On a P(X ) ∈ A[X ] ⇔ P(X ) = 0 ou ∃n ∈ N, ∃(ai )ni=0 ∈ A, an ̸= 0,

P(X ) =
n∑

k=0

akX
k = a0 + a1X + a2X

2 + · · ·+ anX
n .

a. La formulation formelle de l'anneau et ses opérations est lourde. Si vous êtes motivés, écrivez-la et montrez-la moi

pour validation.

Exemple

▶ (Z[X ],+, ·) : polynômes à coe�cients entiers.

▶ (Q[X ],+, ·) : polynômes à coe�cients rationnels.

▶ (Z/nZ[X ],+, ·) : polynômes à coe�cients dans Z/nZ.



Degré d'un polynôme

Dé�nition (Degré d'un polynôme)

Soit P(X ) ∈ A[X ].

▶ Si ∃n ∈ N, ∃(ai )ni=0 ∈ A, an ̸= 0, alors on a deg(P(X )) = n

▶ Si P(X ) = 0, on pose deg(P(X )) = deg(0) = −∞

Proposition

Soit (A,+, ·) un domaine d'intégrité. Soient P(X ),Q(X ) ∈ A[X ]. Alors,

deg(P(X ) · Q(X )) = deg(P(X )) + deg(Q(X )) .

Démonstration.

Fastidieuse. On traite d'abord les cas particuliers où P ou Q sont 0. Ensuite, on déduit que

si (ai )ni=0 et (bj)
m
j=0 sont les coe�cients de P et Q, on a an · bm ̸= 0 grâce à la propriété

d'intégrité de A.



Propriétés d'anneaux de polynômes

Question

1. À quelle condition est-ce que (A[X ],+, ·) est commutatif ?

2. À quelle condition est-ce que (A[X ],+, ·) est intègre ?

3. À quelle condition est-ce que (A[X ],+, ·) est euclidien ?

4. À quelle condition est-ce que (A[X ],+, ·) est un corps ?
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Propriétés d'anneaux de polynômes
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Anneaux quotients



Disclaimer

La dé�nition d'anneau quotien demande l'introduction de la notion d'idéal. Étant

donné que cela demande un niveau d'abstraction (encore) plus important, nous

allons voir une version simpli�é de cette notion : le quotient d'un anneau par (l'idéal

généré par) un élément, et, plus particulièrement, le cas où l'anneau est un domaine

euclidien.



Quotient d'un domaine euclidien

Dé�nition (Anneau quotient)

Soit (A,+, ·) un domaine euclidien. Soit a ∈ A. On appelle anneau quotient de A par (a) à

l'anneau (A/(a),+, ·) où A/(a) est l'ensemble des classes d'équivalence de la relation

x ∼ y ⇔ a | x − y ⇔ ∃k ∈ A, a · k = x − y

On note une classe d'équivalence [x ]. Les opérations sont : ∀x , y ∈ A,

[x ] + [y ] = [x + y ] [x ] · [y ] = [x · y ]

Proposition

Si A est un domaine euclidien, alors

[x ] = [rx ]

où rx est le reste de la division euclidienne de x par a.
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Exemples

Les deux exemples qu'on va utiliser sont :

Exemple

Z/nZ = Z/(n)

C'est le cas qui inspire cette construction.

Exemple

Soit P(X ) ∈ A[X ]. On peut dé�nir A[X ]/(P(X )).
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Exemples

Les deux exemples qu'on va utiliser sont :

Exemple

Z/nZ = Z/(n)

C'est le cas qui inspire cette construction.

Exemple

Soit P(X ) ∈ A[X ]. On peut dé�nir A[X ]/(P(X )).



Exemple : Q[X ]/(X 2 − 1)

Exemple

Considérons l'anneau quotient

A = Q[X ]/(X 2 − 1).

Tout élément de A s'écrit de manière unique (pourquoi ? ) de la forme

[a+ bX ], a, b ∈ Q .

Regardons deux éléments particuliers :

[X − 1] ̸= [0], [X + 1] ̸= [0], et [X − 1] · [X + 1] = [X 2 − 1] = [0].

Donc l'anneau A = Q[X ]/(X 2 − 1) contient des diviseurs de zéro : c'est donc un anneau

non intègre.
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Exemple : R[X ]/(X 2 + 1)

Exemple

Considérons maintenant l'anneau quotient

A = R[X ]/(X 2 + 1).

Tout élément de A peut s'écrire sous la forme [a+ bX ], a, b ∈ R . et on a

[X 2 + 1] = [0] ⇒ [X · X ] + [1] = [0] ⇒ [X ]2 = −[1]

Les opérations s'écrivent

[a+ bX ] + [c + dX ] = [(a+ c) + (b + d)X ]

[a+ bX ] · [c + dX ] = [ac + (ad + bc)X + bdX 2] = [(ac − bd) + (ad + bc)X ]
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Exemple : R[X ]/(X 2 + 1)

Exemple
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Algorithme d'Euclide étendu et

coe�cients de Bézout



Principe de l'algorithme d'Euclide

Idée clé

Pour a, b ∈ A (anneau euclidien), on e�ectue des divisions successives :

a = b · q1 + r1,

b = r1 · q2 + r2,
...

rn−2 = rn−1 · qn + rn,

rn−1 = rn · qn+1.

Le dernier reste non nul rn est le PGCD de a et b.

Version étendue

On exprime à chaque étape rk = a · uk + b · vk : les coe�cients (uk , vk) sont les coe�cients

de Bézout.
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Exemple détaillé en Z : (a, b) = (56, 15)

Exemple

Divisions

56 = 3 · 15+ 11 ⇒ 11 = 56− 3 · 15

15 = 1 · 11+ 4 ⇒ 4 = 15− 1 · 11

11 = 2 · 4+ 3 ⇒ 3 = 11− 2 · 4

4 = 1 · 3+ 1 ⇒ 1 = 4− 1 · 3

Ainsi PGCD(56, 15) = 1.

Substitutions

1 = 4− 1 · 3

= 4− (11− 2 · 4) = 3 · 4− 1 · 11

= 3
(
15− 1 · 11

)
− 1 · 11 = 3 · 15− 4 · 11

= 3 · 15− 4
(
56− 3 · 15

)
= 15 · 15− 4 · 56

1 = (−4) · 56+ 15 · 15 ⇒ u = −4, v = 15
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Inverse modulaire dans un corps �ni Z/pZ

Problème

Étant donné un nombre premier p et un élément [a] ∈ Z/pZ, on cherche son inverse modu-

laire [a]−1, c'est à dire l'élément tel que :

[a] · [a]−1 = [1] .

Condition d'existence : L'élément [a] est inversible si et seulement si PGCD(a, p) = 1. C'est

toujours vrai si p est premier et [a] ̸= [0].

Principe : algorithme d'Euclide étendu et calcul des coe�cients de Bézout.

1 = u · p + v · a.

En passant à la congruence modulo p :

[1] = [u · p + v · a] = [u] · [p] + [v ] · [a] [p]=[0]
= [v ] · [a].

Ainsi :

[a]−1 = [v ].
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Wooclap !



L'anneau des entiers de Gauss :

Z[i ]



Dé�nition de Z[i ]

Dé�nition

L'anneau des entiers de Gauss est :

Z[i ] = { a+ bi | a, b ∈ Z },

avec les opérations usuelles :

(a+ bi) + (c + di) = (a+ c) + (b + d)i , (a+ bi)(c + di) = (ac − bd) + (ad + bc)i .

Stathm euclidien

On dé�nit v(a+ bi) = a2 + b2.
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Comment on réalise la division euclidienne ?

Idée de l'algorithme dans Z[i ]

Soient a, b ∈ Z[i ] avec b ̸= 0. On cherche q, r ∈ Z[i ]
tels que

a = b · q + r , v(r) < v(b).

Procédure :

1. On calcule le quotient complexe a
b
= x + iy ∈ C.

2. On arrondit séparément les parties réelles et

imaginaires pour obtenir un élément de Z[i ] :
q = ⌊x⌉+ i⌊y⌉

3. On calcule le reste r = a− b · q.

4. Par construction a, v(r) ≤ 1
2
v(b) < v(b).

a. Si vous êtes motivés, faites les calculs ou demandez-moi

de l'aide.

Remarque : Cette méthode revient à

projeter a/b sur le point de la grille de

Gauss le plus proche.
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Les premiers de Gauss



Les premiers de Gauss



That's All Folks !
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