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Dé�nition et axiomes



Dé�nition d'un K-espace vectoriel

Dé�nition

Un espace vectoriel sur un corps K (K-espace vectoriel pour faire court) est un triplet (V ,+, ·)
où

▶ V est un ensemble

▶ + est une opération interne V × V → V appelée addition

▶ · est une opération externe K× V → V appelée multiplication par un scalaire

tel que

1. ∀u, v , w ∈ V , u + (v + w) = (u + v) + w

2. ∃0 ∈ V , ∀v ∈ V , v + 0 = 0+ v = v

3. ∀v ∈ V , ∃ − v ∈ V tel que v + (−v) = −v + v = 0,

4. ∀v , w ∈ V , w + v = v + w .
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Exemples



Premiers exemples !

Exemple

1. Les génériques :

� Les R-espaces vectoriels a : Rn, R[X ], RN, RR, Ck([0, 1],R), . . .
� Les K-espaces vectoriels : Kn, K[X ], KN, KE (E un ensemble

quelconque) . . .

2. Des choses que vous avez déjà croisées

� Le C-espace vectoriel des fonctions périodiques sur R à valeurs dans C
� Le R-espace vectoriel C, les Q-espaces vectoriels Q[i ], Q[

√
2].

3. Des choses qui fatiguent :

� Tout anneau qui contient un corps K comme sous-anneau est un

K-espace vectoriel sur ce corps.

a. Que vous connaissez déjà !
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Espaces vectoriels sur des corps �nis

Exemple

Sur F2 := Z/2Z = {0, 1} :

F32 = {(x1, x2, x3) : x1, x2, x3 ∈ {0, 1}}.

Addition et multiplication :

1+ 1 = 0, 1 · 1 = 1.

Ainsi :

(1, 0, 1) + (1, 1, 0) = (0, 1, 1).

Remarque

Tous les raisonnements de l'algèbre linéaire restent valides : l'important est que F2 soit un

corps.
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Familles libres, génératrices, bases

Dé�nition

▶ Une famille est libre si aucune combinaison linéaire non triviale ne donne 0.

Formellement, {v1, . . . , vn} est libre si :

∀λ1, . . . , λn ∈ K, λ1 · v1 + · · ·+ λn · vn = 0⇒ ∀i ∈ J1, nK, λi = 0

▶ Elle est génératrice si toute combinaison linéaire d'elle engendre E . Formellement,

{v1, . . . , vn} est génératrice si :

∀v ∈ E ,∃λ1, . . . , λn ∈ K, v = λ1 · v1 + · · ·+ λn · vn

▶ Une base est une famille à la fois libre et génératrice.



Dimension d'un espace vectoriel

Dé�nition

La dimension de E est le nombre d'éléments d'une base.

Theorem

Pour un espace vectoriel, le nombre d'éléments d'une base est toujours le même. On l'appelle

la dimension.

Exemple

Dans R3, la famille canonique

B =
(
(1, 0, 0), (0, 1, 0), (0, 0, 1)

)
est une base et la famille

B ′ =
(
(1, 0, 0), (1, 1, 0), (1, 1, 1)

)
est une autre base. Les deux ont 3 éléments. La dimension est donc 3.
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Applications linéaires

Dé�nition

Une application f : E → F est linéaire si :

∀u, v ∈ E , ∀λ ∈ K, f (u + v) = f (u) + f (v), f (λu) = λf (u).

Exemple

f : F23 → F23, f (x , y) = (x + y , 2y , y + 2z)

est linéaire.
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Représentation matricielle

Dé�nition (Matrice d'une application linéaire � convention vecteurs-lignes)

Soient E et F deux espaces vectoriels sur un corps K, et soient

B = (e1, . . . , en) une base de E , B ′ = (f1, . . . , fm) une base de F .

L'application linéaire f : E → F est représentée, dans les bases B et B ′, par une matrice

A ∈ Mn,m(K) telle que :

[f ]B
′

B =


[f (e1)]B′

...

[f (en)]B′

 .

Autrement dit, les lignes de A contiennent les coordonnées des images des vecteurs de la

base B dans la base B ′, et la multiplication se fait à droite :

f (v) = vA.



Représentation matricielle

Exemple

Si f : F2

3
→ F3

3
, f (x , y) = (x+y , 2y , y+2z) et on prend les bases B = {(1, 0), (0, 1)}

et B ′ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, alors :

[f ]B
′

B =

[
1 0 1

1 2 2

]
.

On remarque :

f (1, 0) = (1, 0)A = (1, 0, 1) et f (0, 1) = (0, 1)A = (1, 2, 2)



Wooclap ! (× 3)



Sous-espaces vectoriels



Sous-espaces vectoriels

Dé�nition

Un sous-ensemble F ⊂ E est un sous-espace vectoriel si :

∀u, v ∈ F , ∀λ ∈ K, u + v ∈ F , λu ∈ F .

Exemple

Dans F32 :

F = {(x , y , z) ∈ F32 | x + y + z = 0}

est un sous-espace (un plan).
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Sous-espaces : formes paramétriques et implicites

Deux manières de décrire un sous-espace

▶ Forme paramétrique : le sous-espace est décrit par des vecteurs générateurs

U = Vect(u1, . . . , ur )

Chaque élément x ∈ U s'écrit x = λ1u1 + · · ·+ λrur pour certains λ1, . . . λr ∈ K.

▶ Forme implicite : le sous-espace est dé�ni comme l'ensemble des solutions d'un

système d'équations linéaires

U = {x ∈ Kn | Ax = 0}.



Sous-espaces : formes paramétriques et implicites

Example

On considère le sous-espace U de R3 qui correspond à la droite qui passe par le

(0, 0, 0) et le (2, 1, 0). On cherche un générateur de U. On peut prendre le vecteur

(2, 1, 0). Donc,

U = Vect((2, 1, 0)) .

Maintenant, on cherche des équations satisfaites par tous les points de U : on sait

que z = 0 et que x = 2y . Donc

U = {(x , y , z) ∈ R3 : Ax = 0} avec A =

[
1 −2 0

0 0 1

]



Enquête Wooclap !



Pivot de Gauss

On peut toujours passer d'équations paramétriques à implicites grâce à l'algorithme

du pivot de Gauss. Ici, chaque ligne représente un vecteur-ligne (et non une

colonne) du système xA = 0.



Algorithme du pivot de Gauss

Exemple

On veut réduire par pivot de Gauss la matrice augmentée (système homogène Ax = 0) :[
2 4 −2 0

1 3 1 0

]
.

Étape 1 : Choix du pivot. On commence avec le premier coe�cient non nul (2).

R1 ← 1

2
R1 (on divise, donc on suppose que l'on est dans un corps).

[
1 2 −1 0

1 3 1 0

]



Algorithme du pivot de Gauss

Exemple

On veut réduire par pivot de Gauss la matrice augmentée (système homogène Ax = 0) :[
2 4 −2 0

1 3 1 0

]
.

Étape 2 : Élimination sous le pivot.

R2 ← R2 − R1.

[
1 2 −1 0

0 1 3

2
0

]

La matrice est maintenant échelonnée.



Algorithme du pivot de Gauss

Exemple

On veut réduire par pivot de Gauss la matrice augmentée (système homogène Ax = 0) :[
2 4 −2 0

1 3 1 0

]
.

Étape 3 : Lecture des dépendances linéaires.

On résout xA = 0.

x1 + 2x2 − x3 = 0,

x2 +
3

2
x3 = 0.

⇒
x2 = − 3

2
x3,

x1 = 2x2 − x3 = −3x3 − x3 = −4x3.

x = t(−2,− 3

2
, 1), t ∈ R, → Vect

(
(−2,− 3

2
, 1)

)
.



Enquête Wooclap !



Cas particulier : noyau et image d'une application linéaire

Dé�nition

Soit f : E → F une application linéaire. On dé�nit :

ker(f ) = {x ∈ E : f (x) = xA = 0}, Im(f ) = {f (x) : x ∈ E} = {vA | v ∈ E}.

Propriétés fondamentales

▶ ker(f ) est un sous-espace de E : c'est l'ensemble des vecteurs lignes dont les

coordonnées satisfont les équations xA = 0.

▶ Im(f ) est un sous-espace de F : c'est l'ensemble des combinaisons linéaires des

colonnes de A. Si B =
(
e1, e2, . . . , en

)
est une base,

Im(f ) = Vect(f (e1), f (e2), . . . , f (en)).

Theorem (du rang)

dim(ker f ) + dim(Im f ) = dim(E).
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Conclusions

Ce qu'il faut retenir

▶ Les sous-espaces vectoriels permettent de décrire les structures internes d'un espace

vectoriel : ils peuvent être donnés sous forme paramétrique (par des générateurs) ou

implicite (par des équations linéaires).

▶ Les représentations matricielles traduisent les applications linéaires et leurs e�ets sur
les coordonnées.

▶ Les notions de noyau (ker) et image (Im) sont centrales : elles relient équations et

générateurs.

Perspective pour la suite

Ces outils (sous-espaces, matrices, noyaux et images) seront essentiels pour comprendre la

structure des codes linéaires correcteurs d'erreurs.
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That's All Folks !
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