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Définition et axiomes




Définition d’un K-espace vectoriel

%?__’2.” 9_;7,{; /,/'Q.V\M%-J ~rn colgs

— Définition
ou

» V est un ensemble

» -+ est une opération interne V x V — V appelée addition

tel que

1. Vu,v,weV,u+(v+w)=(u+v)+w ,
2.30€eV,WweV, vi0=0+v="y)
3.WweV,3—veVtlquev+(—v)=—-v+v=0, v
—_ — N
4, VV,WEV,WJrv:\/JrVD 44‘_»»
\L

Un espace vectoriel sur un K-espace vectoriel pour faire court) est un triplet@jo)

» kst une opération externV — V appelée multiplication par un scalaire




Définition d’un K-espace vectoriel

— Définition
Un espace vectoriel sur un corps K (K-espace vectoriel pour faire court) est un triplet (V, +, -)
ou

> V est un ensemble

» -+ est une opération interne V x V — V appelée addition

» - est une opération externe K x V — V appelée multiplication par un scalaire

tel que

5 VA ueK VeV (u- V= (A-p)-v

6. Vvve V,1-v=uv.




Définition d’un K-espace vectoriel

— Définition
Un espace vectoriel sur un corps K (K-espace vectoriel pour faire court) est un triplet (V, +, -)
ou

> V est un ensemble

» -+ est une opération interne V x V — V appelée addition

» - est une opération externe K x V — V appelée multiplication par un scalaire
tel que

7. VN peK VWweV, (A+u)-v=A-v+pu-v
8. VAeK Vv,weV, A-(v+w)=A-v+ A w.




Exemples




Premiers exemples!

— Exemple

1. Les génériques :
o Les R-espaces vectoriels ” : R” RIX], R 5. CH([0, 1], R), ...
° Les\_]ﬁ—espaces vectoriels :

quelconque) ...

a. Que vous connaissez déja!

Py
AA\': e '

I,,;Jte.o E“Ms”-

N 1<E
K[X],&,& (E un ensemble

L& ("‘&)tenl
(D & A

24 @ B = €99
RO Gz 2,80
m'ra!. e

LY




Premiers exemples!

— Exemple

1. Les génériques :
o Les R-espaces vectoriels? : R”, R[X], RN, RE, Ck([0,1],R), ...
e Les K-espaces vectoriels : K", K[X], K, KE (E un ensemble
quelconque) ...
2. Des choses que vous avez déja croisées o o

o Le C-espace vectoriel des fonctions périodiques sur R a valeurs dans C_
e Le R-espace vectoriel C, les Q-espaces vectoriels Q[/], Q[v2].
S

M, v =
? Q #nA . 2
A ."b, N.\2Z

a. Que vous connaissez déja!




Premiers exemples!

— Exemple
1. Les génériques :
o Les R-espaces vectoriels? : R, R[X], RY, R, C*(]0,1],R), ...
e Les K-espaces vectoriels : K", K[X], K, KE (E un ensemble
quelconque) ...
2. Des choses que vous avez déja croisées
e Le C-espace vectoriel des fonctions périodiques sur R & valeurs dans C
o Le R-espace vectoriel C, les Q-espaces vectoriels Q[i], Q[v/2].
3. Des choses qui fatiguent :
e Tout anneau qui contient un corps K comme sous-anneau est un

K-espace vectoriel sur ce corps. WwhWhe "UAC = ‘ILCx')
m

i &i3 |
a. Que vous connaissez déja! PSRN Fou I




Espaces vectoriels sur des corps finis

PRT it e o
i

— Exemple
z

Sur@ =7/27 = {0,1} :

Ainsi :

LW;:{(XI-XZ-X.?) X1.X24X3E{O-1ﬁl
Addition et multiplication : <= ®
( 1+1= O.' 1-1




Espaces vectoriels sur des corps finis

— Exemple
Sur Fp :=7Z/2Z = {0,1} :

Wg = {(Xl.XQ.X3) 1 X1, X2, X3 € {01}}

Addition et multiplication : @
1+1=0, 1-1=1.
Ainsi :
(1,0,1) + (1,1,0) = (0,1,1).

— Remarque

Tous les raisonnements de I'algébre linéaire restent valides : I'important est que > soit un




Bases




Familles libres, génératrices, bases 9

-

— Définition
» Une famille essi aucune combinaison linéaire non triviale ne donne 0.
Formellement, {v1,..., Va} est libre si :

VAL A €K AL vid A v =0 = Vi€ [1,n], A =0

—_— ———

> Elle es si toute combinaison linéaire d’elle engendre E. Formellement,
{vi,..., va} est génératrice si :
j)\l,...ﬁ/\ngK, V:/\l'V1+"'+An'Vn
e e e
> Unest une famille a la fois libre et génératrice.
[ W— e




Dimension d’'un espace vectoriel

Définition
|/ La dimension de E est le nombre d'éléments d'une base.




Dimension d’'un espace vectoriel

— Définition

La dimension de E est le nombre d'éléments d'une base.

— Theorem

Pour un espace vectoriel, le nombre d’éléments d’une base est toujours le méme. On 'appelle
la dimension.




Dimension d’'un espace vectoriel

bQ&c\_L “Zﬁr?(—lA/ X!\(L’\A_S "‘/5(

— Définition 7
@m- E est le nombre d'éléments d’'une base.
Theorem
Pour un espace vectoriel, le nombre d’éléments d’une base est toujours le méme. On I'appelle
. . »—
la dimension.
— Exemple
Dans R3, la famillew

-/
B = ((1,0,0), (0,1,0), (0,0,1)) N >
) a() 09) V=0
est une base et la famille + 21 o) B
' = (om
<+ v = 9o
B' = ((1,0,0), (1,1,0), (1,1,1)) R Ry

RN %

est une autre base. Les deux on |éments. La dimension est don@




YAppIications linéaires }




Applications linéaires

Définition
Une application f : E — F est linéaire si :

Vu,v € E, VA €K, f(u+v)




Applications linéaires

— Exemple

-
=
w R

f(x,y)=(x+y,2y,y +22)

est linéaire.

oyt o)
[ N 7/ [W <+
(7('*\’) S X 2% q.\f-"

& XZol Qi cains. @zo X =p @
2 = ’L\?«‘i—r"

1%~



o o Q-M‘ao.,.
Représentation matricielle £e),-- £len)  Va ER RN
e

I , _@—_‘:(Zq.:a




Représentation matricielle

& 4
T

L3 g

— Exemple

et B’ ={(1,0,0),(0 T.G),(G )} alors
i, ﬁ(e/t\:ﬁ(@-,o“
e~ A g ;%) = (X,5,7)
i LleN=-\T T 2)




Ry = Grgriy xrdy) 05—

£(\10‘Q = | 4

:@(oll c\ -\n o
: v "
(}Ulol\)
B=(lol, oze, te2) —UD/"3

LheD) = [4 4y
$(07—°\: s °>
glioy = °° =

2:1R,00) »1¢,0x)
P »2%
K

=2 (4 ‘\L-L)

0095 9'\ (o]
Q o © 9‘( -A
o020 x®) =2x




Sous-espaces vectoriels




Sous-espaces vectoriels

Définition

Un sous-ensemble F C E est un sous-espace vectoriel si :

VYu,ve F, VAEK, u+veF, A\uekF.

——




Sous-espaces vectoriels

— Deéfinition
Un sous-ensemble F C E est un sous-espace vectoriel si :

VYu,ve F, VAEK, u+veF, A\uekF.

— Exemple

Dans F3 : 2, < ("‘,"gng) \ ( | l/ 1)) <o

— c 3 -0
F?{(Xﬂy.Z)KLz‘w} 'I'|(
est un sous-espace (un plan). o / ;




Sous-espaces : formes paramétriques et implicites G
4

— Deux maniéres de décrire un_Sous-espace Y

» Forme paramétrique : le sous-espace est décrit par des vecteurs générateurs

Chaque élément x € U s'écrit x = Aru1 + - - - + A\ru, pour certains A1,... A\, € K.

> F: le sous-espace est défini comme |'ensemble des solutions d’un

systéme d'équations linéaires

. s U={xcK"|& =0} ’\L(C,'...(f) =(°\

K-et ————

2> & 19 =\ eHd) = (%C:, *mﬁl rw"‘%

M




Sous-espaces : formes paramétriques et implicites

— Example

On consideére le Sous—espace@ d{ R¥ qui correspond a la droite qui passe par le
0,0,0) et le ). On cherche un générateur de U. On peut prendre le vecteur
— -

2,1,0). Ponc,

Maintenant, on cherche des équations satisfaites par tous les points de U : on sait
que z =0 et que x = 2y. Donc

U=1{(x,y,z) €R®: Ax =0} avec - A,,‘f ’/T
2 KA;G‘\——\

R ¥ X




Enquéte Wooclap!



Pivot de Gauss

L:)n.’[al\%..u\_l\_; ;un\ cee, Ao

4

4
YoceU a"’v;’“i

oo drdne Q) \oVens \/\f\ vl o, .o »c
35 )
S upacs =e
On peut toujours passer d’équations paramétriques d implicites grace a |'algorithme

d pivot de Gauss. Aci, chaque ligne représente un vecteur-ligne (et non une
u systéme xA = 0.




Algorithme du pivot de Gauss

— Exemple

On veut réduire par pivot de Gauss la matrice augmentée (systéme homogéne@ :@:

12 4 =200
13 1|0
~—

A o

Etape 1 : Choix du pivot. On commence avec le premier coefficient non nul (2).

Ry« %Rl (on divise, donc on suppose que I'on est dans un corps).




Algorithme du pivot de Gauss

— Exemple

On veut réduire par pivot de Gauss la matrice augmentée (systéme homogéne Ax = 0) :
2 4 20
13 10|

Etape 2 : Elimination sous le pivot.

Rg%szRl.

[s 8]l gl

La matrice est maintenant échelonnée.




Algorithme du pivot de Gauss

— Exemple

2 4 —210
1 3 1|0 |°

Etape 3 : Lecture des dépendances lindaires. % 2 5 g

UqQ =
X1+ 2x2 — x3 =0, :>X2:72X3, 3 ‘x%
X2 +22<3 =0. X1 =2x 4 x3 = 4-)(3 f s = 5l><3.

x=1t(-2,-21), teR, — Vect ((—2,-2,1)).

On veut réduire par pivot de Gauss la matrice augmentée (systéme homogéne Ax = 0) :

On résout%: 0. Xy =-22
3 (2= 25(

\J
deo &
s, 43

(5‘—7,14)




Yo NN =O La

[

=0 L?

@'»\ X Oy M+ -

q‘,;’l\-\—a\‘,z’l,_'l" R

Yy
Enquéte Wooclapf i
a,x
a O %y = - XA wm =0 "G
da +la v 23+, =0 (I A TAT T An T
\ r A = .

G o O
7 x Y =
22 v Sagzol) J : - QY

%M=‘}lg+5zq - . . == e
! 4+ ... ~--%Fa - — :
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Cas particulier : noyau et image d’une application linéaire

Définition
Soit f : E — F une application linéaire. On définit :

ker(f) ={x € E : f(x) = xA =0}, Im(f) ={f(x): x€e E} ={vA| v € E}.




Cas particulier : noyau et image d’une application linéaire

— Définition
Soit f : E — F une application linéaire. On définit :

ker(f) ={x € E : f(x) = xA =0}, Im(f) ={f(x) :x€ E} ={vA| v € E}.

— Propriétés fondamentales

>st un sous-espace de E : c'est I'ensemble des vecteurs lignes dont les

coordonnées satisfont les équationd

>(Im(f) 2st un sous-espace de F : c’est I'ensemble des combinaisons linéaires des
colonnes de A. Si e ,e,,) est une base,

Im(f) = \'e(:t(f(el),;(ez)., C




Cas particulier : noyau et image d’une application linéaire

— Définition

Soit f : E — F une application linéaire. On définit :

ker(f) ={x € E : f(x) = xA =0}, Im(f) ={f(x) :x€ E} ={vA| v € E}.

— Propriétés fondamentales
> ker(f) est un sous-espace de E : c'est I'ensemble des vecteurs lignes dont les

coordonnées satisfont les équations xA = 0.

» Im(f) est un sous-espace de F : c’est I'ensemble des combinaisons linéaires des
colonnes de A. Si B = (e1, e2,...,€,) est une base,
Im(f) = Vect(f(e1), f(e2),...,f(en)).

— Theorem (du rang)

2N

ﬁm(keiﬁ) +dim(Im f) 5 dim(EB

AN Z

—a



Conclusions




Conclusions

— Ce qu’il faut retenir

> Les sous-espaces vectoriels permettent de décrire les structures internes d'un espace

vectoriel : ils peuvent étre donnés sous forme paramétrique (par des générateurs) ou
. . . . . . . . \\

implicite (par des équations linéaires).

_

> Les représentations matricielles traduisent les applications linéaires et leurs effets sur

les coordonnées.

> Les notions de éoyau;(ker) @ (Im) sont centrales : elles relient équations et
P ——

générateurs.
_—




Conclusions

— Ce qu’il faut retenir

> Les sous-espaces vectoriels permettent de décrire les structures internes d'un espace
vectoriel : ils peuvent étre donnés sous forme paramétrique (par des générateurs) ou
implicite (par des équations linéaires).

> Les représentations matricielles traduisent les applications linéaires et leurs effets sur
les coordonnées.

> Les notions de noyau (ker) et image (Im) sont centrales : elles relient équations et
générateurs.

— Perspective pour la suite

Ces outils (sous-espaces, matrices, noyau seront essentiels pour comprendre la

struc es codes linéaires correcteurs d erreurs. —

N— ————




That's All Folks!
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