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Résumé

Cette feuille de travaux dirigés prolonge la réflexion menée sur les structures d’anneaux. Vous étudierez les quotients
d’anneaux de polynomes, les anneaux d’entiers quadratiques, et I’arithmétique modulaire sur des quotients polynomiaux

finis. Elle met en évidence les mécanismes Comwals : division euclidienne, irreductibilite, existence
d’inverses et factorisation. — P)
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1 Quotients d’anneaux de polynémes

Cette section est consacrée au fait de vous faire étendre la construction du quotient d’un anneau que vous avez rencontrée
dans Z/nZ au cas des anneaux de polyndmes.
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2 De I'arithmétique sur des anneaux d’entiers

Question 2-3 On s’intéresse a I’arithmétique de ’anneau (Z[i], +, -) ol I’addition et la multiplication correspondent

a celle des complexes. Lensemble Z[i] est donné par

: z e
N(amib) = ¢ bé €M
Zli|={a+ib|a,beZ}. - («_‘_{53 m—\b>
1. Donner des exemples de nombres premiers dans Z qui ne sont pas irréductibles dans Z[i]. +~

2. La norme d’un élément x = a + ib est donnée par

N(x) =d® +1*. v’

< Donner tous les éléments inversibles de Z[tj_)
3. ndition nécessaire et suffisante sur un nombre premier p, en terme de/[¥, pour que celui-ci ne

soit pas irréductible dans Z[i].

4. L’anneau Z[i] est euclidien pour la norme N, donc factoriel. Est-ce que tous les Z[iv/d] pour d premier sont
factoriels ?

Question 2-4 On s’intéresse a I’arithmétique de I’anneau (Z[+/2], +,-) ot I’addition et la multiplication correspondent
a celle des réels. L’ensemble Z[v/2] est donné par

[STA]

ZV2]| = {a—l—bﬁ la,be Z}.
1. Donner des exemples de nombres premiers dans Z qui ne sont pas irréductibles dans Z[ﬂ]
2. La norme d’un élément x = a + b+/2 est donnée par
N(x) = a* —2b%.

Décrire les éléments inversibles de Z[+/2] a I’aide de N. Semble-t-il y en avoir un nombre fini ?

3. Donner une condition nécessaire et suffisante sur p, en terme de N, pour que celui-ci ne soit pas irréductible

dans Z[v/2].
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