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Résumé

Cette feuille de travaux dirigés prolonge la réflexion menée sur les structures d’anneaux. Vous étudierez les quotients
d’anneaux de polynomes, les anneaux d’entiers quadratiques, et I’arithmétique modulaire sur des quotients polynomiaux
finis. Elle met en évidence les mécanismes communs a ces constructions : division euclidienne, irréductibilité, existence
d’inverses et factorisation.
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1 Quotients d’anneaux de polynémes

Cette section est consacrée au fait de vous faire étendre la construction du quotient d’un anneau qye vous avez rencontrée
dans Z/nZ au cas des anneaux de polyndmes.

Question 1-1 On note(Zy> 3.2y, les anneaux quotients de Q[X] respectivement par (X* — 1) et (X2 —3).
1. Vérifier si Zy>_; et Zyo_; sont integres : si ce n’est pas le cas décrire les diviseurs de zéro, si ¢’est bien le cas
€N apporter UNe preuve. A
2. Quel est I'inverse de X2 dans Zy» em
( 3. Est-ce que I'un des anneaux Zy>_| ou Zy5—5 est un korps ? Justifier votre réponse.
n-) -\
Z v “
M,(‘,.\\\:@?\‘z 2 XZ;‘-;Q X= ()( ) = 4_pr=>( Q):Q{Zq
Question 1-2 Trouver I’inverse de : N z
"7 dQrz: x23 () =2 X

1. [41X3 + [2]X +[1] dans Z/SZ[X]/(X2 + X + 1). -3°
2. [6]X° +[2]X? +[3] dans Z/7Z[X] /(X3 + X +1).
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Question 2-3 On s’intéresse a I’arithmétique de ’anneau (Z[i],+, -) ol I’addition et la multiplication correspondent

a celle des complexes. Lensemble Z[i] est donné par . _ )
5= (1+1) (1-%
Zli)={a+ib|a,beZ}. = (2+¢) (24)
\4 Donner des exemples de nombres premiers dans Z qui ne sont pas irréductibles dans Zi]. .
2. La norme d’un élément x = a + ib est donnée par 2=(\ "‘) ( \ '(")

N(x) = d*+ b= W

A3 = (a3+2) (3-2)

3. Donner une condition nécessaire et suffisante sur un nombre premier p, en terme de N, pour que celui-ci ne
soit pas irréductible dans Z[i].

Donner tous les éléments inversibles de Z[i]. /

4. L’anneau Z[i] est euclidien pour la norme N, donc factoriel. Est-ce que tous le§ Z[iv/d] jour d premier sont
factoriels ?

Question 2-4 On s’intéresse a 1’arithmétique de I’anneau (Z[\_@], +,-) ol I’addition et la multiplication correspondent
a celle des réels. L’ensemble Z[v/2] est donné par T
2= (2.2

F= (3eD)E-) =
3=

ZV2] = {a+bﬁ|a,beZ}.

1. Donner des exemples de nombres premiers dans Z qui ne sont pas irréductibles dans Z[ﬂ]

@ La norme d’un élément x = a + b+/2 est donnée par N(O\ -Pﬁ '03 - (&t ’O\FZ.\ (q | 6&)

=at-2t €72

Décrire les éléments inversibles de Z[v/2] a I'aide de N. Semble-t-il y gn avoir un nombre fini ?

3. Donner une condition nécessaire et suffisante sur p, en terme de N, pour que celui-ci ne soit pas irréductible
dans Z[v/2). ‘_%f j
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