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Introduction



L'arithmétique autrement : les anneaux

Objectifs de la vidéo

▶ Comprendre la motivation qui conduit à formaliser la notion d'anneau.

▶ Identi�er le rôle des axiomes dans la généralisation des opérations

arithmétiques.

▶ Distinguer les principaux types d'anneaux : commutatifs, intègres, factoriels,

euclidiens et corps.



Pourquoi formaliser les opérations arithmétiques ?

▶ En arithmétique, on manipule des opérations familières : addition, soustraction,

multiplication, division.

▶ L'objectif est de repérer quelles propriétés sont indispensables pour que ces

opérations soient valides et généralisables.

▶ Cette démarche conduit à la notion d'anneau, qui capture le comportement

commun des opérations arithmétiques dans des contextes très di�érents.



Qu'est-ce que faire de l'arithmétique ?

Réponse à chaud

Faire de l'arithmétique c'est étudier les relations de divisibilité entre entiers.
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C'est quoi la division déjà ?

Dé�nition (Division sur Z)
Un élément b ∈ Z∗ divise un entier a ∈ Z s'il existe un entier q ∈ Z tel que

a = bq. On note alors q = a
b .

Donc b ne divise pas a si ∀q ∈ Z, a ̸= aq.

En ce cas, on indroduit la notion de reste et on dit que a = bq + r .

L'intérêt (notamment en cryptographie) c'est d'avoir des éléments divisibles et

d'autres non.
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De quoi a-t-on besoin pour parler de divisibilité ?

Étant donné un ensemble A, pour espérer faire de l'arithmétique sur A, il va nous

falloir :

▶ Une opération + (addition)

▶ Une opération · (multiplication)

▶ Que ces opérations soient compatibles, c'est à dire : ∀a, b, c ∈ A,

a · (b + c) = a · b + a · c .

Question

Est-ce tout ce qu'il faudrait ?
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La notion d'anneau



Dé�nition d'un anneau

Dé�nition (Anneau)

Un anneau a est un triplet (A,+, ·) où A est un ensemble et + et · sont deux opérations

binaires internes, c'est à dire deux fonctions

+ : A× A → A · : A× A → A

qui véri�ent les propriétés suivantes :
Pour l'addition :

▶ ∀a, b, c ∈ A, (a+ b) + c = a+ (b + c) (associativité de +)

▶ ∃0 ∈ A, ∀a ∈ A, a+ 0 = a = 0+ a (existence d'élément neutre pour +)

▶ ∀a ∈ A, ∃(−a) ∈ A, a+ (−a) = 0 (existence d'élément opposé pour +)

▶ ∀a, b ∈ A, a+ b = b + a (commutativité)

a. On utilisera anneau pour anneau unitaire.
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Dé�nition d'un anneau

Dé�nition (Anneau)

Un anneau a est un triplet (A,+, ·) où A est un ensemble et + et · sont deux opérations

binaires internes, c'est à dire deux fonctions

+ : A× A → A · : A× A → A

qui véri�ent les propriétés suivantes :
Pour la compatibilité :

▶ ∀a, b, c ∈ A, a · (b + c) = a · b + a · c (distributivité à droite)

▶ ∀a, b, c ∈ A, (a+ b) · c = a · c + b · c (distributivité à gauche)

Il est commutatif si ∀a, b ∈ A, a · b = b · a.

a. On utilisera anneau pour anneau unitaire.



Exemples !



Exemples et contre-exemples

Premiers exemples d'anneaux

1. Les ensembles usuels Z, R, C.

2. Les suites et fonctions numériques, les polynômes,

3. Les ensembles de matrices Mn(R).

Des choses qui n'en sont pas (pourquoi ?)

1. L'ensemble des entiers naturels N.

2. Les fonctions intégrables sur ]0, 1].

3. L'ensemble des matrices inversibles.
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Les anneaux intègres



Anneaux intègres

Dé�nition (Anneau intègre)

Un anneau (A,+, ·) est dit intègre s'il est commutatif et si

∀a, b ∈ A, a · b = 0 ⇒ a = 0 ou b = 0 .

Dans un anneau A les éléments a ̸= 0 pour lesquels il existe b ̸= 0 tels que a · b = 0

sont dits être des diviseurs de 0. Un anneau est donc intègre s'il est commutatif et

sans diviseurs de 0.

Question

À quelles conditions sur n est-ce que Z/nZ est intègre ?
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Anneaux intègres

Proposition

Dans un anneau intègre (A,+, ·) on a la propriété de simpli�cation, c'est à

dire : ∀a, b ∈ A,∀c ∈ A∗ = A \ {0}

a · c = bc ⇒ a = b .



Anneaux intègres

Démonstration.

Soient a, b ∈ A, c ∈ A∗ = A \ {0}. On veut prouver a · c = bc ⇒ a = b.

a · c = b · c +(−(b·c))⇒ a · c + (−(b · c)) = b · c + (−(b · c))
Neutre +⇒ a · c + (−(b · c)) = 0

?⇒ a · c + (−b) · c = 0

Distr.⇒ (a+ (−b)) · c = 0

Intègrité⇒ c = 0 ou a+ (−b) = 0

Or, c ̸= 0 donc a+ (−b) = 0.



Anneaux intègres

Démonstration.

On sait que a+ (−b) = 0. On a alors :

(a+ (−b)) = 0
+b⇒ (a+ (−b)) + b = 0+ b

Asso. +⇒ a+ ((−b) + b) = 0+ b

Opp. +⇒ a+ 0 = 0+ b

Neutre +⇒ a = 0+ b

Neutre +⇒ a = b .



Où sont les nombres premiers ?



Éléments inversibles et irréductibles

Dé�nition

Soit (A,+, ·) un anneau.

▶ Un élément a ∈ A est dit inversible s'il existe b ∈ A tel que

a · b = 1 = b · a.

On dit alors que b est l'inverse de a, et on note a−1 = b. L'ensemble des

éléments inversibles est noté A×. On l'appelle aussi l'ensemble des unités.

▶ Si A est intègre, un élément p ∈ A \ A× est dit irréductible si toute écriture

de la forme

p = a · b

implique que a est inversible ou b est inversible.
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Exemples d'éléments inversibles

Exemple

▶ Dans Z : les seuls inversibles sont ±1.

Z× = {−1, 1}

▶ Dans Q : tous les éléments sont inversibles donc Q× = Q \ {0}.

▶ Dans R[X ] : les inversibles sont les polynômes constants non nuls.

R[X ]× = R \ {0}.

▶ Dans Mn(R) : les inversibles sont les matrices de déterminant non nul.

Mn(R)× = GLn(R).
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Les corps : quand tout est inversible

Dé�nition (Corps)

Un corps est un anneau (A,+, ·) dans lequel tout élément non nul est inversible :

∀a ∈ A \ {0}, ∃a−1 ∈ A, a · a−1 = 1 = a−1 · a.

Observation

Dans un corps, il n'existe plus d'irréductibles ni de nombres premiers : tout élément non nul

divise tout autre élément.

L'arithmétique y est donc triviale : aucun phénomène de factorisation non banal.

Exemple

Des exemples de corps

▶ Q, R, C

▶ Fp = Z/pZ pour un nombre premier p (pourquoi ? )
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Les anneaux factoriels

Dé�nition (Anneau factoriel)

Un anneau factoriel est un anneau intègre (A,+, ·) tel que :

▶ tout élément non nul et non inversible de A se décompose en produit �ni

d'irréductibles :

a = p1 · p2 · · · pn;

▶ et cette décomposition est unique à permutation des facteurs et

multiplication par des unités près.

C'est l'analogue du Théorème fondamental de l'arithmétique.



Les anneaux factoriels

Exemple

L'anneau (Z,+, ·) est factoriel : en e�et, tout entier se factorise comme produit de

premiers (irréductibles).

Par exemple, 12 = 2 ·2 ·3. Cette décomposition est unique à permutation des facteurs

près (12 = 2 ·3 ·2) et à multiplication par des unités près (12 = (−1) ·(−1) ·1 ·2 ·2 ·3).

Exemple

L'anneau a (Z[
√
−5],+, ·) n'est pas factoriel : en e�et, l'élément 6 a deux décomposi-

tions di�érentes b : 6 = 2×3 et 6 = (1+
√
−5)·(1−

√
−5) = 1−

√
−5

2
= 1−(−5) = 6.

a. Pour rappel, Z[
√
−5] = {a+ b ·

√
−5 : a, b ∈ Z}

b. On peut prouver que 2, 3, (1+
√
−5) et (1−

√
−5) dont irréductibles.
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On s'y prend comment en

machine ?



Anneaux euclidiens : la division revient

Dé�nition (Anneau euclidien)

Un anneau (A,+, ·) est dit euclidien s'il est intègre et s'il existe une application

v : A∗ → N

appelée stathme euclidien, telle que :

1. ∀a, b ∈ A∗, v(a) ≤ v(ab)

2. ∀a ∈ A, ∀b ∈ A∗, ∃q, r ∈ A tels que

a = bq + r , avec r = 0 ou v(r) < v(b).

Idée intuitive

Le stathme v joue le rôle d'une taille : on peut e�ectuer une division avec reste, comme

dans Z, et ainsi retrouver une arithmétique algorithmique.
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Exemples d'anneaux euclidiens

Exemple

▶ Z avec v(a) = |a| : c'est l'exemple canonique.

▶ K[X ] avec v(P) = deg(P) : division euclidienne des polynômes.

▶ Z[i ] (entiers de Gauss) avec v(a+ ib) = a2 + b2 : on divise par approximation

complexe.

Théorème fondamental

Tout anneau euclidien est factoriel.

Question

▶ Pourquoi Z[X ] n'est-il pas euclidien avec v(P) = deg(P) ?

▶ Que change la présence ou non d'un stathme ?
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Pour résumer



À retenir

Faire de l'arithmétique, c'est étudier des ensembles où la divisibilité et la factorisation ont

un sens.

▶ Un anneau permet d'additionner et de multiplier de manière cohérente.

▶ Un anneau intègre élimine les diviseurs de zéro : la divisibilité devient �able.

▶ Un anneau factoriel rétablit l'unicité de la factorisation.

▶ Un anneau euclidien rend la division e�ective : on peut calculer le pgcd et appliquer Bézout.

▶ Un corps simpli�e tout : tout élément non nul est inversible, mais l'arithmétique y devient

triviale.

Hiérarchie

corps
Pourquoi ?⇒ euclidien ⇒ factoriel ⇒ intègre
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That's All Folks !
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