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Information management
across piological scales

Monod and Jacob and Gene Regulation in bacterial species(1961)
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How does It work ?

Where/what is the computer inside the microscopic bags of
chemical that we call cells?




Molecular Systems&Circuits
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How does a bacteria finds 1ts
middle?




How does a bacteria finds 1ts
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Three proteins called the min system (minC,D,E)
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How does a bacteria finds 1ts
middle?

Three proteins called the min system (minC,D,E)
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The min system (minC,D,E)
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Raskin, D. M., and de Boer, P. A. J. (1999b). Rapid pole-to-pole oscillation of a protein required for directing division to the
middle of Escherichia coli., PNAS 96, 4971-4976 12




How does a bacteria finds
middle?

Three proteins called the min system (minC,D,E)
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Larger networks control more complex
functions

-~ Buaang Sister chromatd
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. |’ DNA synthesis |*

Regulatory network of the budding yeast cell cycle (Tyson 2006)

* Molecular networks are fundamental building blocks of biological systems
* They are inevitable because of the very process of chemical replication, but
they also provide opportunities for function, in particular computation




Are molecular networks special?

The answer Is at the same time NO, YES and We don't
KNOW

« NO, because all networks share some
fundamental properties
» YES, because the edges of the network are
instantiated by molecular interactions and
reactions and this is quite specific
« We don't know, because we don’'t have much first-
hand molecular networking experience. Most of
the one we know were just discovered In
nature.
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Universality of networks

Higher level properties of
Interaction networks
emerge largely from their
topological structure
regardless of the identity
of the nodes




| otka-Volterra equations

X = aX — bXY

Y =cXY —dY

(x Y-




| otka-Volterra equations
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| otka-Volterra equations X

Dy nonlinearity .
n dust-forming

-

- — 8 At

C { Deanna Shea

Predator-prey dynamics stabilised

by nonlinearity explain oscillations
in dust-forming plasmas

Received: 01 October 2015 = A E Ross & D. R. McKenzie

Da Camara Ribeir...

are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit
a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here
we show how the problem of understanding these oscillations may be cast as a predator-prey problem,

with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Q
Cu W

Raman Sheshka (...



| otka-Volterra equations

(xY

Gen Relativ Gravit (2014)46:1753  Jérome Perez - André Fiizfa - Timoteo Carletti -
DOI 10.1007/s10714-014-1753-8 Laurence M¢élot «+ Lazare Guedezounme

RESEARCH ARTICLE

The Jungle Universe: coupled cosmological models
in a Lotka-Volterra framework
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| otka-Volterra systems in
chemistry?

Alfred Lotka original suggestion concerned chemical kinetics:

He suggested that a chemical system with two imbricated auto-
catalytic chemicals could oscillate

Molecular “prey”
Molecular “predator”

O

-‘ M*c‘:s: ” lnStIt.Ut
Molecular soup Curie




Ln présentation. (-] Donnes e cont.., ’,.' Aréter la présen

Various flavors of networks exist
wlthin cells

* Gene regulatory networks
* Signalling cascades
* Enzymatic networks

* Regulated metabolic networks

O

instityt
Curie

30



In présentation.. Donner le cont... 51 | Areter ta prasen..
Gene regulatory networks can be very
complex but they are conceptually simple
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Gene regulatory networks: A modular way to build
reaction networks, in vivo, using the protein expression machinery

A

Gene 1

Transcription

v/ A gene can activate another gene O

v A gene can repress another gene : '

v This motif can be cascaded over and over lnStIt.Ut
Curie
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Key elements ot o]
molecular regulatory s —
networks P
LS o

In the case of
spatially distributed

TOPOLOGY
systems

KINETICS (laws & rates)

DIFFUSION RATES

BOUNDARY CONDITIONS

CHEMI S

Regulatory network of the budding yeast cell cycle (Tyson 2006) :

There is no direct link between the physico-chemical nature/feature of the parts and INSTItUt

the function Curie
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Creating networks 1n cells, by connecting
exlsting “parts” to obtain artificial
behaviors

Elowitz&Leibler, 2000: The first synbio oscillatory network

a Repressilator

tetR is a regulator involved in antibiotic resistance in bacteria O
Lacl is a metabolic regulator from E. Coli, that controls the expression of sugar-processing enzymes depending on availab lnStItUt
Lambda-cl Is a phage regulator that controls the switching between the two life style of a phage (a virus) c °
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cellular machinery (proteiln
expression and gene regulation)

l1.€. 1n cell extracts

Implementation of cell-free biological networks at
steady state

Henrike Niederholtmeyer, Viktoria Stepanova, and Sebastian J. Maerk!’

PNAS 2013

A

Reporters Oscillator network
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1n vitro circults based on full
cellular machinery (protein
expression and gene regulatlon)
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Harnessing synthetic DNA and purified
enzymes to construct /n vitro reaction
networks

As models of cellular networks
For a chemistry of information processing
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DNA as a synthetic material
for molecular circuits

Thymine
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DNA as a synthetic material
for molecular circuits
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DNA as a synthetic material
for molecular circults
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DNA'as a synthetic raw
material for molecular circuits

“DNA as a universal substrate for chemical kinetics” PNAS 2010

Enzymes:

Copy: Polymerases
Cut-paste: Restriction enzymes and Ligases
Delete: Nucleases

O
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[ ow cost DNA synthesis

Price Per Base of DNA Sequencing and Synthesis
Rob Carison, February 2014, www.synthesis.cc

1.0E+02

1.0E+01

1.0E+00

1.0E-01

1.0E-02

US Dollars

1.0E-03

1.0E-04

1.0E-05 === Cost: Sequencing
wpee Cost: Short Oligo
Cost: Gene Synthesis
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DNA data storage: 200 MB written in, stored and read from DNA

(O
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(OK go video) Microsoft, U. Washington, Twist Curie



Molecular networking
approaches
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()

Simplified moaels or biological
regulatory networks

L [ 3 \
Transcriptuonl

Translation
|
. Regulation
« e
2

Reqgulatory network of the budding yeast cell cycle (Tyson \ Ty }
2006)

« We want to maintain the modularity and
cascadability O

. s i - - Institut
But simplify the chemistry as much as possible Curie
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PEN DNA toolbox: an in vitro
‘universal” reaction set

(a) Activation (b) Inhibition (¢) Degradation
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PEN DNA toolbox: an /n vitro
‘universal” reaction set
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* (Cascadable |
* Dissipative (Global reaction and energy flux: dNTP -> Oligonucleotides -> dNMP)

désoxyNucléosides TriphosPhates 3’-NucleosideMonoPhosphate
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Energy source and flow

Enzymes
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Synthesizing dynamics
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Bullding a DNA-encoded oscillator

Tl‘/\/  x
T C’( : ) <: ) o o
= = =
T o

o B
Relaxation oscillator
5’-AACAGACTCGA-AACAGACTCGA-3' O
5 -TTACTCGAAACAGACT-GGATGACTCCA-3’ : X
INStItut

5'-GGATGACTCCA-AACAGACTCGA-3’

Curie
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Bullding a DNA-encoded oscillator
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Hation

Modeling (detailed kinetics)

O

instityt
Curie




:

Modeling (detailed kinetics)
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ODE system
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Numerical integration

00 : Experimental

Fluorescence (a.u.)
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Bullding a bistable system
(Tbit memory)
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Blstable swutch => Push -push
button

We add input modules to force the bistable back and forth
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Predator Prey network
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Predator-Prey molecular ecosystem
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Partitioning a molecular oscillator
N @ Microscopic emulsion

O

instityt
Curie




Ln présentation : Arrdter | présen

Partitioning a molecular oscillator In
a MICroscopic emulsion gives...
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Ln prédsentation.

A platform for analy5|s of ~10° different
systems simultaneously

many
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a control paramelers
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Bifurcations of oscillator

| One
using 3D Parameter s obssrvable
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Predator-prey oscillator
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3-dimensional bifurcation
diagram of an oscillator
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3- dlmensmnal blfurcatlon
diagram of an oscillator
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3-dimensional bifurcation
diagram of an oscillator
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Stochastic bursters located at
the Hopf bifurcation
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| earning by building

ne edges hide a lot: non linear behaviours are essential,
and provided by higher orders Kinetics, delays or feedback
loops

Both inducers
form a dimer Positive Feed back
before acting loops are necessary
for function
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Ln prédsentation. Do
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ne edges hide a lot: non linear behaviours are essential,
and provided by higher orders Kinetics, delays or feedback
loOpS

Parasites (chemical virus) are ubiquitous free riders when a
powerful molecular machine is provided

The role of global couplings: |deal versus real molecular
networks
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In chemistry, networks with a “discrete”
structure are an idealisation
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In (bio)-chemistry, networks with a
‘discrete” structure are an idealisation
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In chemistry, networks with a “discrete”
structure are an 1dealisation

In the case of the DNA toolbox, the enzymatic
machine contains 3 enzymes

Po'ymerase Global negative
saturation coupling

Exonuclease Global positive

Activation
Inhibition

saturation coupling
Nicking enzyme Global negative

Autocatalysis

saturation coupling
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Global loads can negatively affect
function
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Global competition can also provide new

functions

« The WINNER-TAKE-ALL effect happens in collections of self-replicating
agents when there is competition for growth

4 : N
-Exponential growth B Discretization: Elimination of
_ -Limited shared resource all but one species P
« |tis called competitive exclusion in ecology but also applies to molecular
systems

(a) ()

-
E'
G ReL 3
! . winne 2%
‘ ' || : | "‘:
] » [ | ) -
NN ™
- ) .! (\ )" ' : “ ::
( I ) ! Red ’ S fons .\ ) 4 c .
w A o ’ " II n \ . ’ o )\
.. ’a '\ Jv’ N "‘D‘) ’ 2 ,
o \‘S‘ )"

tume (arb, units)

(¢) () (¢)
Cp? llll"u' 4
YIS

i |t \ : L O
AN X LY institut
Curie

1Y, ] (arb, units) l)'l | (arb. units) [} !I (arb. units)

“0 “o
i‘ N N

¥,

A -
() () 104 ()



Conclusion

* Artificial Molecular Networking approaches
provide versatile tools to explore questions
related to networks and information
processing In (bio)-chemical systems.

* There exist a range of platforms, going from in
vitro synbio, to DNA-only networks

* They also open the way to new applications,
were chemical systems are used not for their
physic-chemical properties, but for their
Information-processing potential.
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