

Basic principles of Thermodynamics

Nicolas Schabanel

CNRS - ENS de Lyon & IXXI

State functions

- **Postulate:** There is a function $\mathbf{U(V, \dots, S)}$, called **internal energy**, which depends only on *extensive* parameters of the *states (at equilibrium)* of the *closed* system: V (volume), N (number particles), etc..., and the **entropy** $\mathbf{S(V, \dots, U)}$
- **U and S are exactly differentiable:**

$$dU = \frac{\partial U}{\partial V} dV + \dots + \underbrace{\frac{\partial U}{\partial S} dS}_{=_{\text{def}} T} \quad dS = \frac{\partial S}{\partial V} dV + \dots + \underbrace{\frac{\partial S}{\partial U} dU}_{=1/T}$$

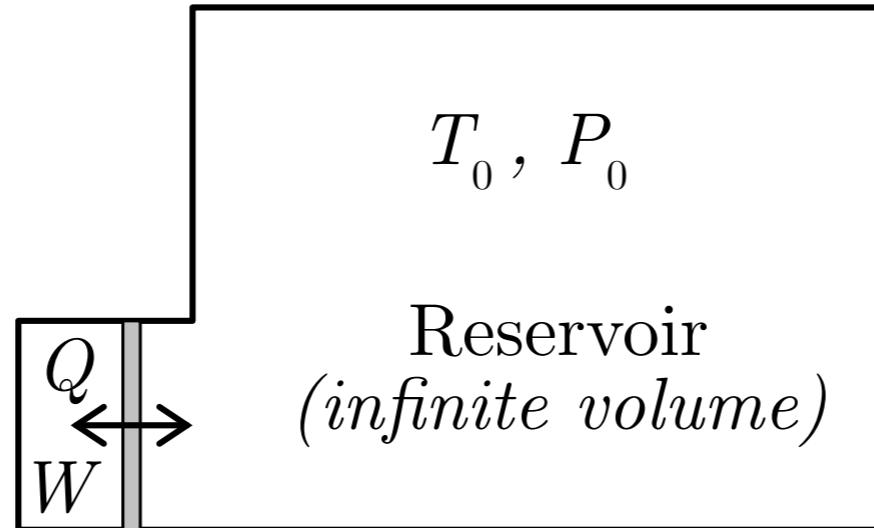
Laws of thermodynamics

- **1st Law**, when changing from one state to another:

$$\Delta U = \underbrace{\delta Q}_{\text{Heat}} + \underbrace{\delta W}_{\text{Work}}$$

- **2nd Law: for a closed system, $\Delta S \geq 0$**
(work is converted into heat and never the converse)

Free enthalpy



- For a system evolving at T_0 and P_0 constant:

S is extensive, thus $\Delta S_{Tot} = \Delta S + \Delta S_{Res}$

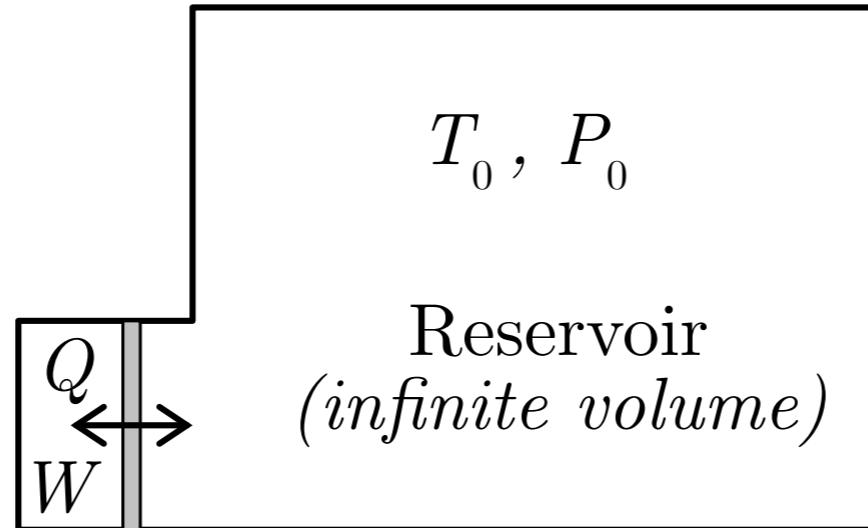
1st Law: $\Delta U = Q + W = Q - P_0 \Delta V$

But $dU = -PdV + TdS$

$$dV_{res} = 0 \text{ thus } \Delta S_{Res} = -\frac{Q}{T_0} = -\frac{\Delta U + P_0 \Delta V}{T_0}$$

$$\text{Finally, 2nd Law: } 0 \leq \Delta S_{Tot} = \Delta S - \frac{\Delta U + P_0 \Delta V}{T_0} = \frac{\Delta(T_0 S - U - P_0 V)}{T_0}$$

Free enthalpy



- For a system evolving at T_0 and P_0 constant:

$$\text{Let } G = U + P_0 V - T_0 S$$

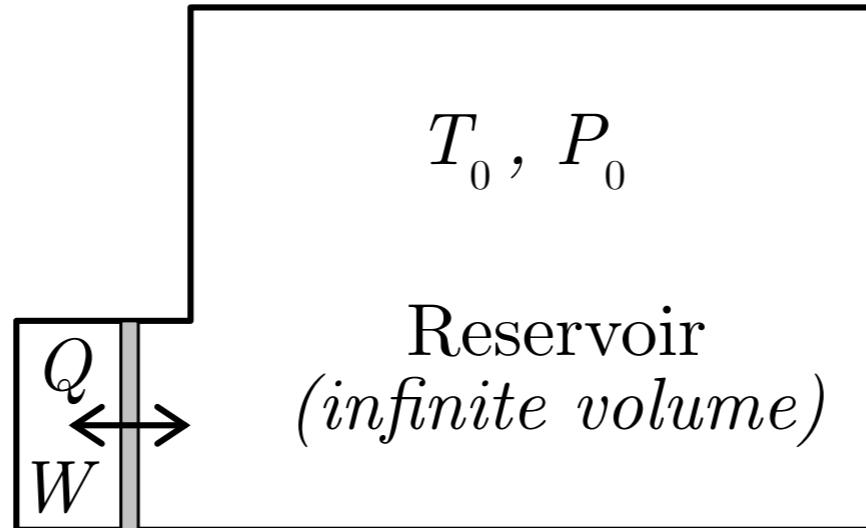
$$\text{Then, } \Delta G \leq 0$$

- G is the **free enthalpy**, it's a **state function, minimized at equilibrium => determine the parameters at equil. !**

Indeed, at equil. $\frac{\partial G}{\partial S} = \frac{\partial U}{\partial S} - T_0 = T - T_0 = 0 \Rightarrow T = T_0$

and, $\frac{\partial G}{\partial V} = \frac{\partial U}{\partial V} + P_0 = -P + P_0 = 0 \Rightarrow P = P_0$

Free enthalpy



$$G = \underbrace{U}_{\approx -\# \text{bonds}} + \underbrace{P_0 V}_{\text{Constant}} - T_0 \underbrace{S}_{\approx \# \text{molecules}}$$

- Typically: $U_{AT} = 1$, $U_{CG} = 2$, and $T_0 S_{/\text{molecule}} = 8$
- The state at equilibrium is the configuration which minimizes the tradeoff:

$$G(\# \text{bonds}, \# \text{molecules}) \approx \# \text{bonds} - 8 \# \text{molecules}$$