

An experimental realization of a universal computer

Nicolas Schabanel

CNRS

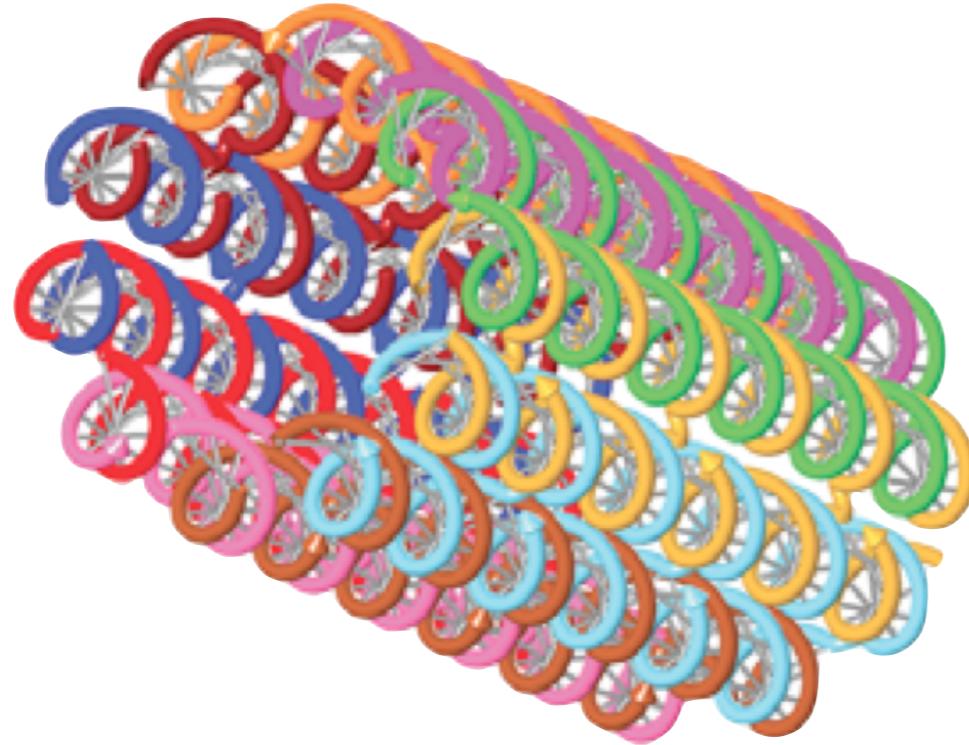
LIP & IXXI - ÉNS de Lyon

Slides mainly borrowed from Damien Woods et al (Nature 2019)

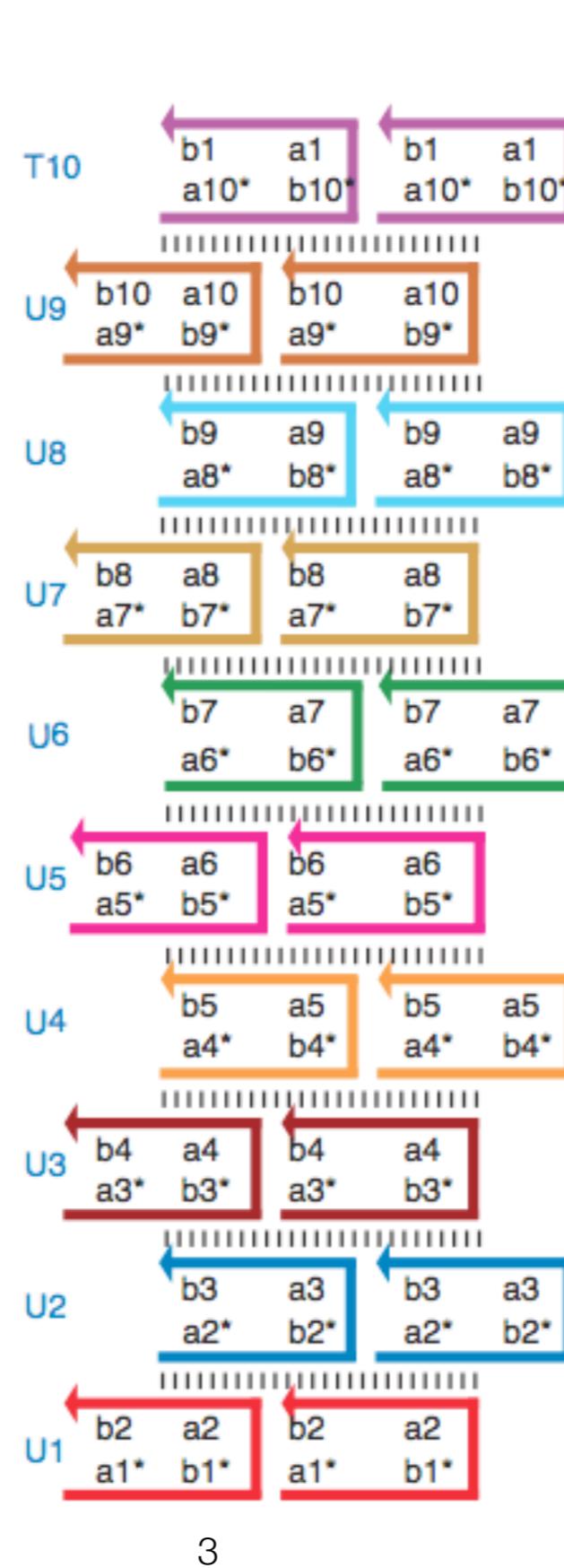
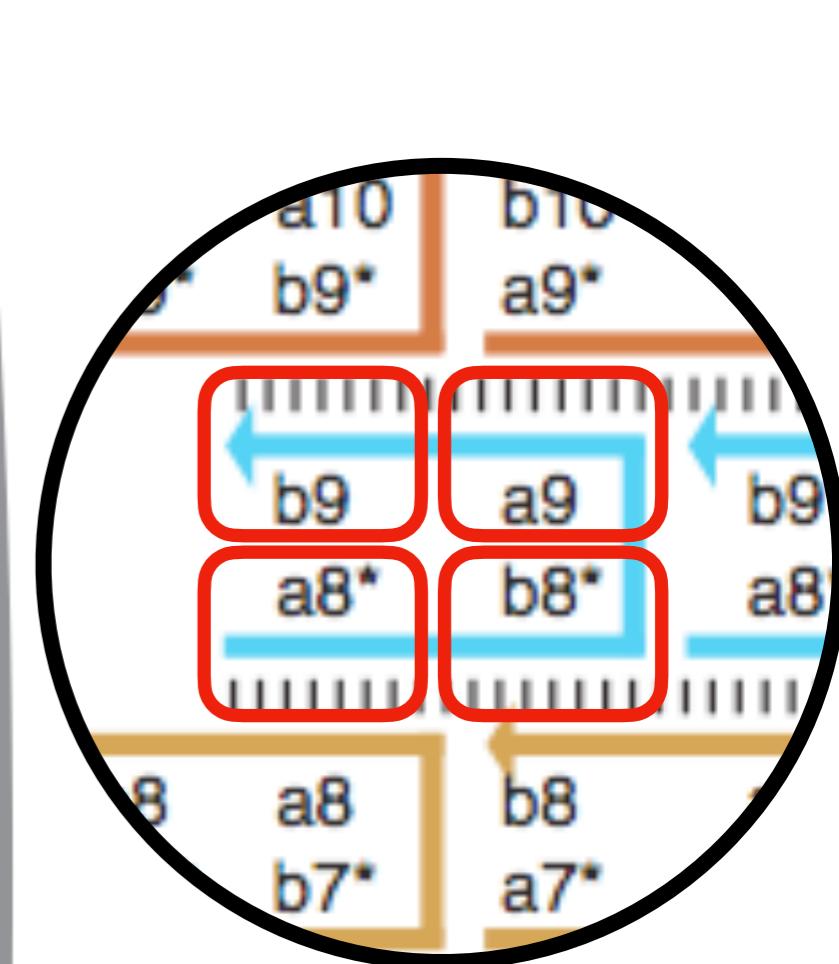
Single Stranded Tiles

Nanotubes

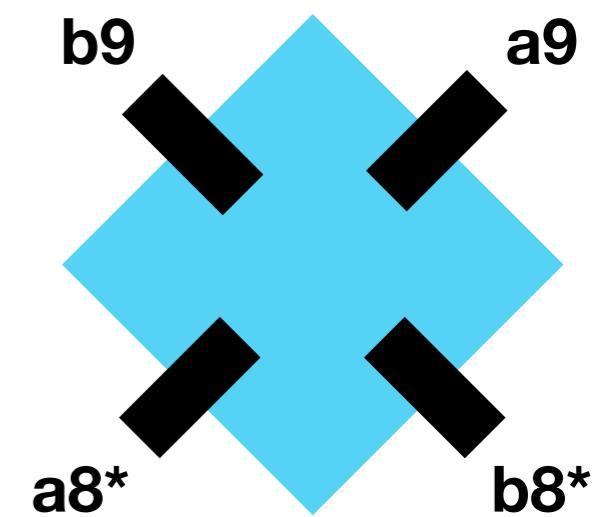
Single stranded Nanotubes



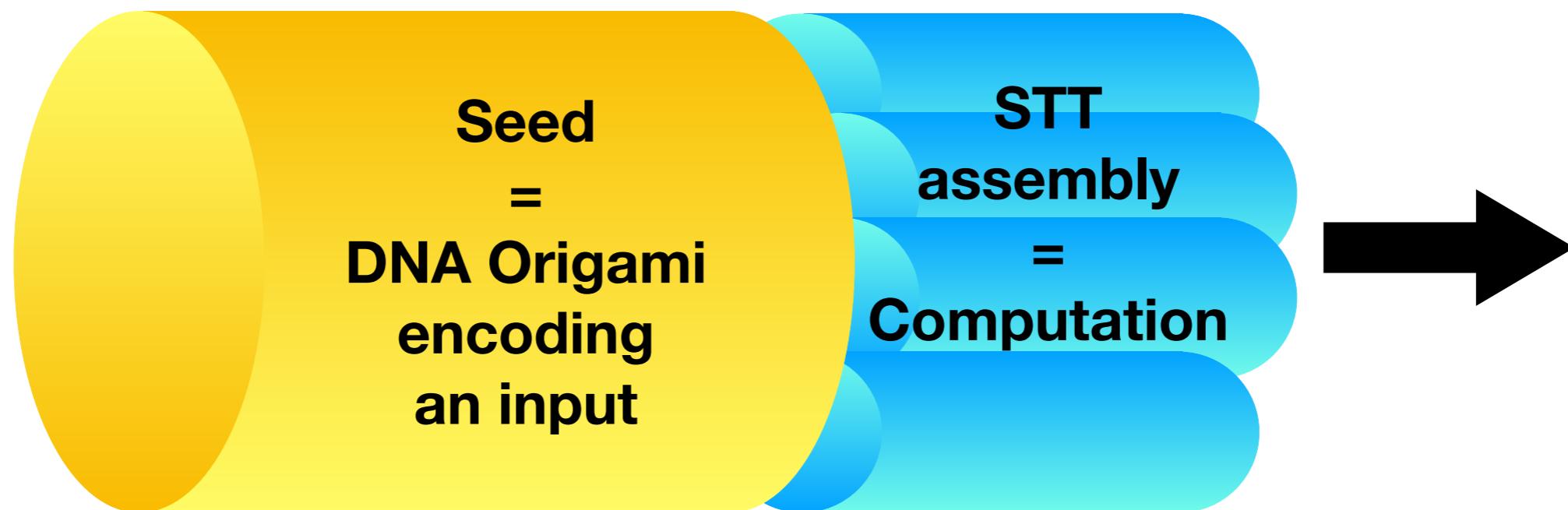
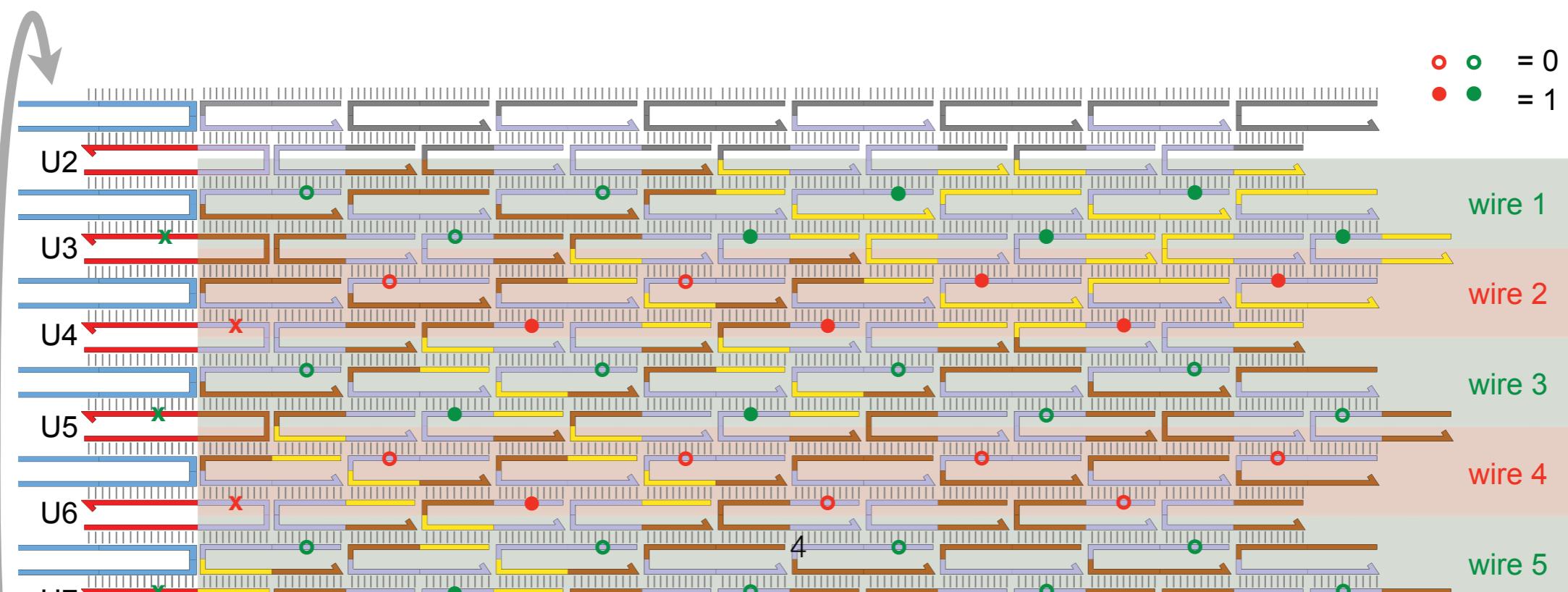
10-helix nanotube schematic,
Yin et al. '08



4 domains = 4 glues

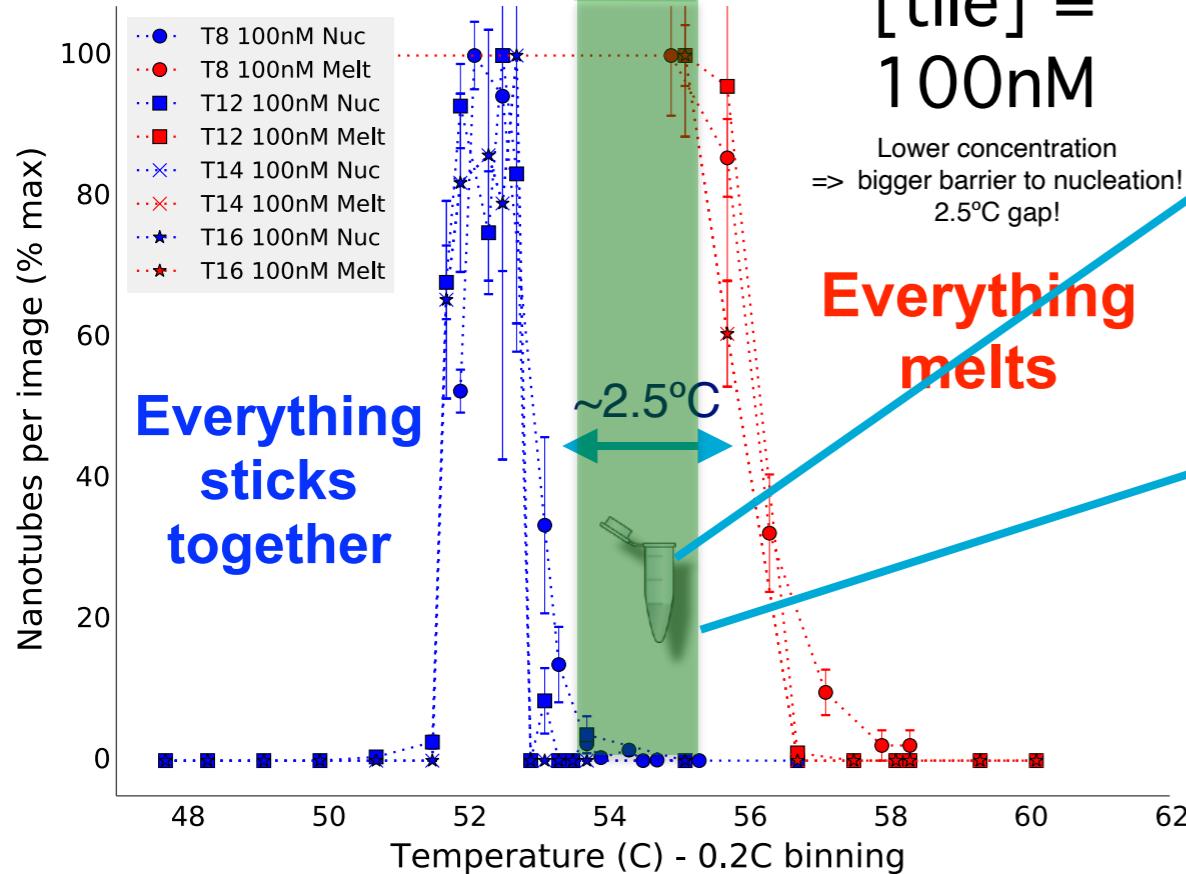
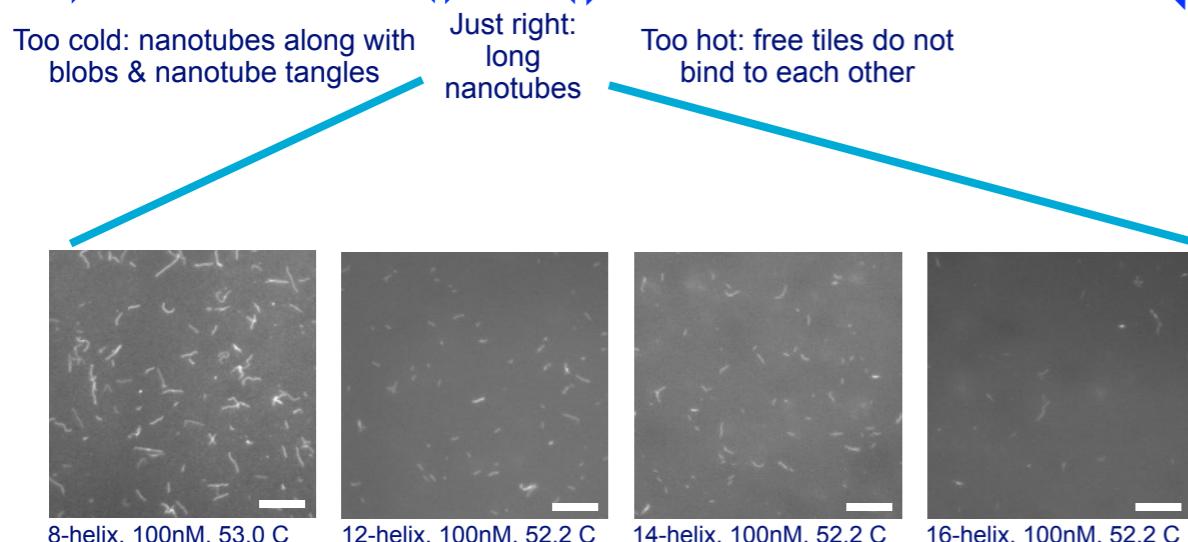


Growing them



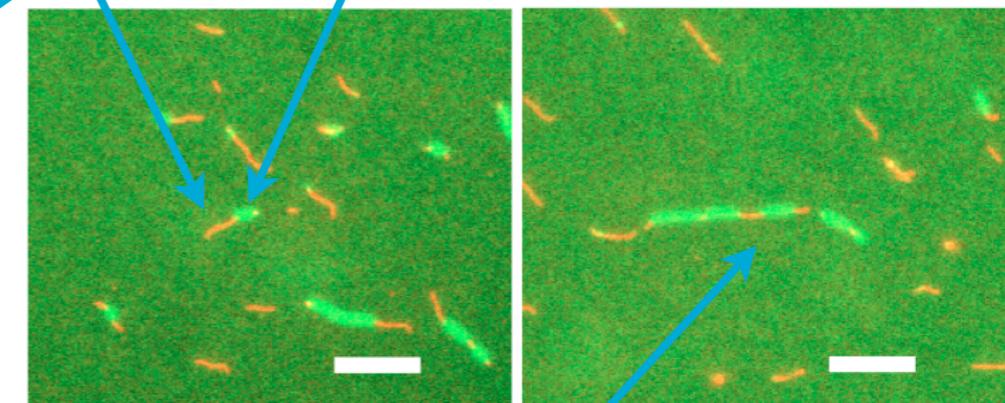
Seeded growth: barrier to nucleation at [tile]=100nM

Growth from seed only



Scale bars 10 μ m. ~24 hour temperature hold experiments. cy3 label

Growth from seed
Seed



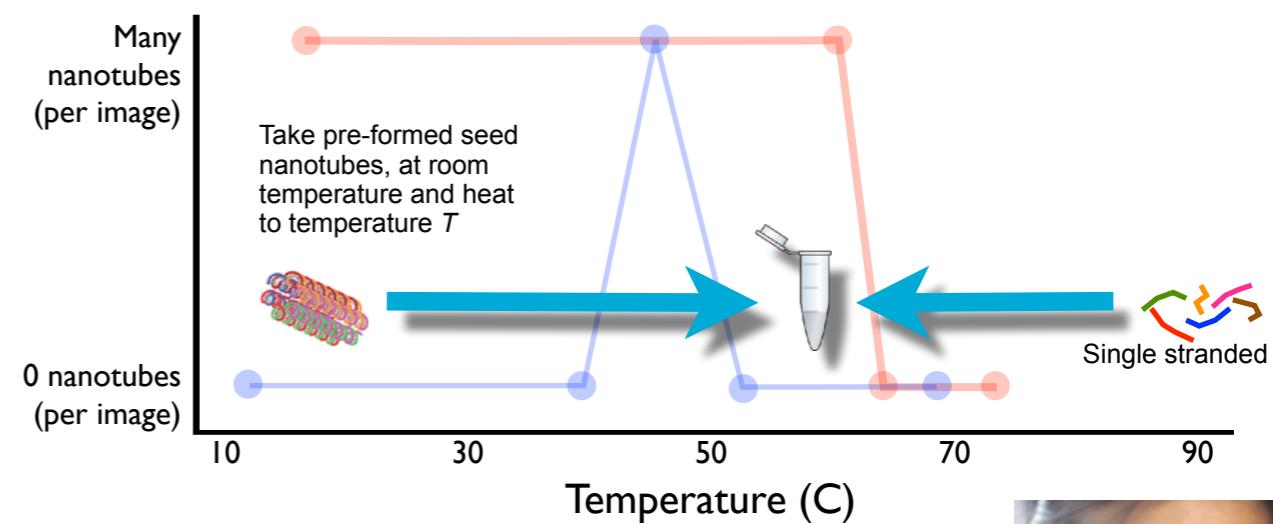
End-to-end joining

seeds: 8-helix nanotubes, Alexa647 labelled

growth from seed: 8-helix tiles, Cy3 labelled

scale bar: 10 μ m. 100nM tile concentration

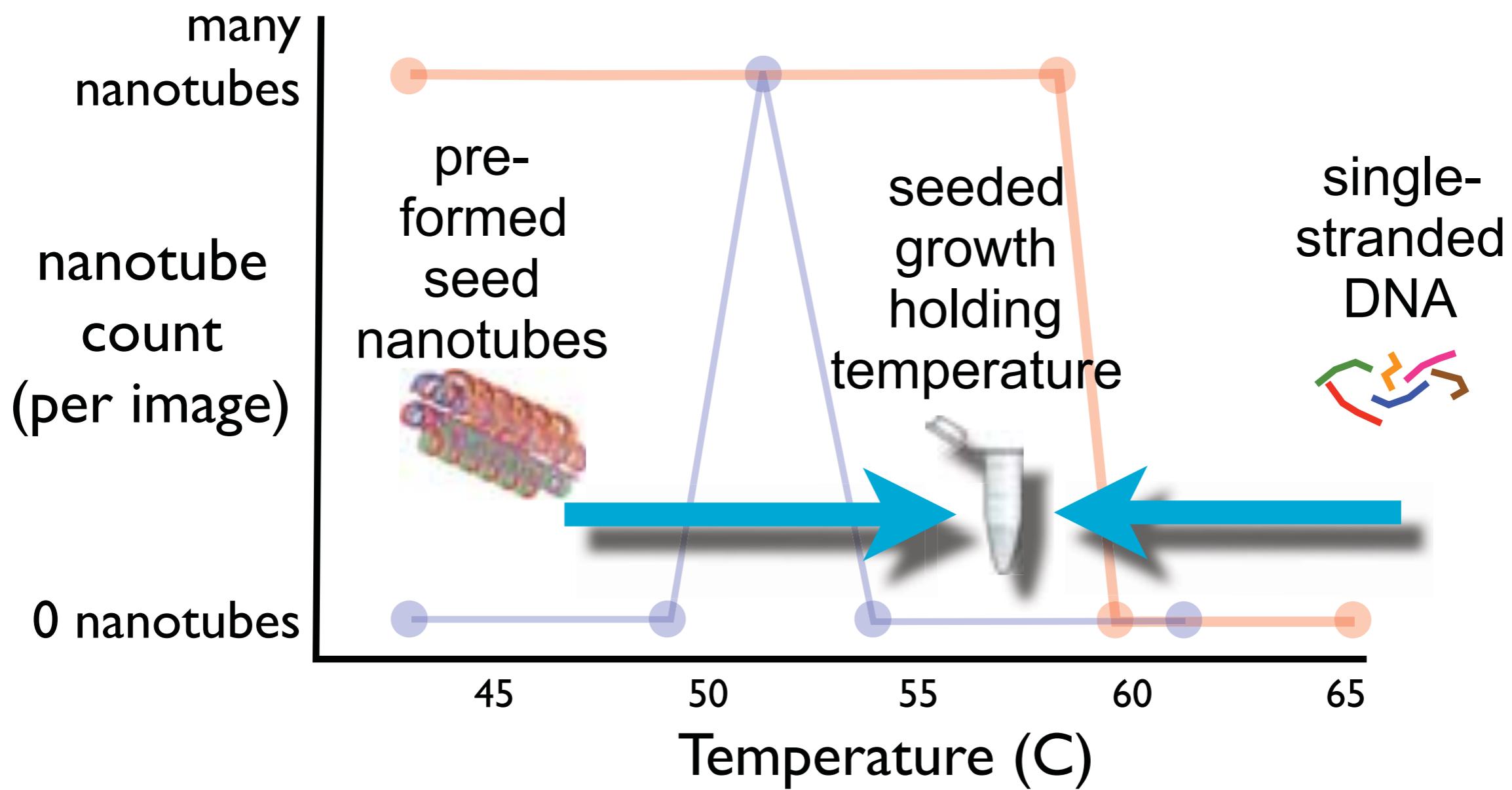
Controls: 0 seed nanotubes => 0 nanotubes/image



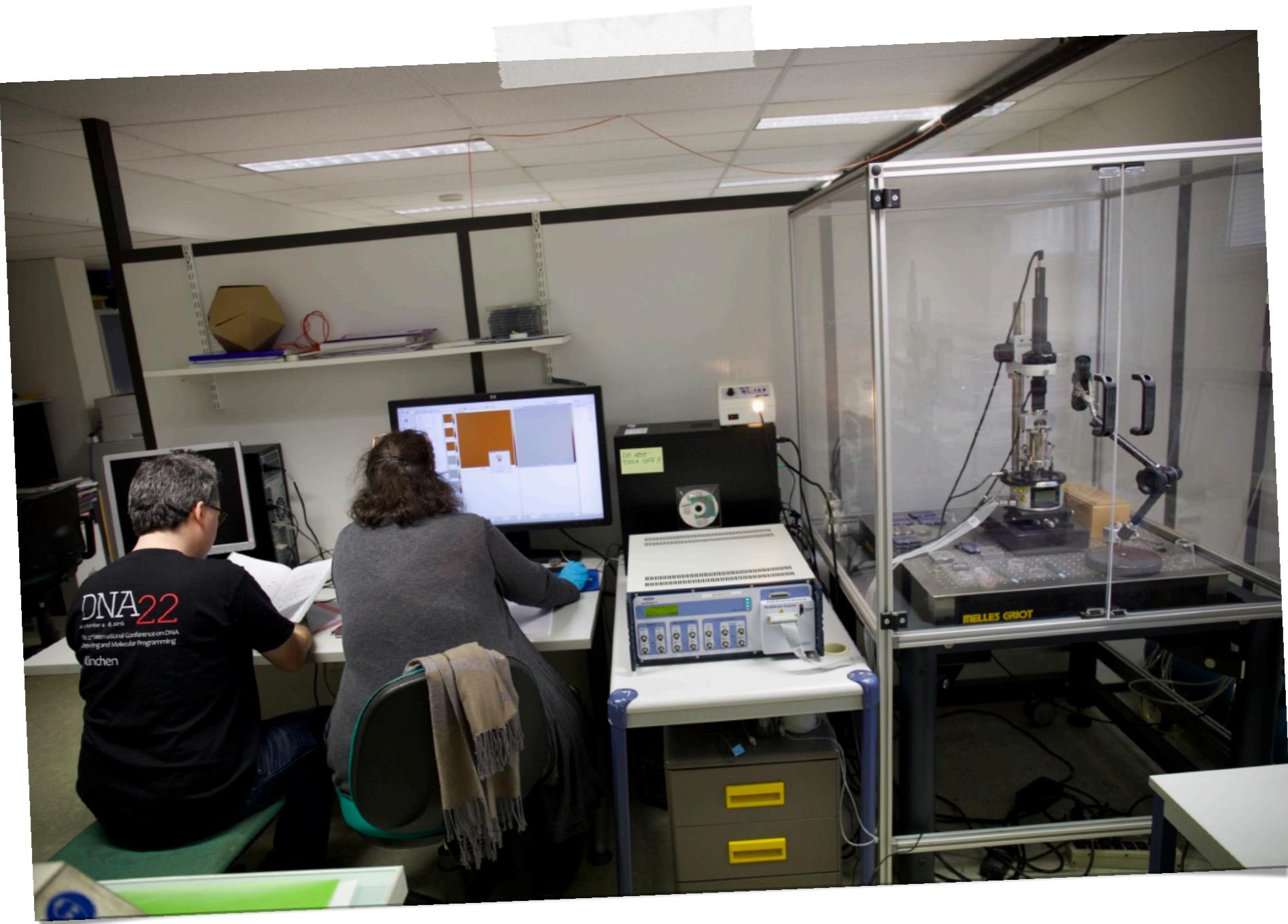
We work at this temperature

Joy Hui 5

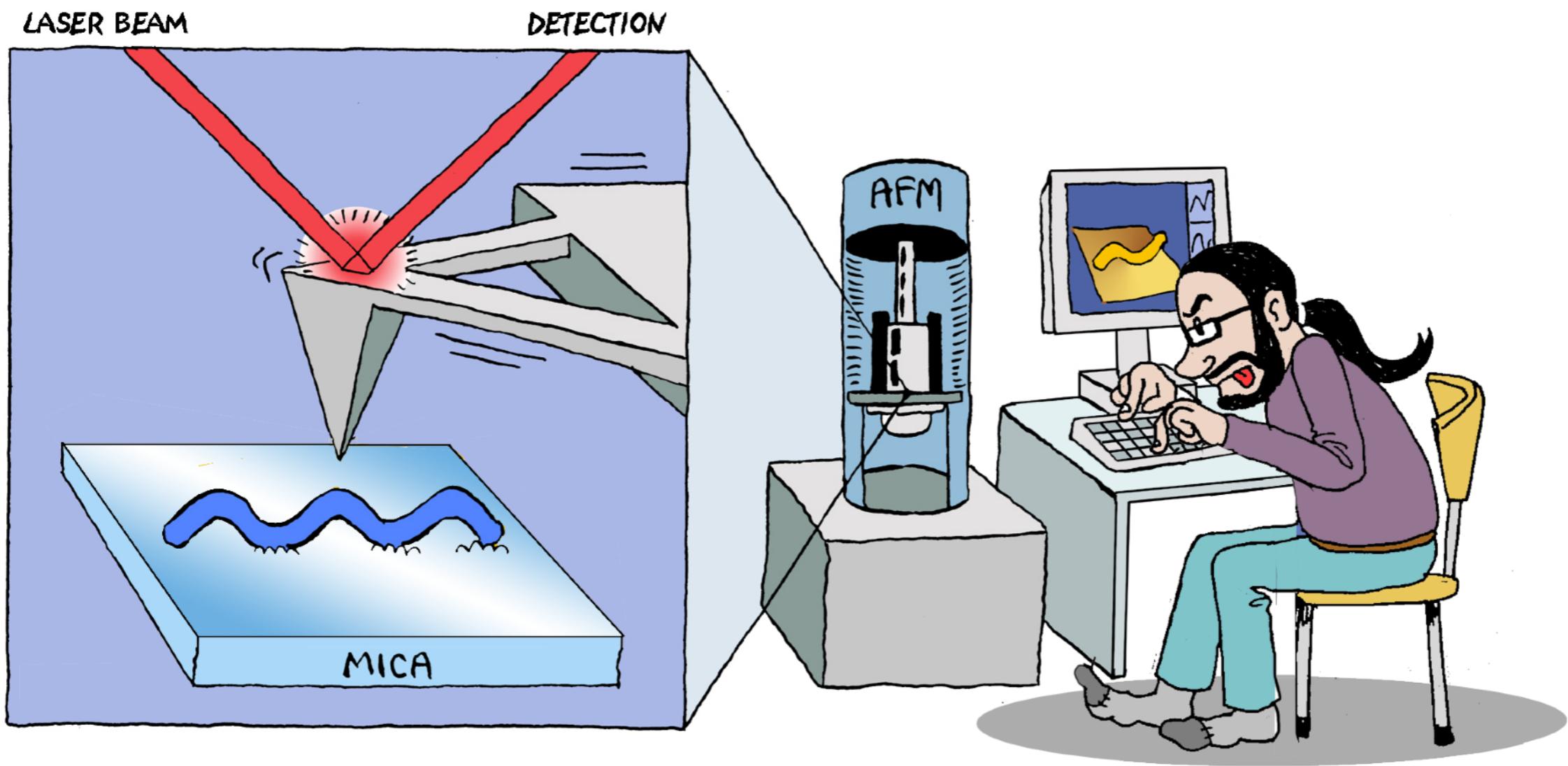
Seeded growth only



Imaging the results

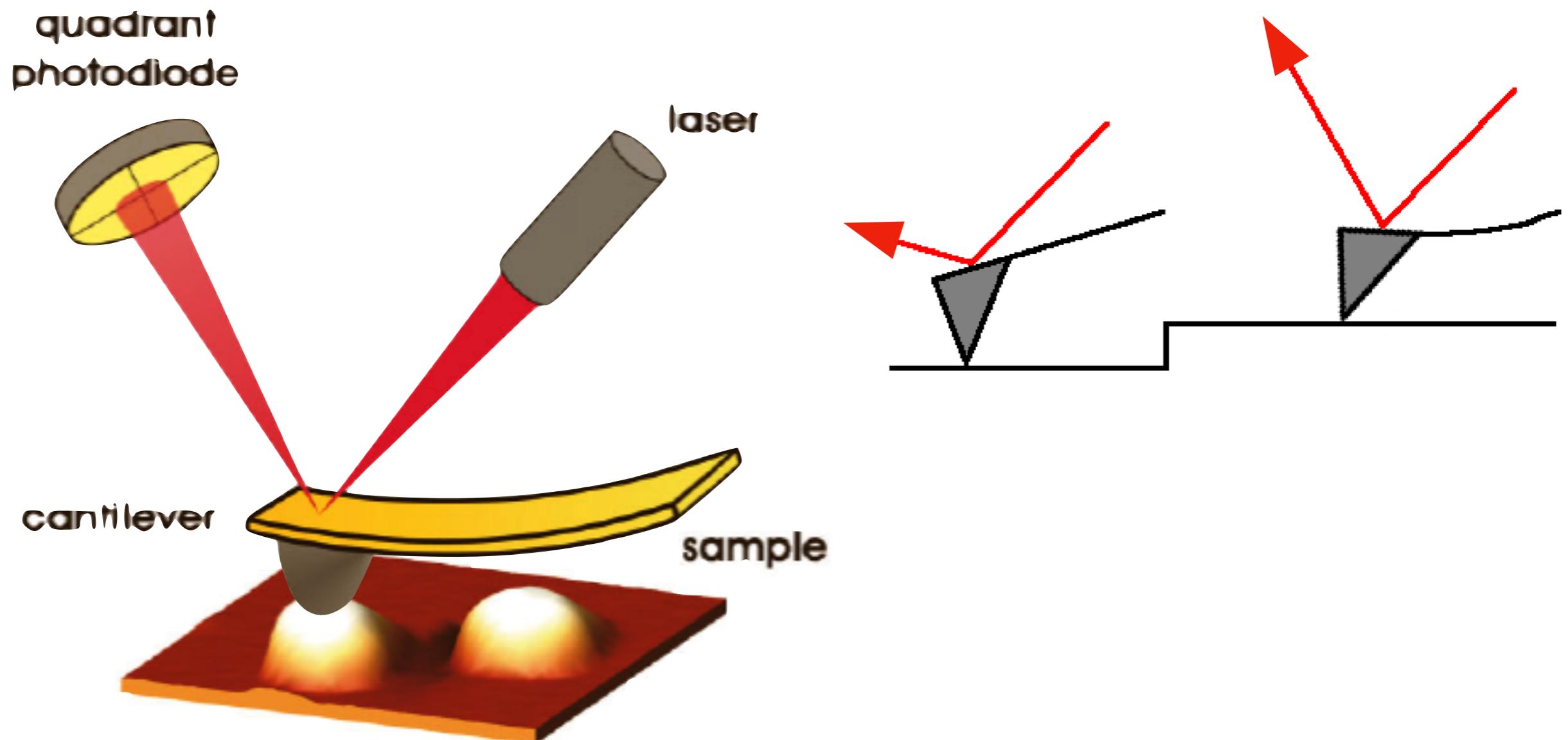


Principle of Atomic Force Microscopy

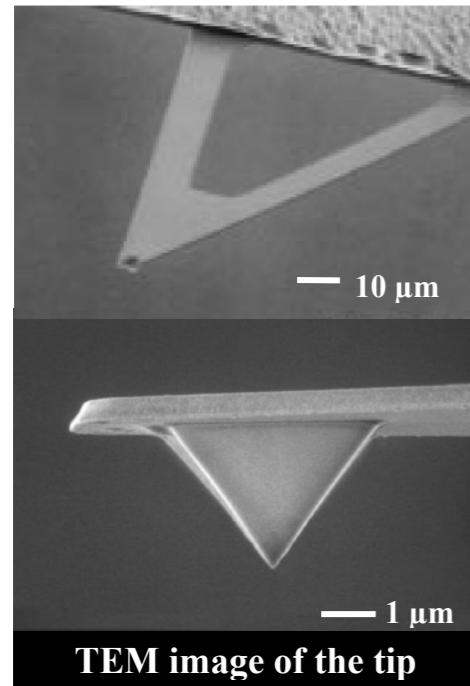


The microscope works by scanning the surface with a sharp probe and gently touching the DNAs that arrange on the mica.

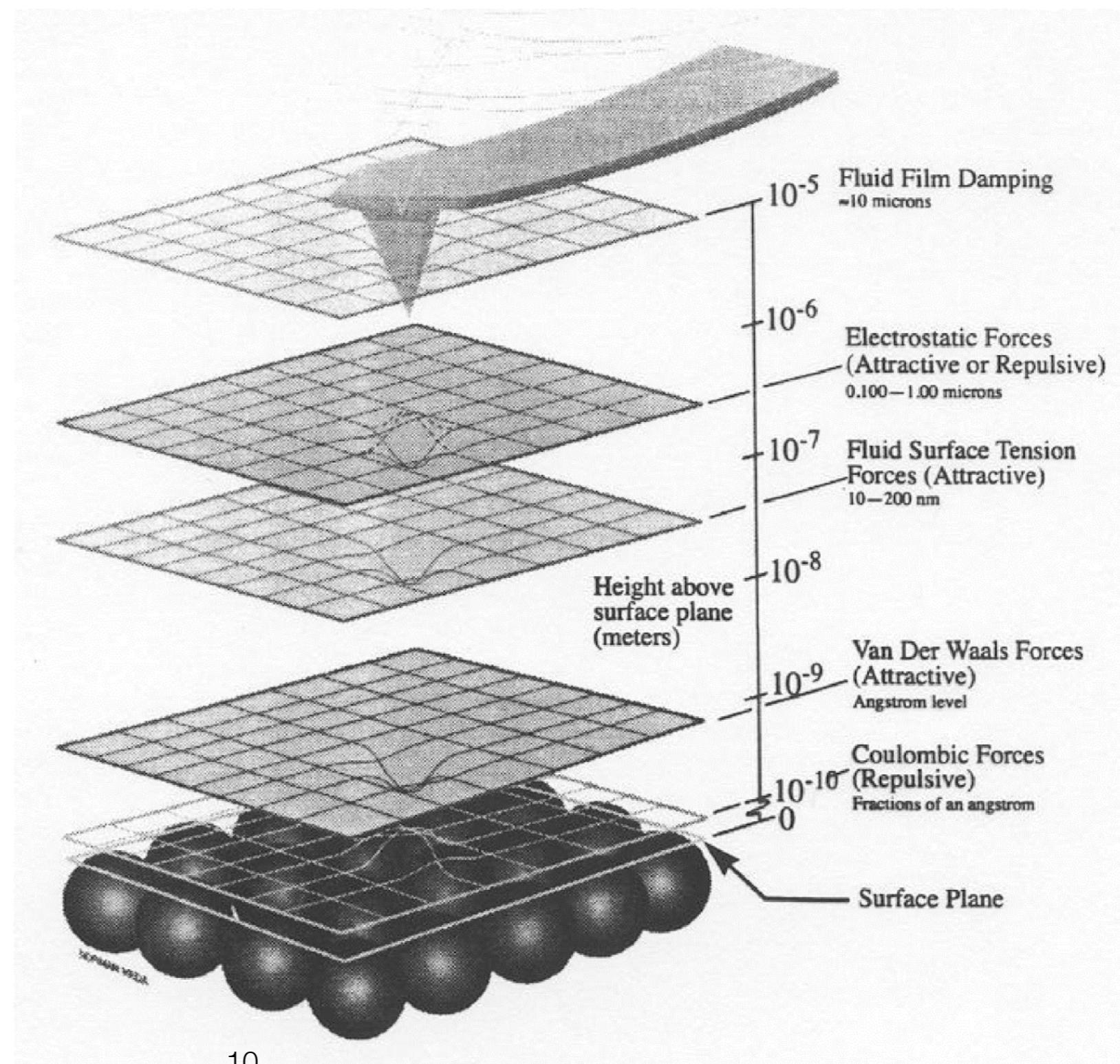
Laser deflection



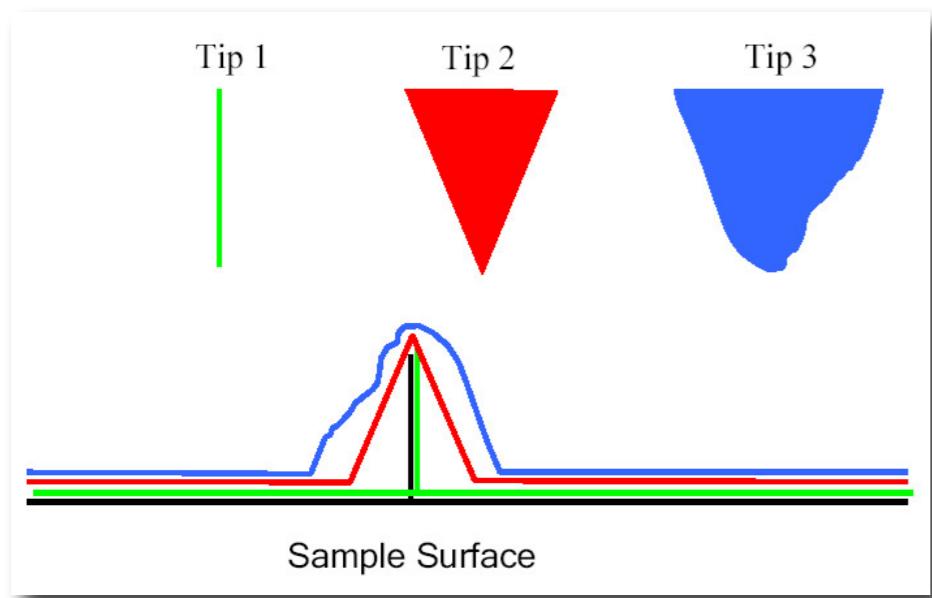
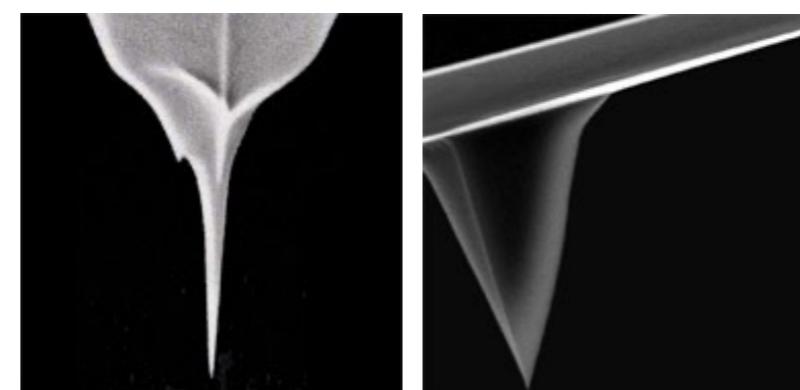
The forces involved in AFM



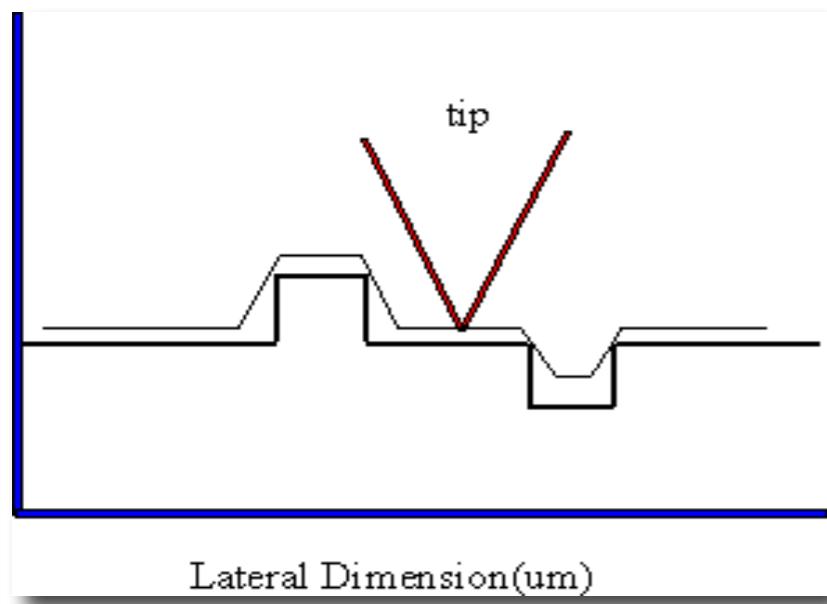
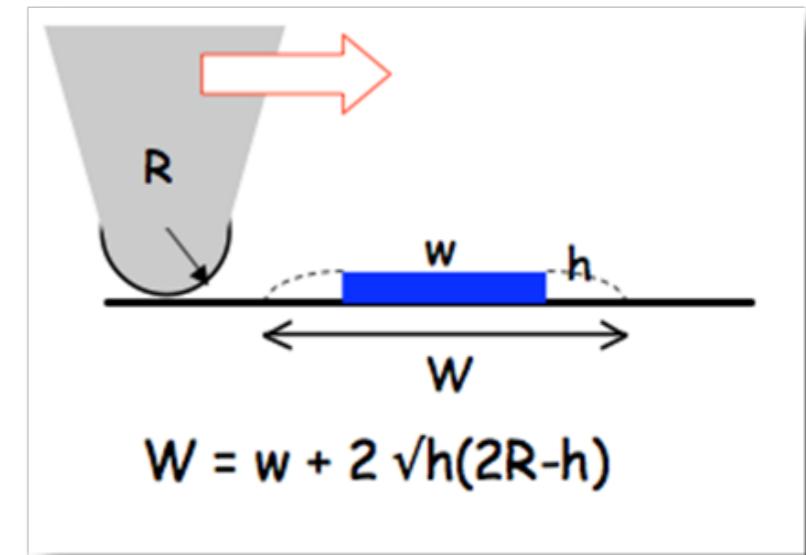
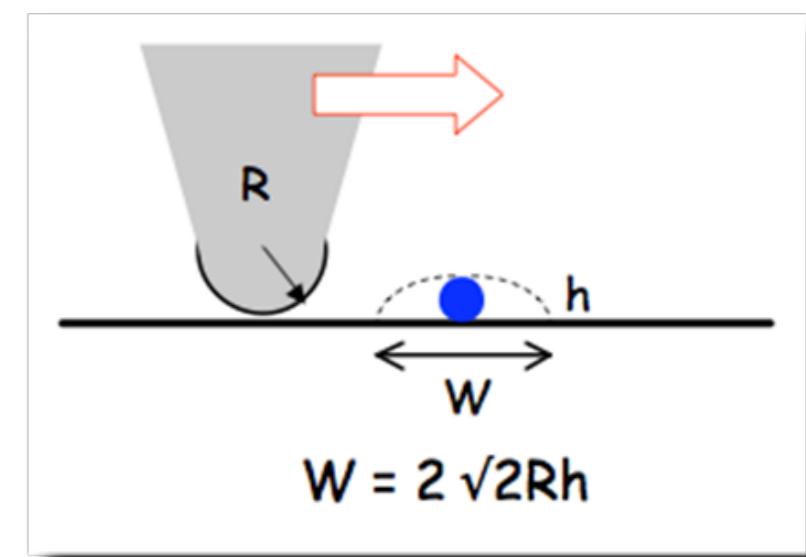
They are interaction forces between the atoms of the end of the tip and the atoms on the sample surface.



Tip convolution



Tip radius 2-20 nm



High resolution imaging

**The Chemical Structure of a Molecule Resolved by
Atomic Force Microscopy**
Leo Gross, *et al.*
Science **325**, 1110 (2009);
DOI: 10.1126/science.1176210

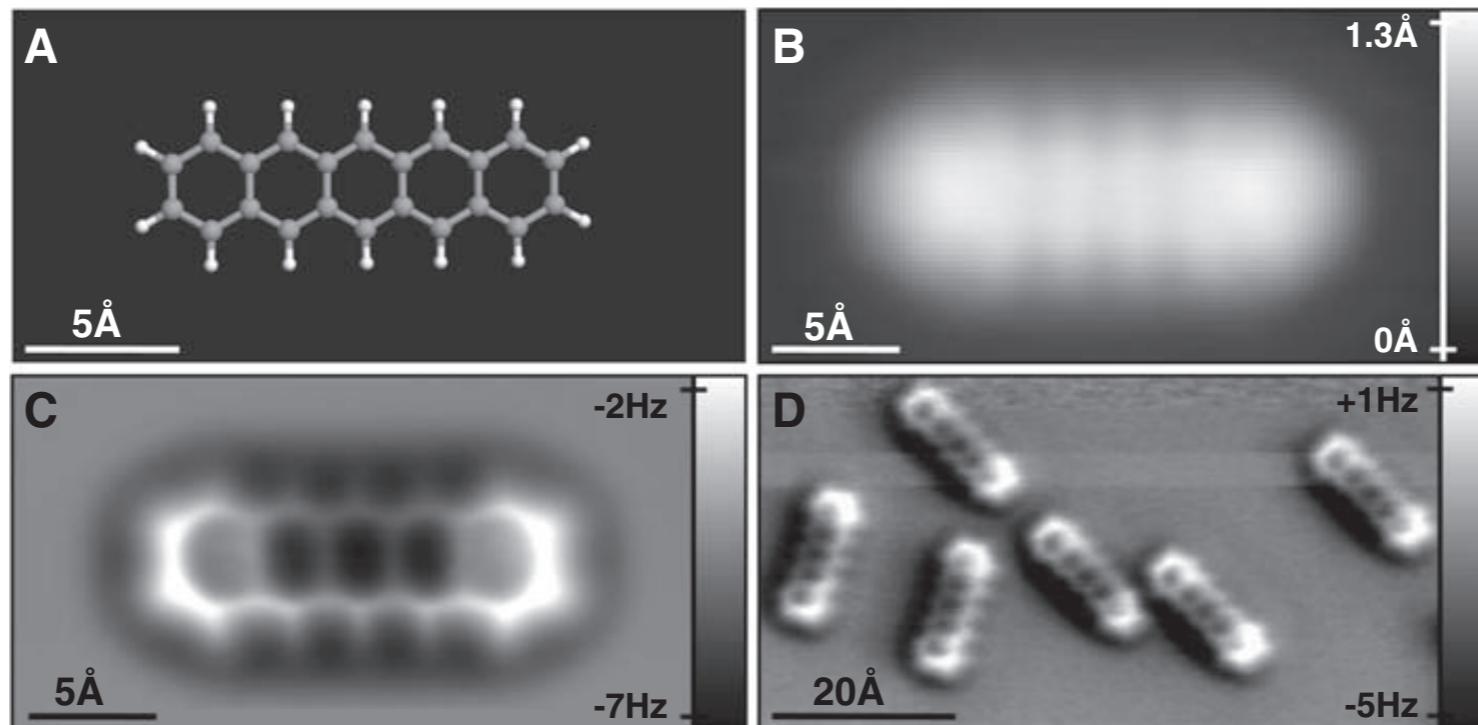
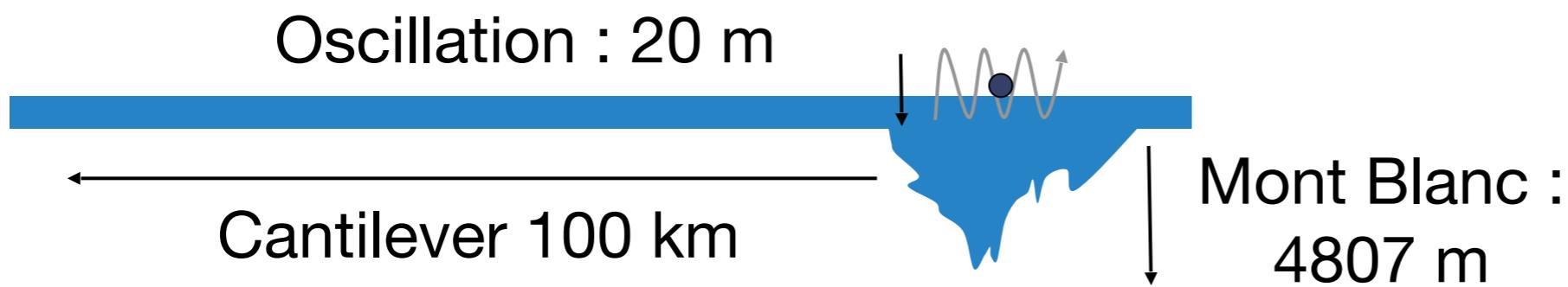
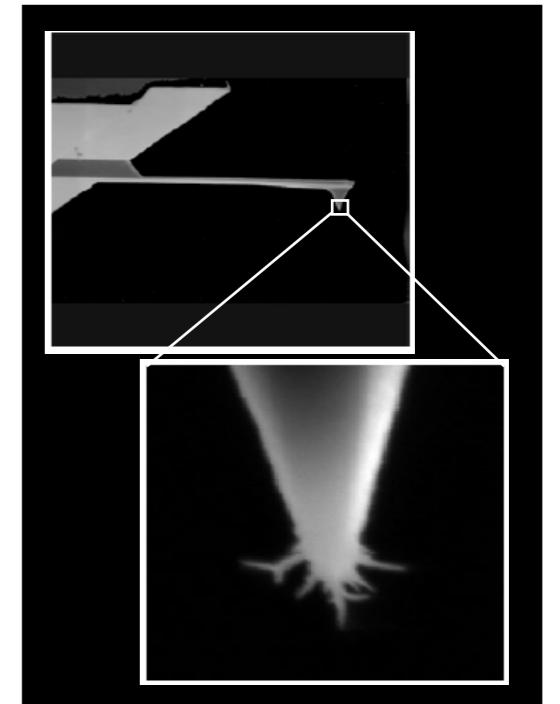
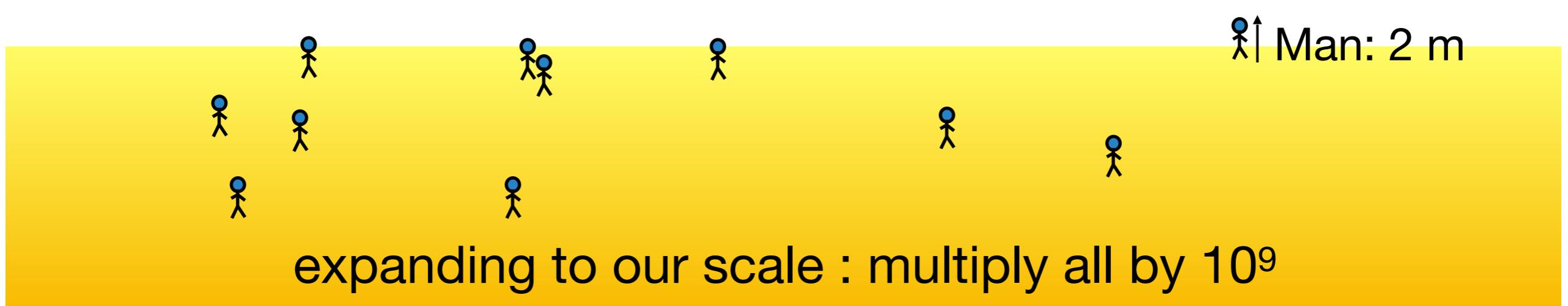


Fig. 1. STM and AFM imaging of pentacene on Cu(111). **(A)** Ball-and-stick model of the pentacene molecule. **(B)** Constant-current STM and **(C)** and **(D)** constant-height AFM images of pentacene acquired with a CO-modified tip. Imaging parameters are as follows: (B) set point $I = 110$ pA, $V = 170$ mV; (C) tip height $z = -0.1$ Å [with respect to the STM set point above Cu(111)], oscillation amplitude $A = 0.2$ Å; and (D) $z = 0.0$ Å, $A = 0.8$ Å. The asymmetry in the molecular imaging in (D) (showing a “shadow” only on the left side of the molecules) is probably caused by asymmetric adsorption geometry of the CO molecule at the tip apex.

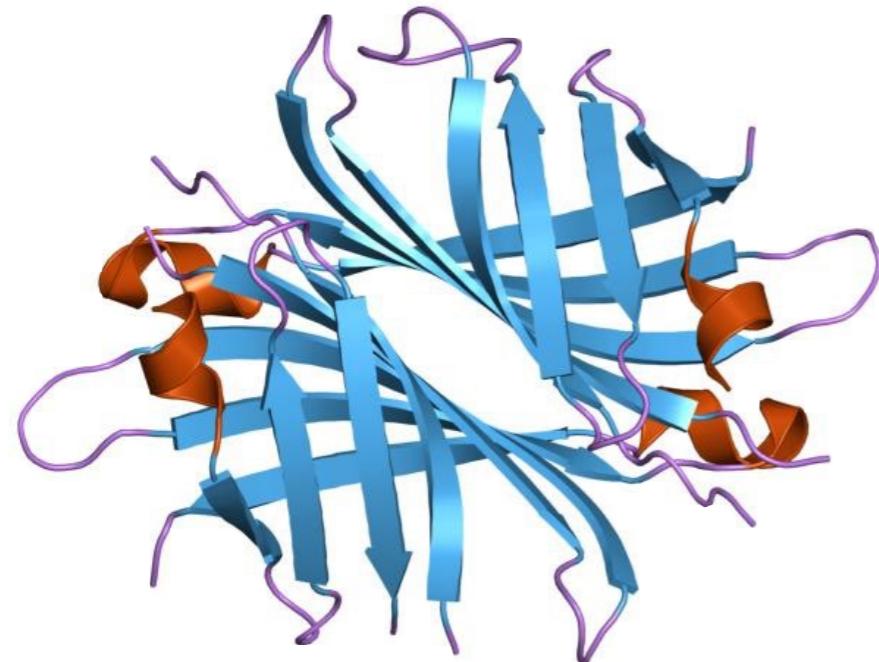
About AFM scale

... how to shake the Mont Blanc over
little men heads without crushing them

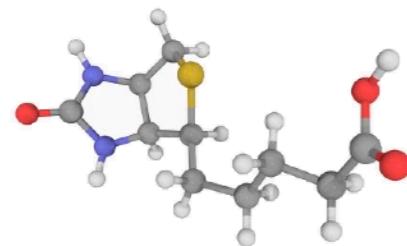


Marking 0s and 1s

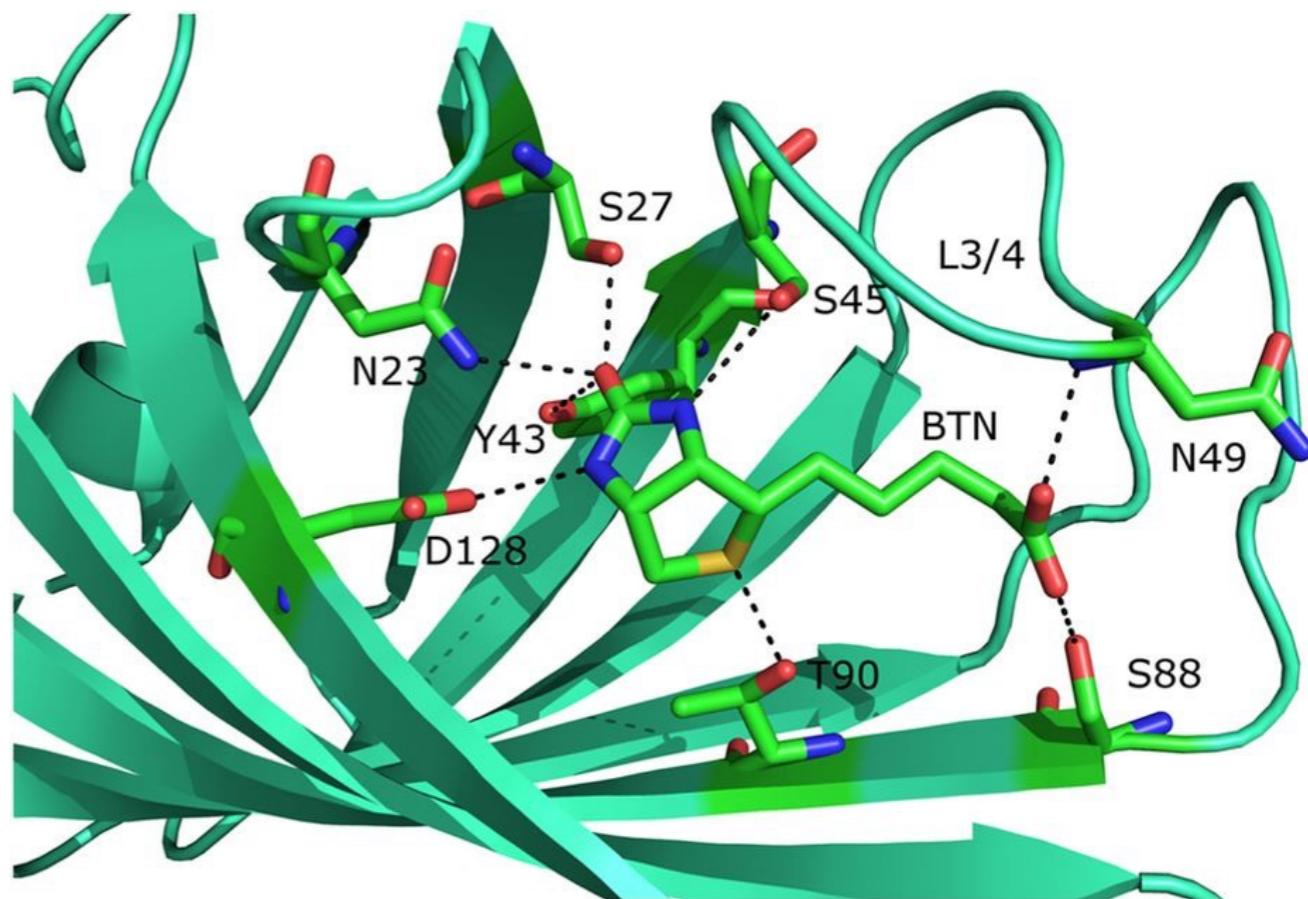
Streptavidin-biotin marker



Streptavidin : a "huge blob"



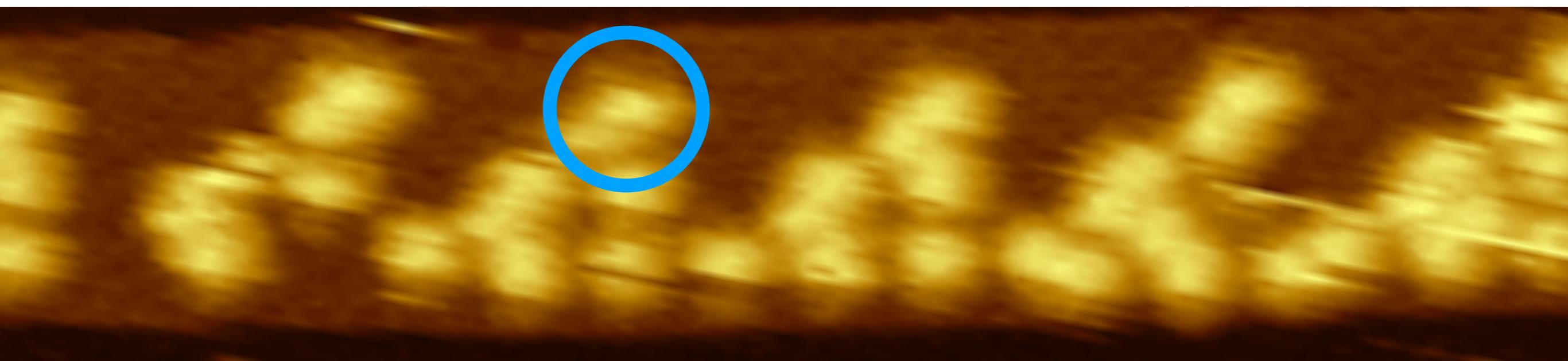
Biotin can easily be attached
to DNA strand at order



Together they make one of the
strongest non-covalent bond

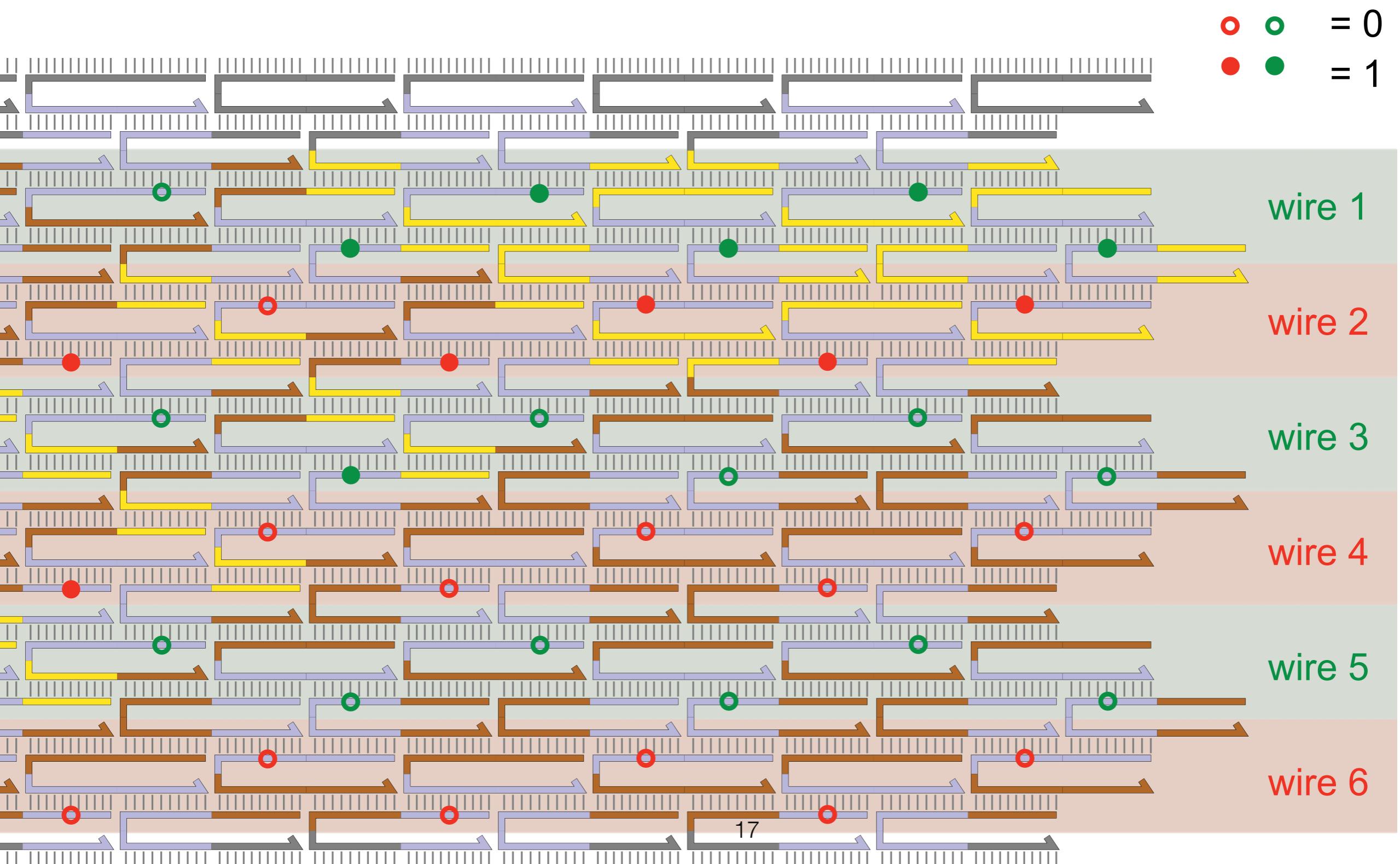
Streptavidin-biotin marks

We can order single DNA strand with biotin attached
(the tiles encoding a 1!)



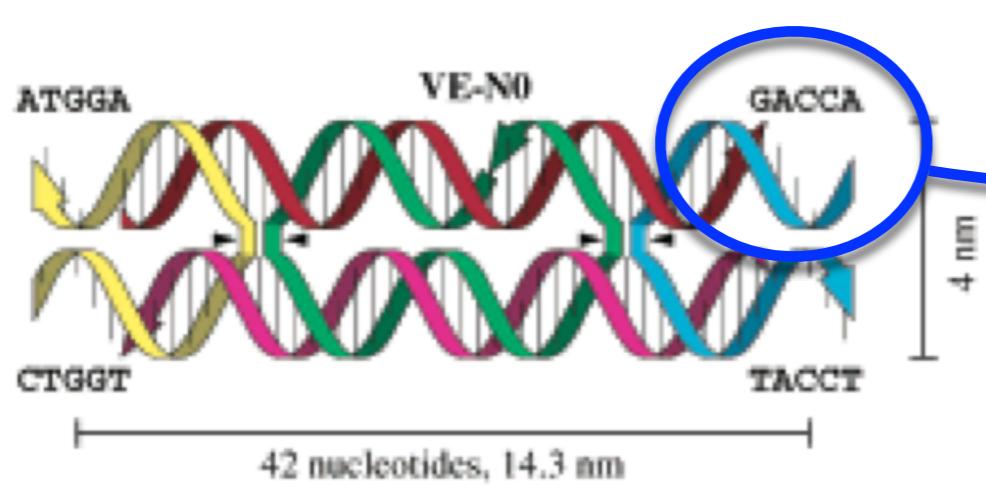
When added to the solution while imaging,
Streptavidin attaches to biotin,
marking the corresponding single stranded tiles

Streptavidin-biotin marks

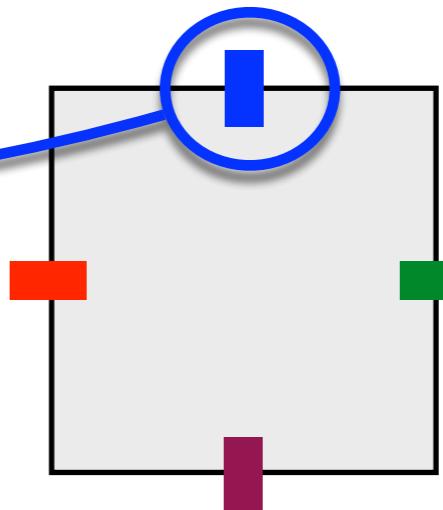


kTAM model for algorithmic assembly

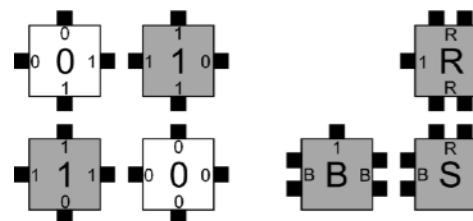
Algorithmic self-assembly



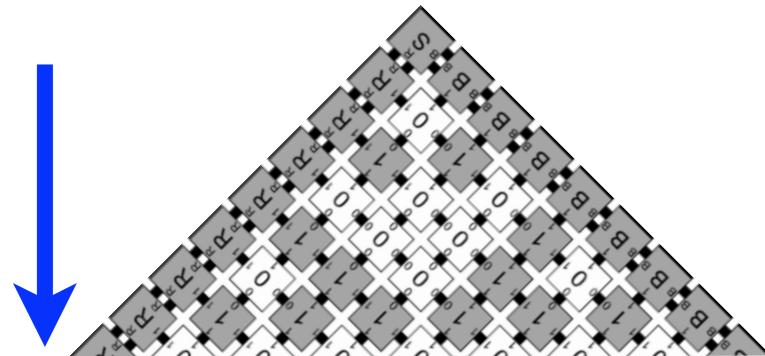
=
Winfree. 1998.
PhD Thesis



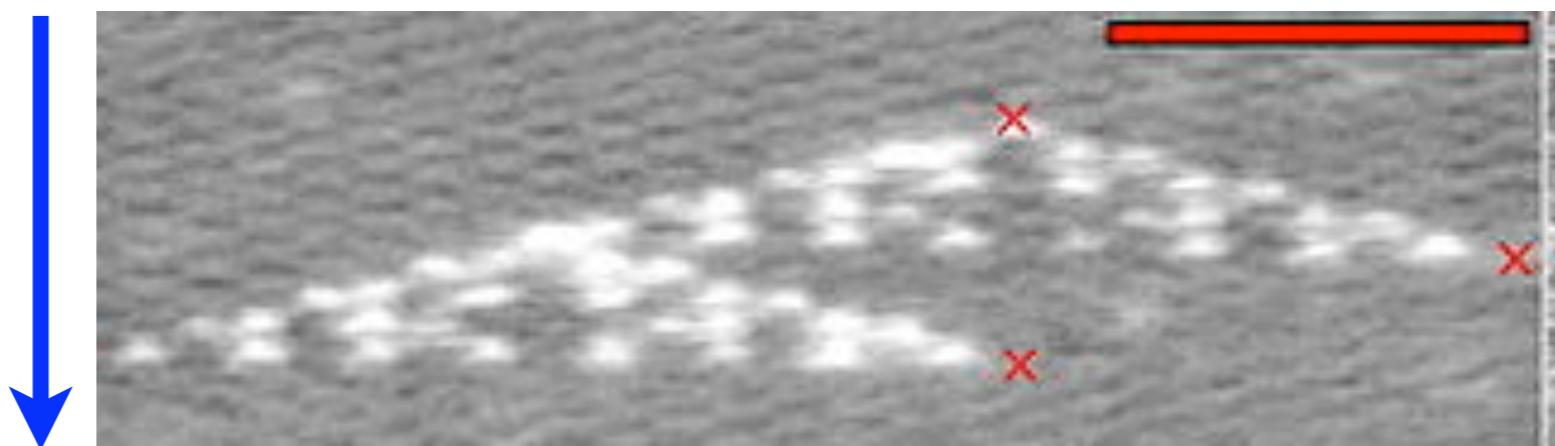
Erik Winfree had the idea that a growing lattice of DNA tiles could run a computer program, like Wang tiles or a CA



tiles = program



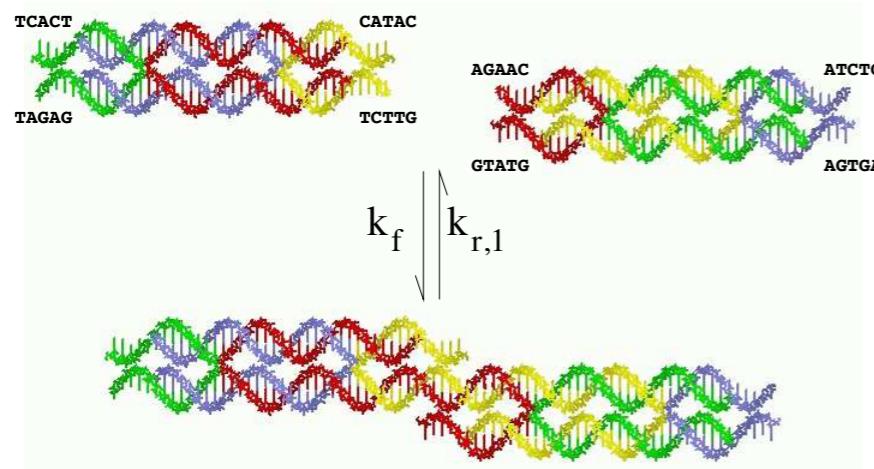
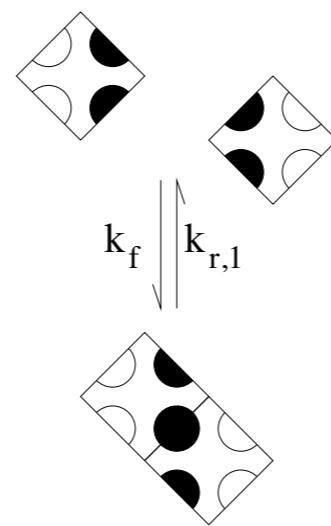
crystal growth =
program execution
self-assembly.net



Rothenmund, Papadakis, Winfree 2004

Thermodynamical model

(a)



Attachment rate

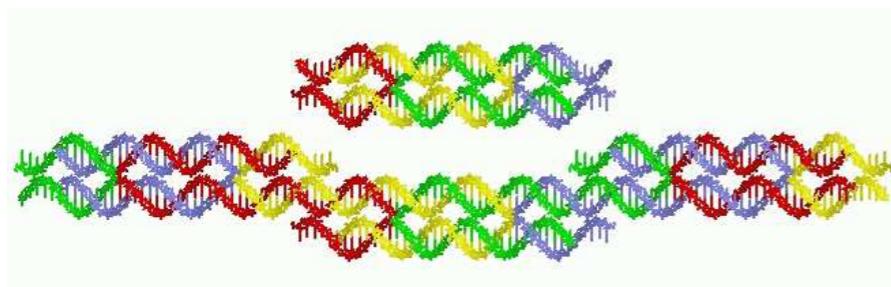
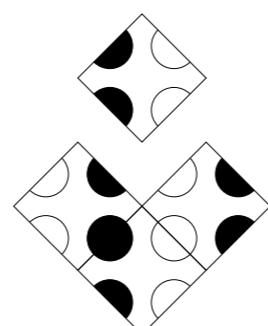
$$= k_f \cdot [\text{Strand}]$$

=

$$k_f \cdot e^{-Gmc}$$

(mainly entropy)

(b)



Detachment rate

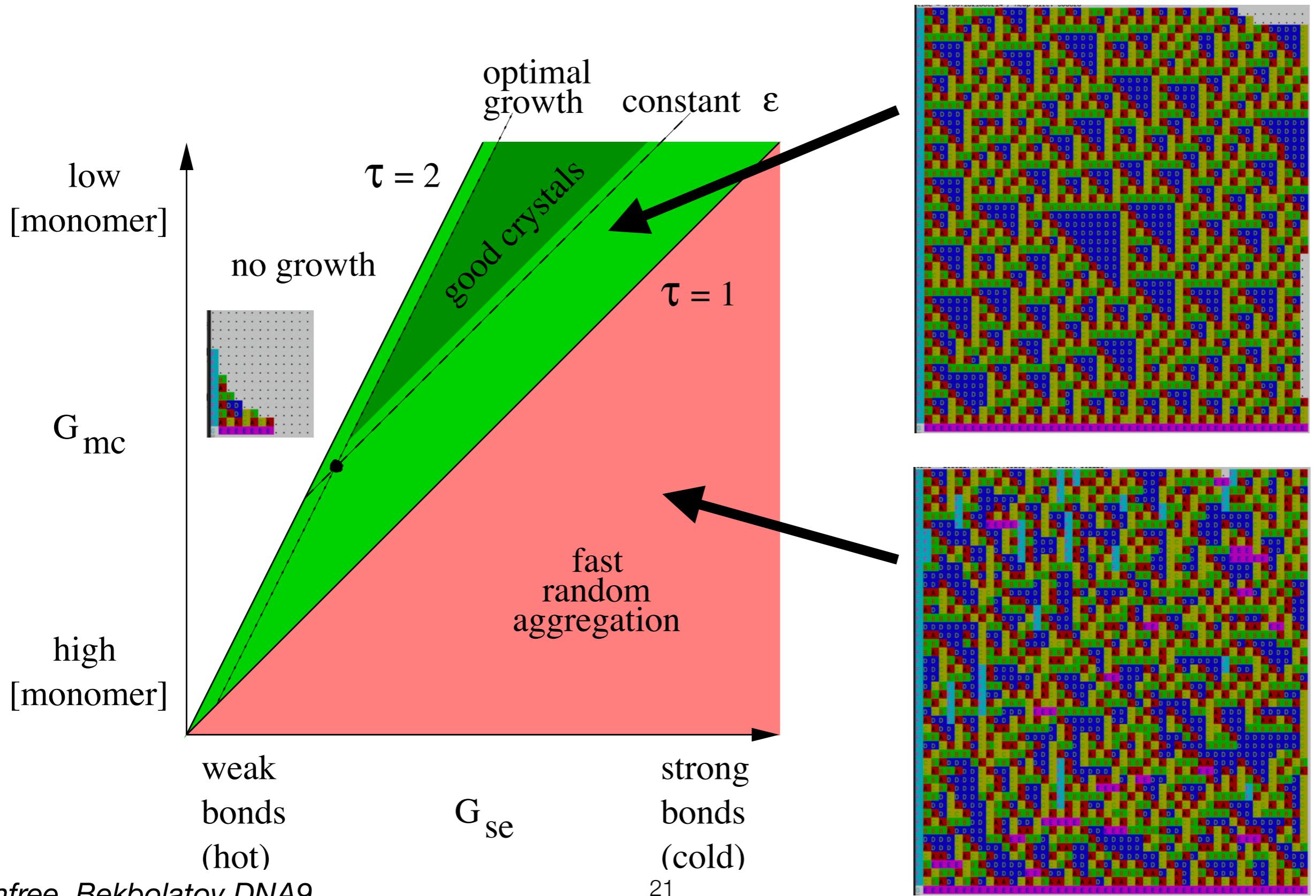
$$= k_f \cdot e^{-(b \cdot Gse)}$$

where b is the number of bonds
and $G_{se} = \Delta G / RT$
the bonding unit energy in RT units
(mix of entropy and enthalpy)

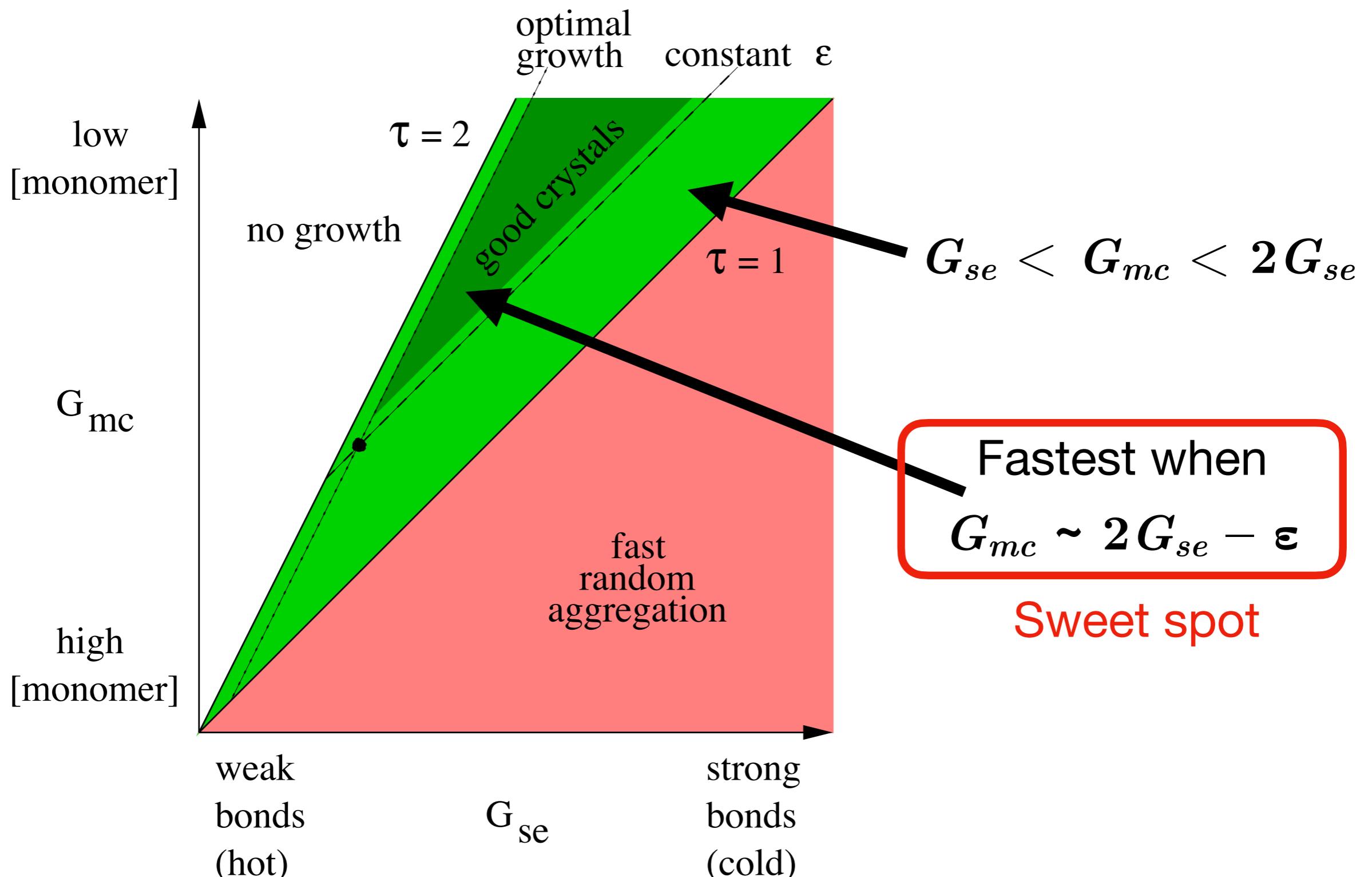
mc = monomer concentration

se = sticky end bond strength

Simulations



Simulations



Minimizing errors

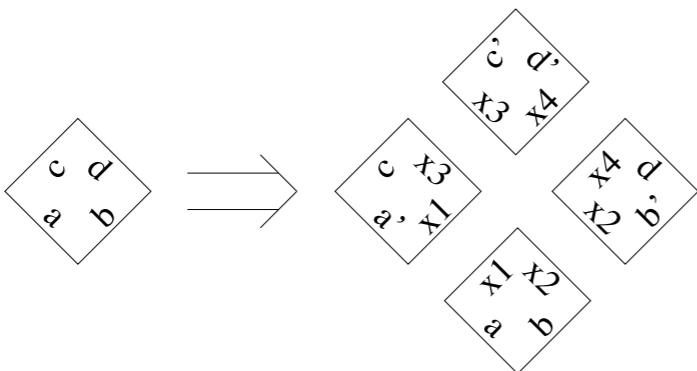
Desired

Obtained

Proofreading tiles

(a)

tile X



2x2 block X
(4 tiles)

- Cut every tile into $k \times k$ tiles
- Now, you need to *make an other error* to compensate for an error
- The error rate is squared for $k = 2!$

(b)

A square divided into four quadrants, each containing a quarter-circle arc.

11. *Leucosia* (Leucosia) *leucosia* (Linnaeus)

(c)

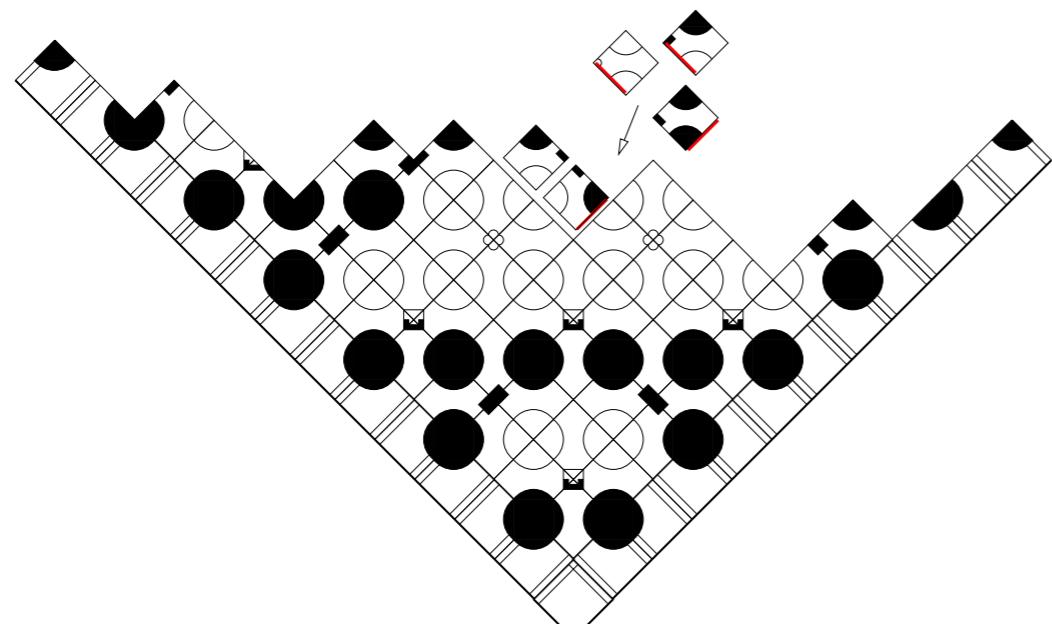
100

1

1

10

(d)



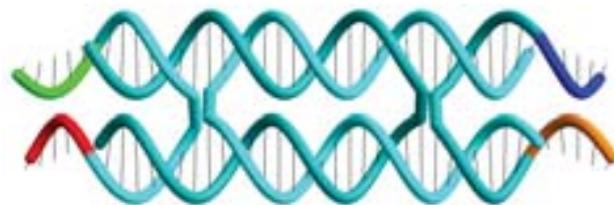
Proofreading tiles

$$k_i = 2$$

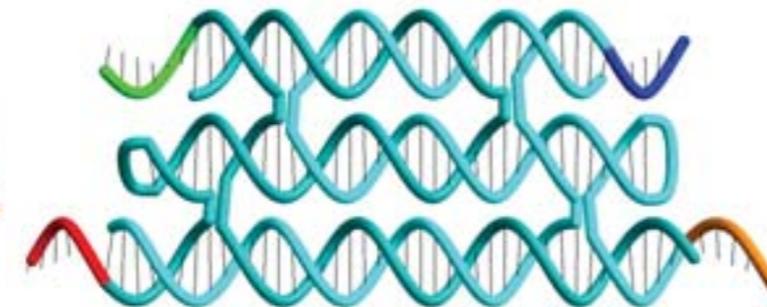
$$k_i = 3$$

Proofreading tiles compared to other tiles

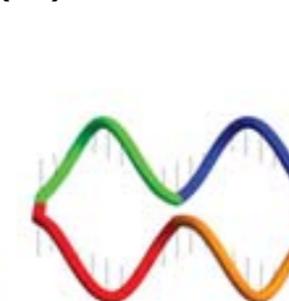
(a) DX motif



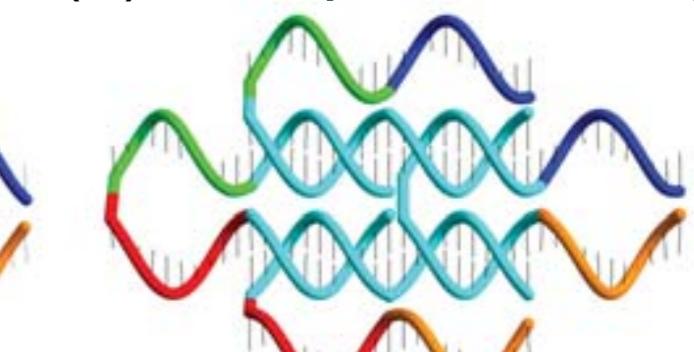
(b) TX motif



(c) SST

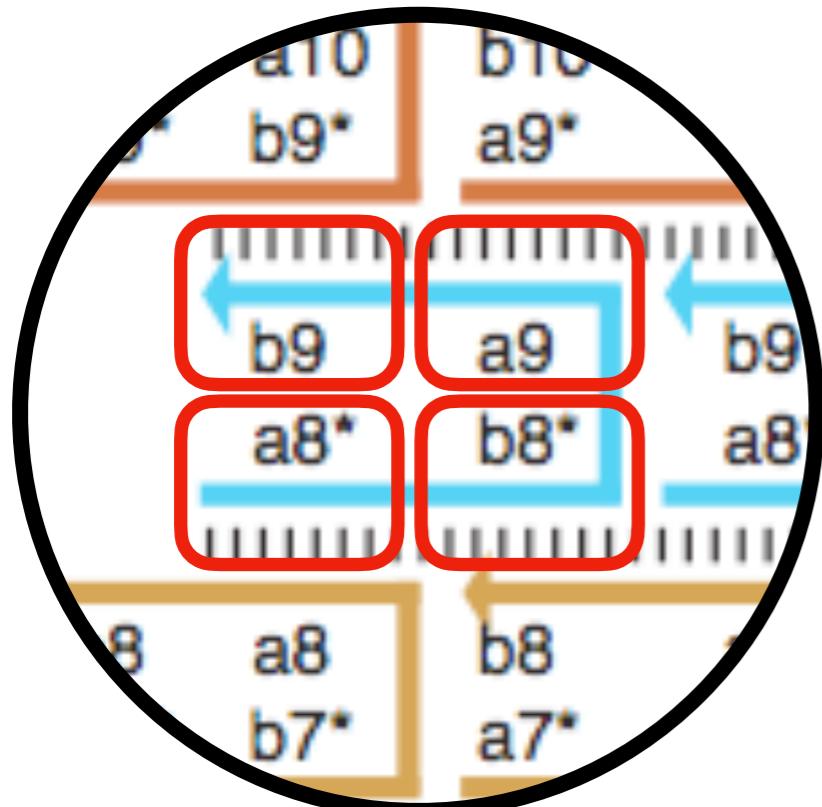


(d) SST proofreading

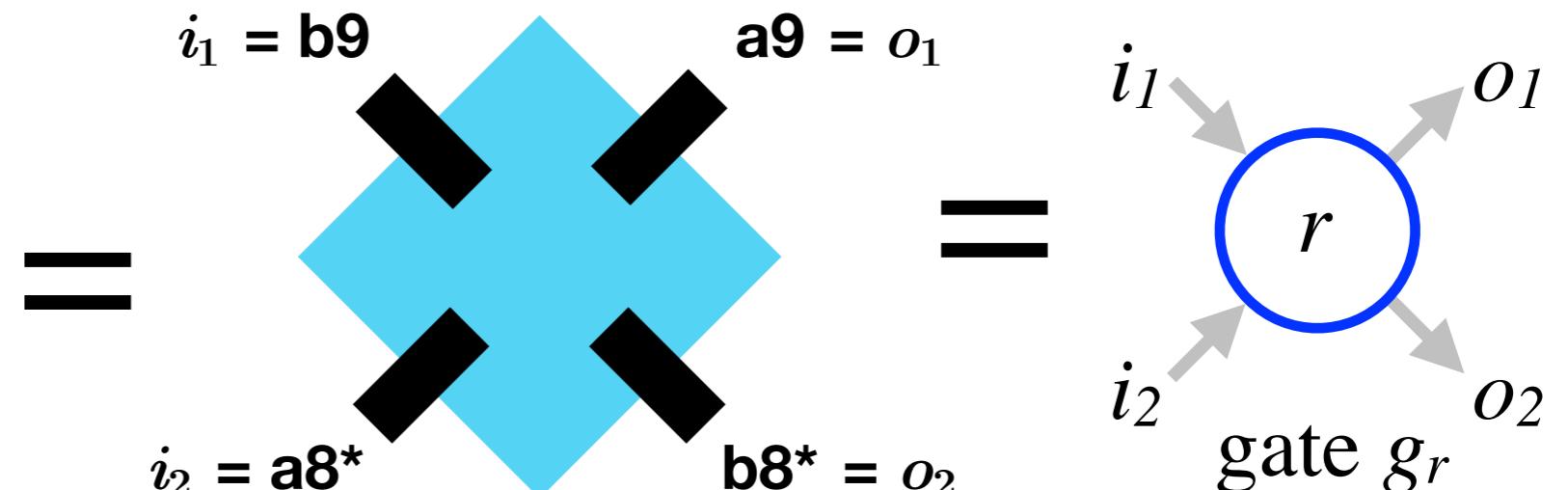


Implementing boolean circuits

Tile as gates

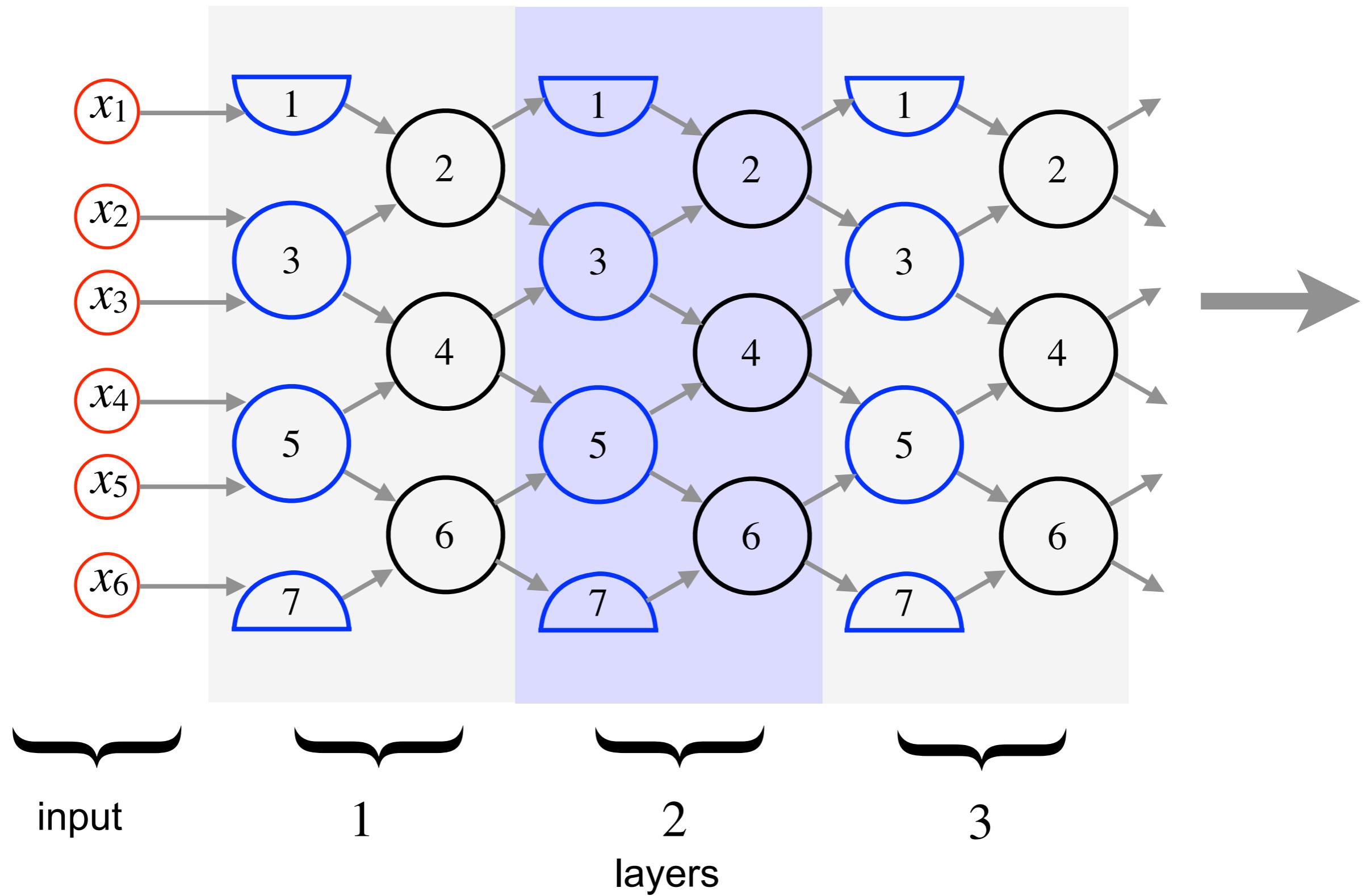


4 domains = 4 glues

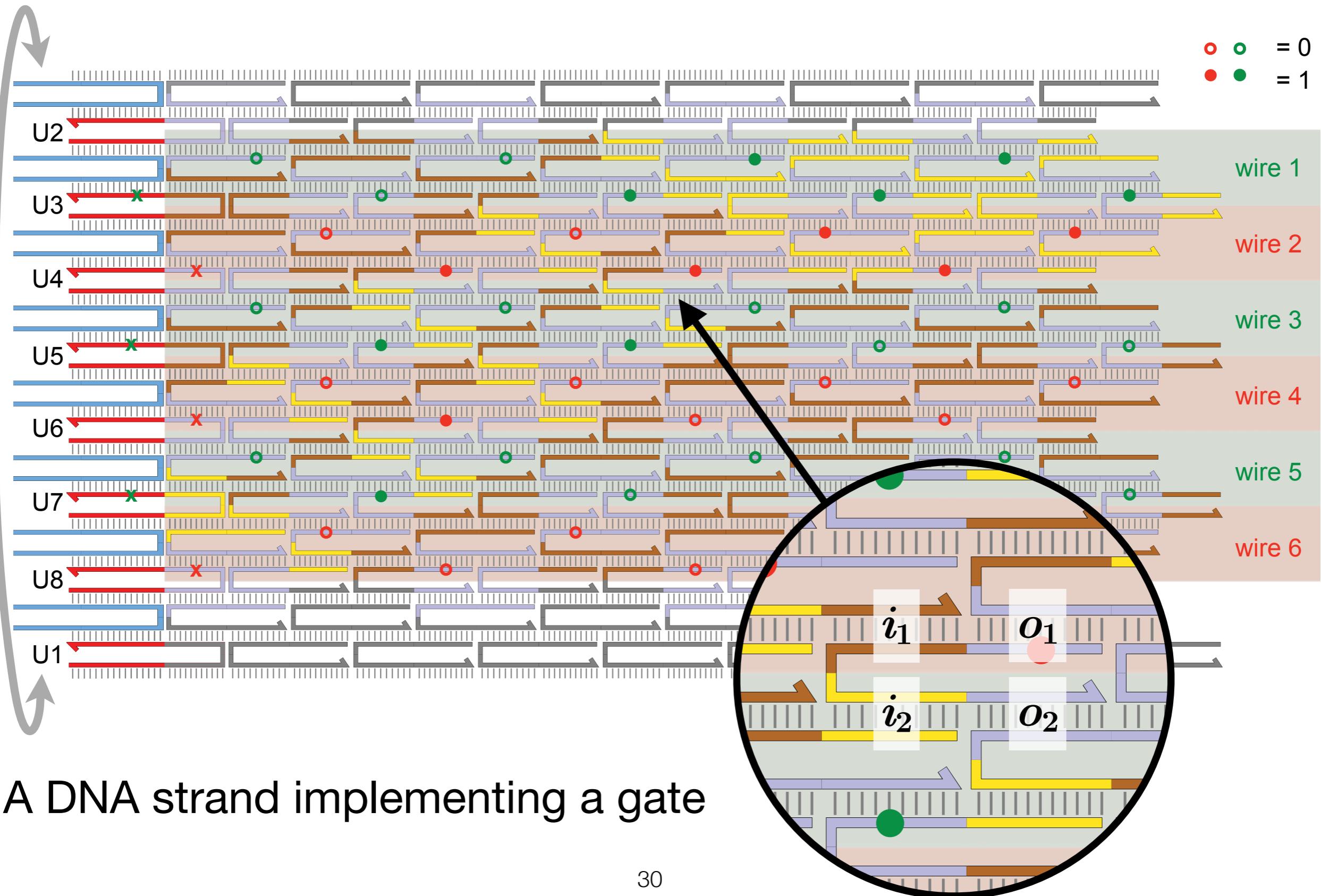


Tiles assembly is a rewriting system

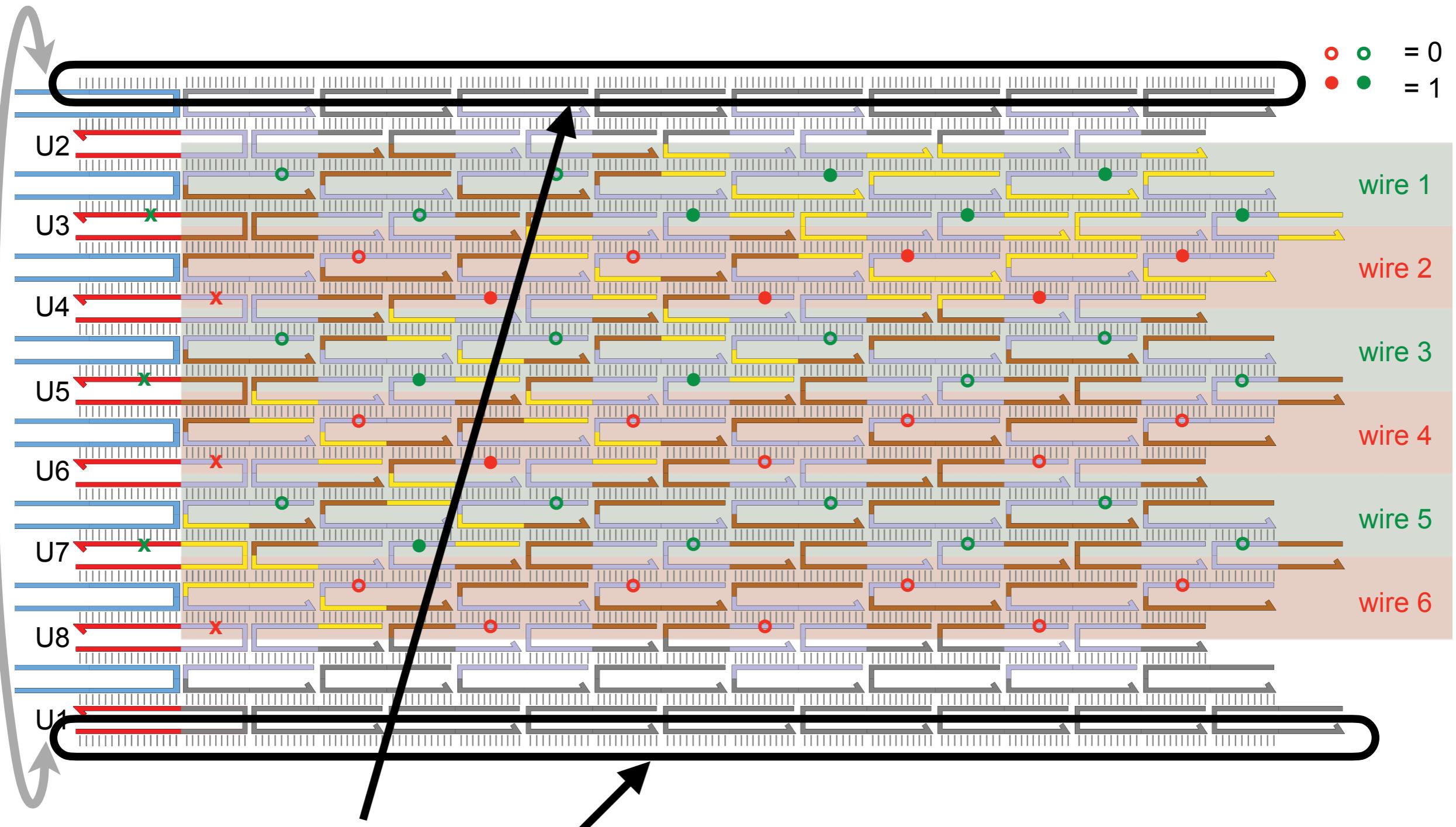
DNA nanotube circuit model



DNA nanotube circuit model



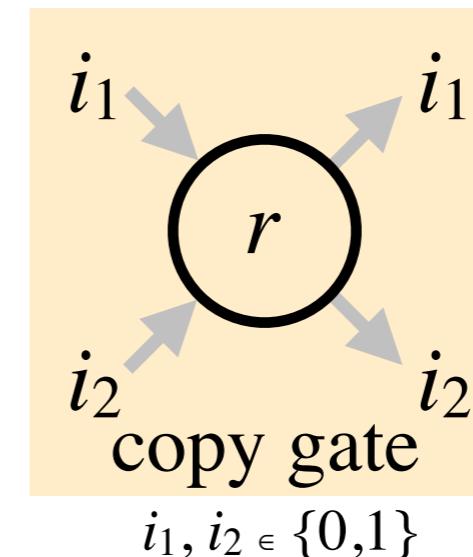
DNA nanotube circuit model



The seam which can be *unzipped* to flatten the assembly for imaging

Example nanotube circuits

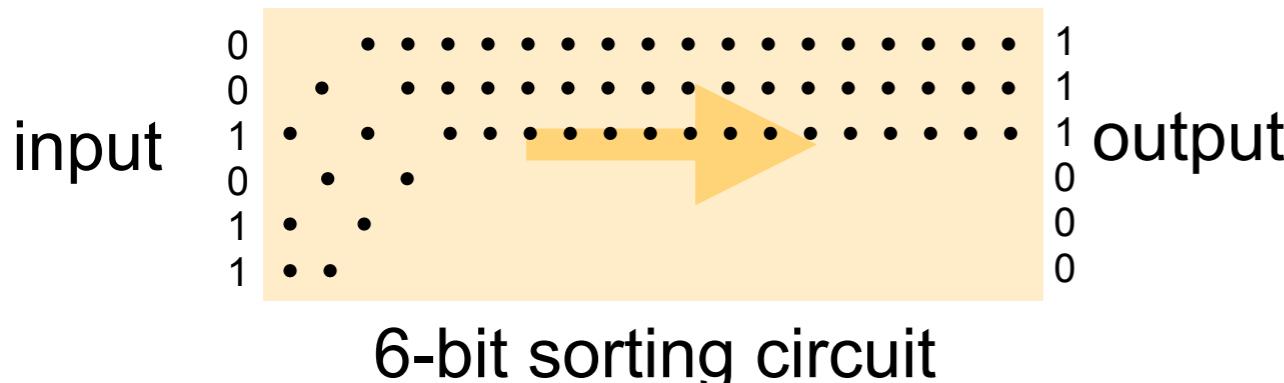
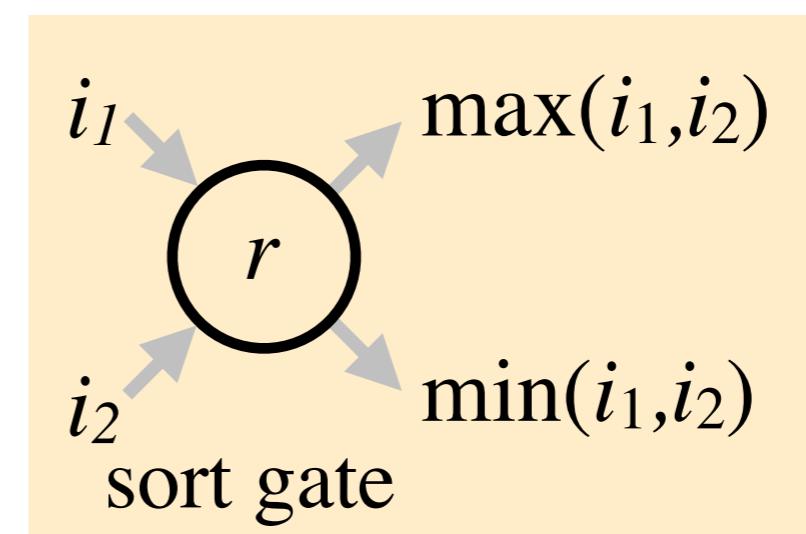
- **n -bit copying: $n+1$ copy gates**



i_1	i_2	o_1	o_2
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	1

copy gate truth table

- **n -bit binary sorting: $n+1$ sort gates**



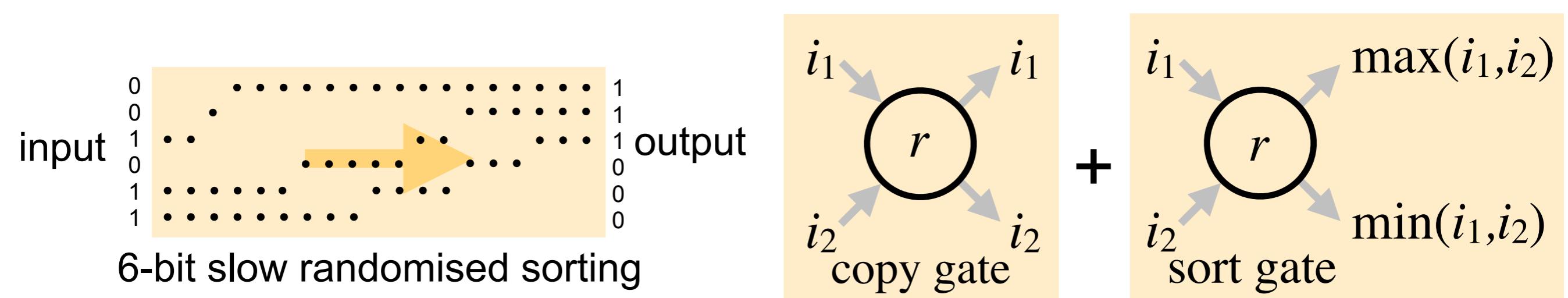
i_1	i_2	o_1	o_2
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

sort gate truth table

Note that 2 gates are single input, single output

Example nanotube circuits

- **Lazy sorting!** Take the union of the copy gate set and the sort gate set. Copying fights to slow down the sorting process, but assuming a fair execution, sorting will eventually win.



- Since, in any given circuit, each gate “knows” its row number r , we will also write circuits (programs) that exploit this feature, do something that is interesting *and* (more importantly) provably impossible without that feature

Circuits

sorting

Function computation

parity

Solving a “hard” decision problem

zig-zag

0	11	11	11	11
0	1 1	1 1	1 1	1 1
0	1 1	1 1	1 1	1 1
0	1 1	1 1	1 1	1 1
0	1	1 1	1 1	1
1	1	11	11	11

Glider: A common cellular automata primitive

zig-zag

Pattern: DNA

long repeat

Figure 1. A 1000x1000 pixel grayscale image showing a highly noisy pattern of black and white pixels. The pattern is roughly circular and centered in the image, with a radius of approximately 450 pixels. The noise is represented by a high density of small, randomly distributed black and white pixels.

Rule 110

Behaviour: 63 layers to see
the same thing twice!

Circuits: randomised

lazy sorting

to-the-middle

lazy
parity

random walking bit

```
0 11111111 11 1111
0 111 1 11111 1 1 1
0 111111 1 11 1 1
1 111111 1 1 11
0 1 1
0 11
```

Also, rand walk,
absorbing at edge

under randomised
bit walking

1	11	1111111	111111111	11	11	1111	1111111	11	1111
1	1	11	11	1	11	1	1	11	11
0	1	111	111	1	11	1	11	111	111
1	1	11	1	1	11	1	11	111	111
0	11	1	111	1	111	1	111	111	111
1	1111	11	11	11	1111	1111	1111	1111	1111

fair coin

Randomised programs may be a useful tool to calculate energetics of tile binding, or groups of tiles binding, from AFM data

A nice method to assess the quality of our sequence design

Circuits

zig-zag

0	11	11	11	11	11
0	1 1	1 1	1 1	1 1	1 1
0	1 1	1 1	1 1	1 1	1 1
0	1 1	1 1	1 1	1 1	1 1
0	1 1	1 1	1 1	1 1	1 1
1	11	11	11	11	11

Glider: A common cellular automata primitive

Pattern: Monotone / horizontally connected

Diamonds
are forever

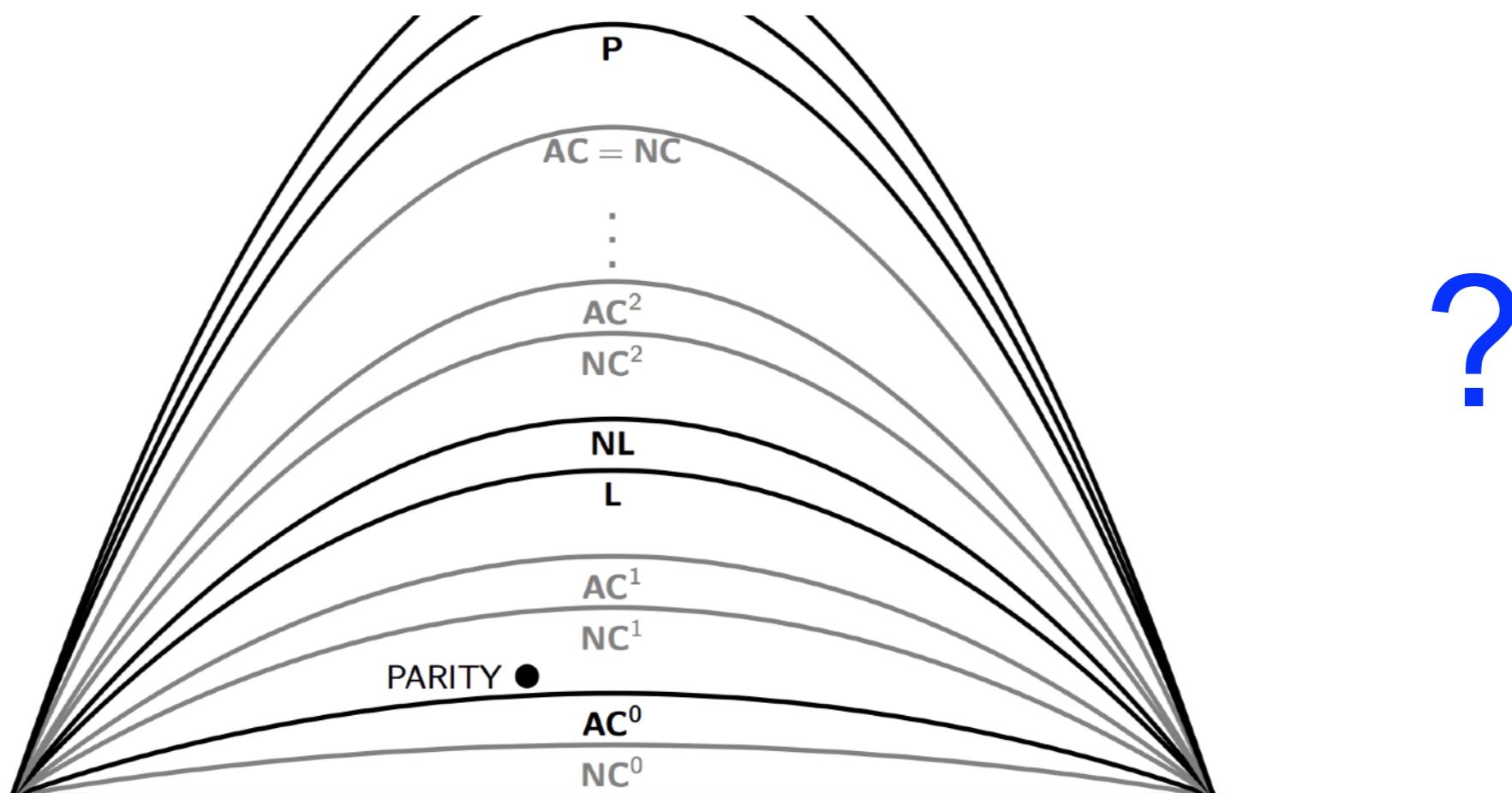
0	11	11	11
0	1 1	1 1	1 1
0	1 1	1 1	1 1
0	1 1	1 1	1 1
0	1 1	1 1	1 1
0	11	11	11

Blowing
bubbles

0	11	11	11	11	11	11	11
0	1 1	1 1	1 1	1 1	1 1	1 1	1 1
0	1 1	1 1	1 1	1 1	1 1	1 1	1 1
0	1 1	1 1	1 1	1 1	1 1	1 1	1 1
0	1 1	1 1	1 1	1 1	1 1	1 1	1 1
0	11	11	11	11	11	11	11

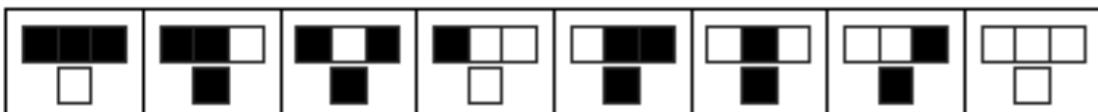
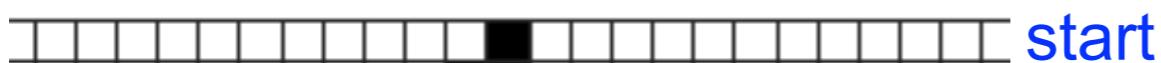
Computational power of DNA (DNA = DNA nanotube algorithms)

- What is the computational power of our circuit model?
- With n input bits, depth-2 layer, and $\text{poly}(n)$ depth circuit, what can be solved?
 - No more than P (proof: simulate $\text{poly}(n)$ depth circuit in polynomial time on a Turing machine)
 - We've seen already that the model can solve **SORTING**, **PARITY** both of which are outside AC^0



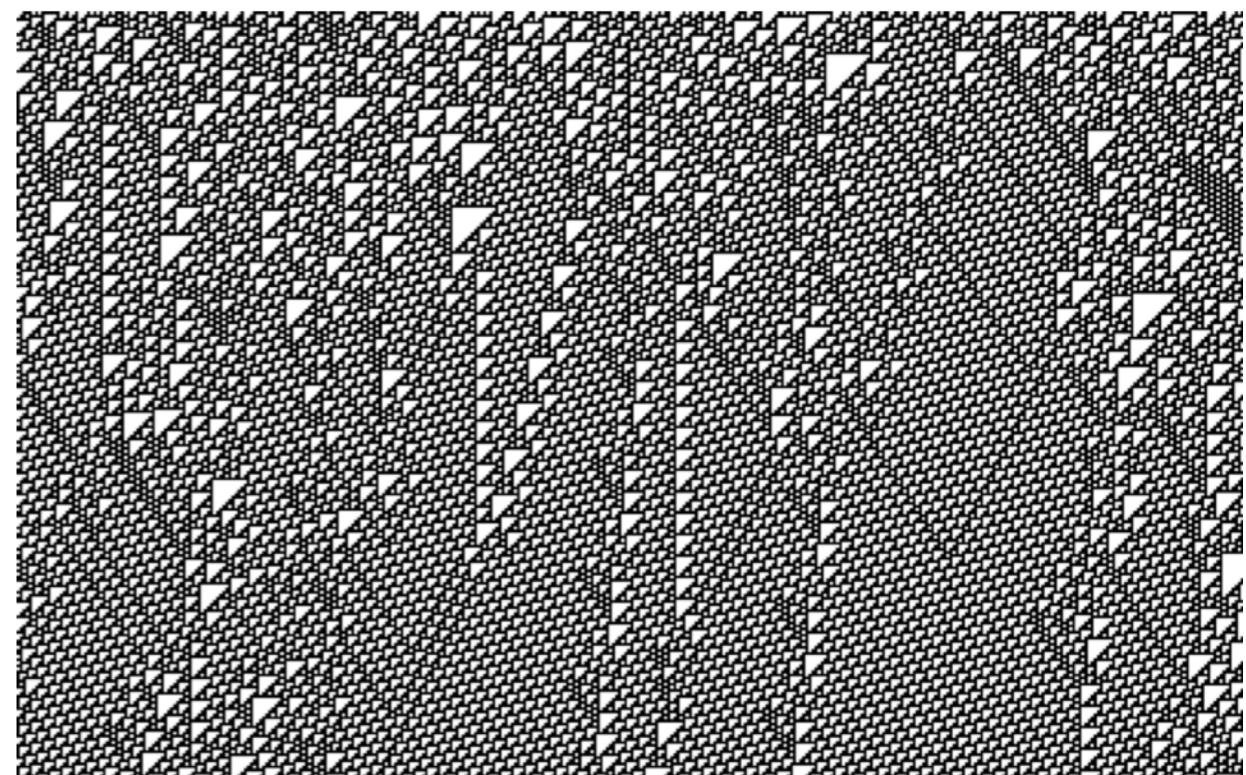
Rule 110

Rule 110



input

output



- **Theorem:** Rule 110 is an efficient and general purpose computer

Neary, Woods.
ICALP 2006

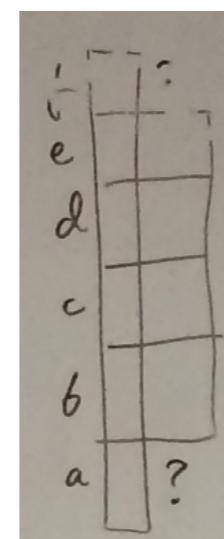
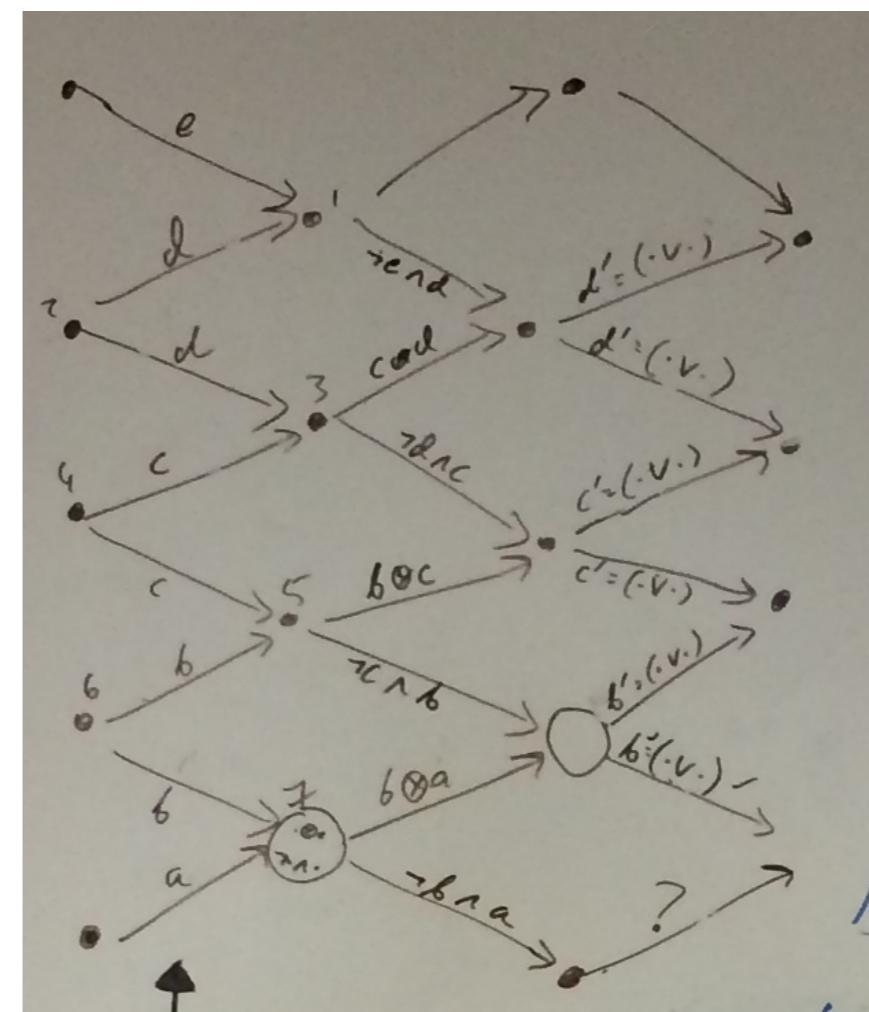
Cook. Complex
Systems. 15:1-40 2004

Computational power of DNA

(DNA = DNA nanotube algorithms)

- What is the computational power of our circuit model?
- With n input bits, depth-2 layer, and $\text{poly}(n)$ depth circuit, what can be solved?
 - No more than P. Proof: simulate $\text{poly}(n)$ depth circuit in polynomial time on a Turing machine
 - All of P: Proof: simulate Rule 110

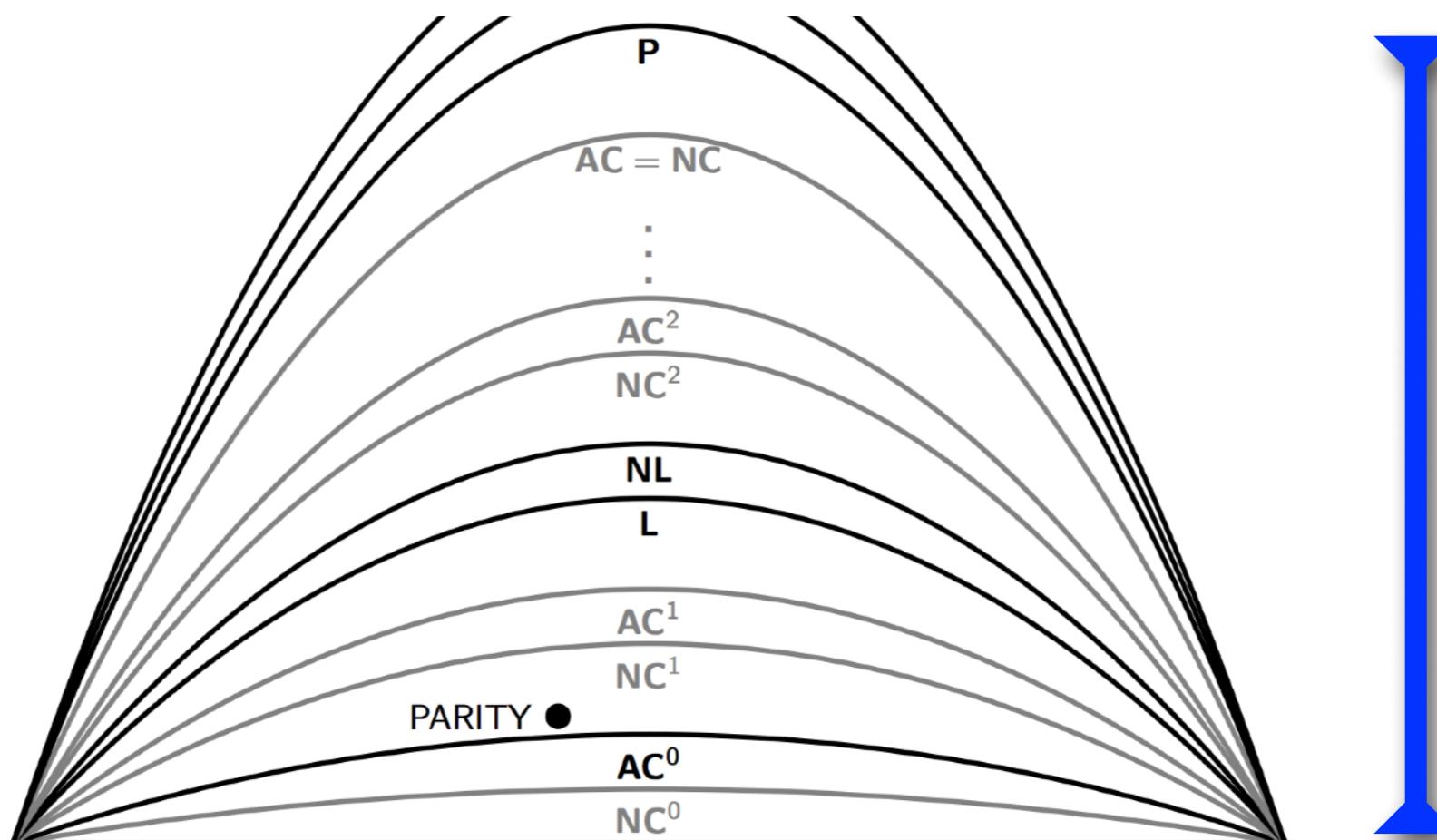
$$\begin{array}{ll}
 \begin{array}{ll}
 \text{c} & \text{b} & \text{a} \\
 F(0,0,0) & = 0 & F(1,0,0) = 0 \\
 F(0,0,1) & = 1 & F(1,0,1) = 1 \\
 F(0,1,0) & = 1 & F(1,1,0) = 1 \\
 F(0,1,1) & = 1 & F(1,1,1) = 0
 \end{array} & \begin{array}{ll}
 \text{c} & \text{b} & \text{a} \\
 F(0,0,0) & = 0 & F(1,0,0) = 0 \\
 F(0,0,1) & = 1 & F(1,0,1) = 1 \\
 F(0,1,0) & = 1 & F(1,1,0) = 1 \\
 F(0,1,1) & = 1 & F(1,1,1) = 0
 \end{array}
 \end{array}$$



Computational power of DNA (DNA = DNA nanotube algorithms)

- What is the computational power of our circuit model?
- With n input bits, depth-2 layer, and $\text{poly}(n)$ depth circuit, what can be solved?
 - Answer: Exactly P, via Rule 110 simulation

[T. Neary, D. Woods. P-completeness of cellular automaton Rule 110. ICALP 2006. Springer LNCS 4051\(1\):132-143](#)
[Cook, M.: Universality in elementary cellular automata. Complex Systems 15 \(2004\) 1-40](#)



From gate abstraction to tile abstraction

1. Compile gates to tiles

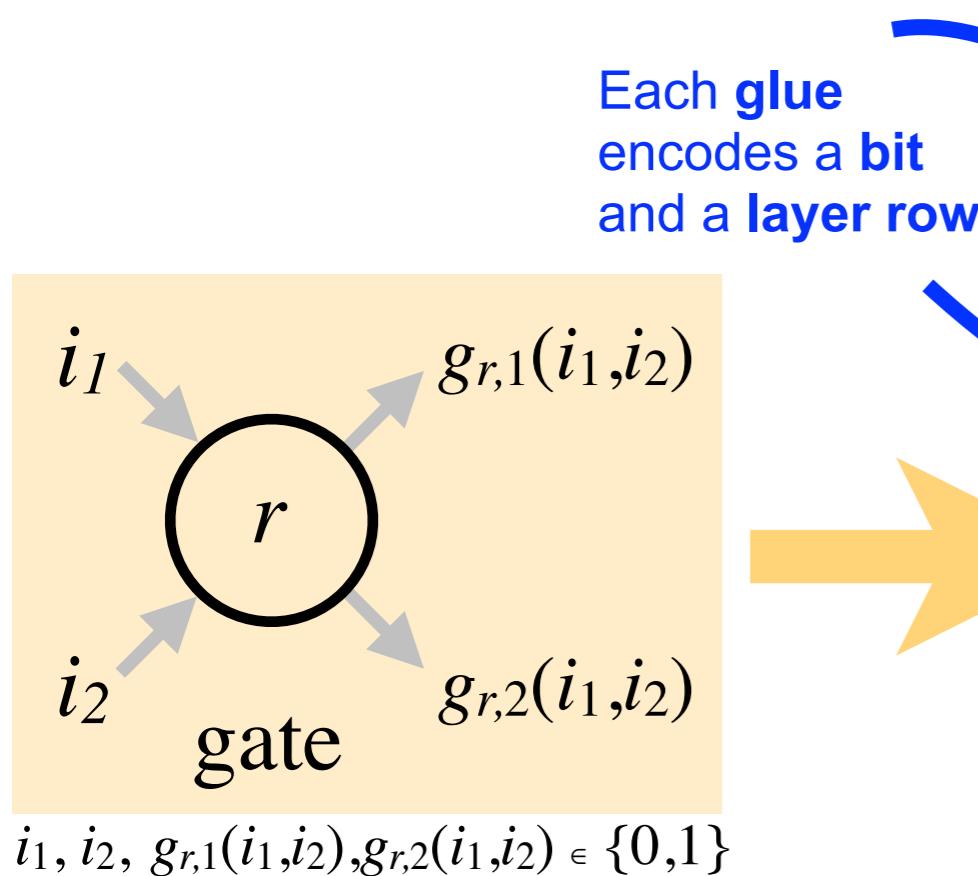
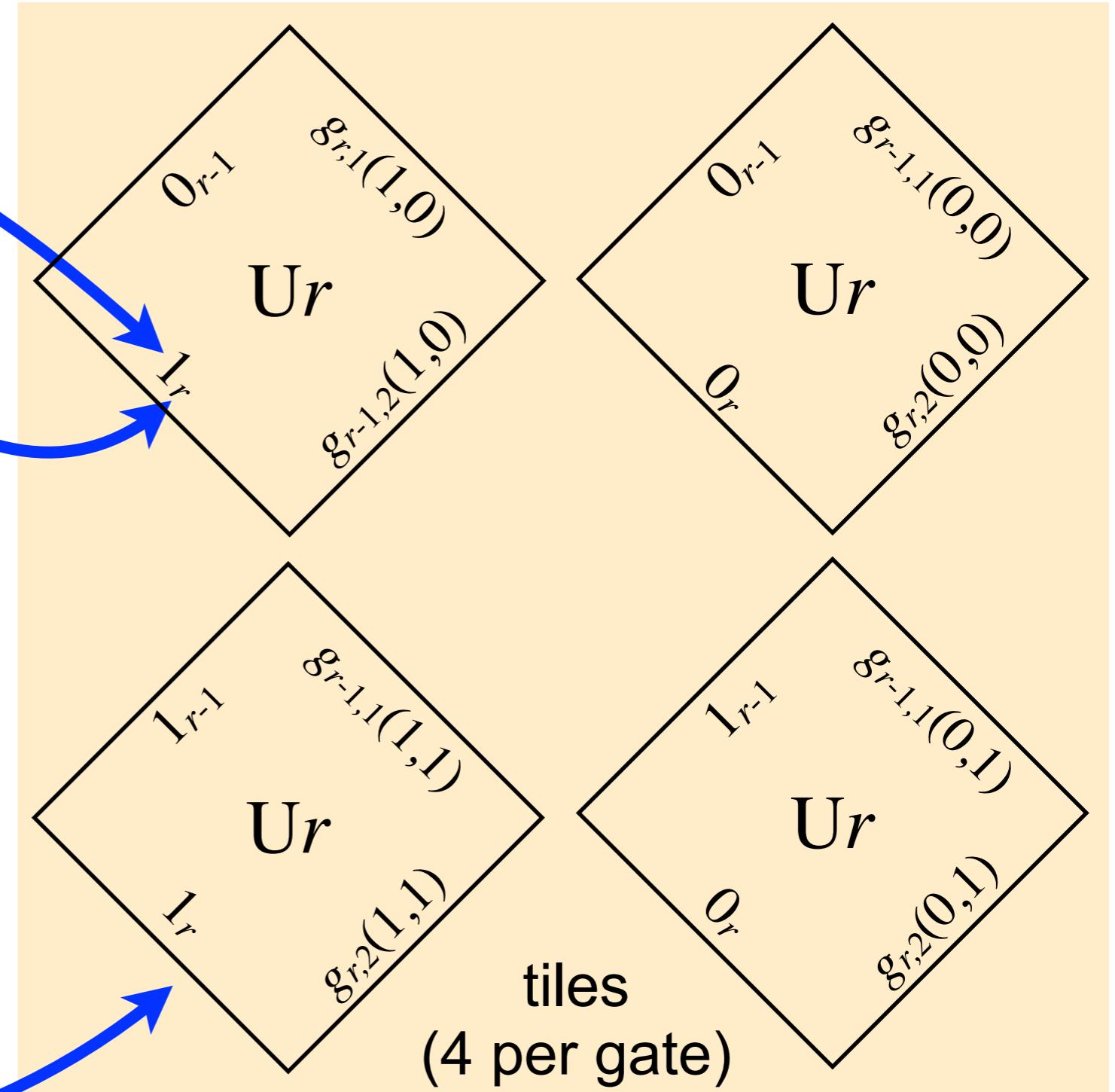


Diagram illustrating a gate truth table. A table shows the output (o_1, o_2) for all combinations of inputs (i_1, i_2) . The table is as follows:

i_1	i_2	o_1	o_2
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

A blue arrow points from this table to the tiles on the right, with the text "Each row of a gate's truth table is encoded by a tile".

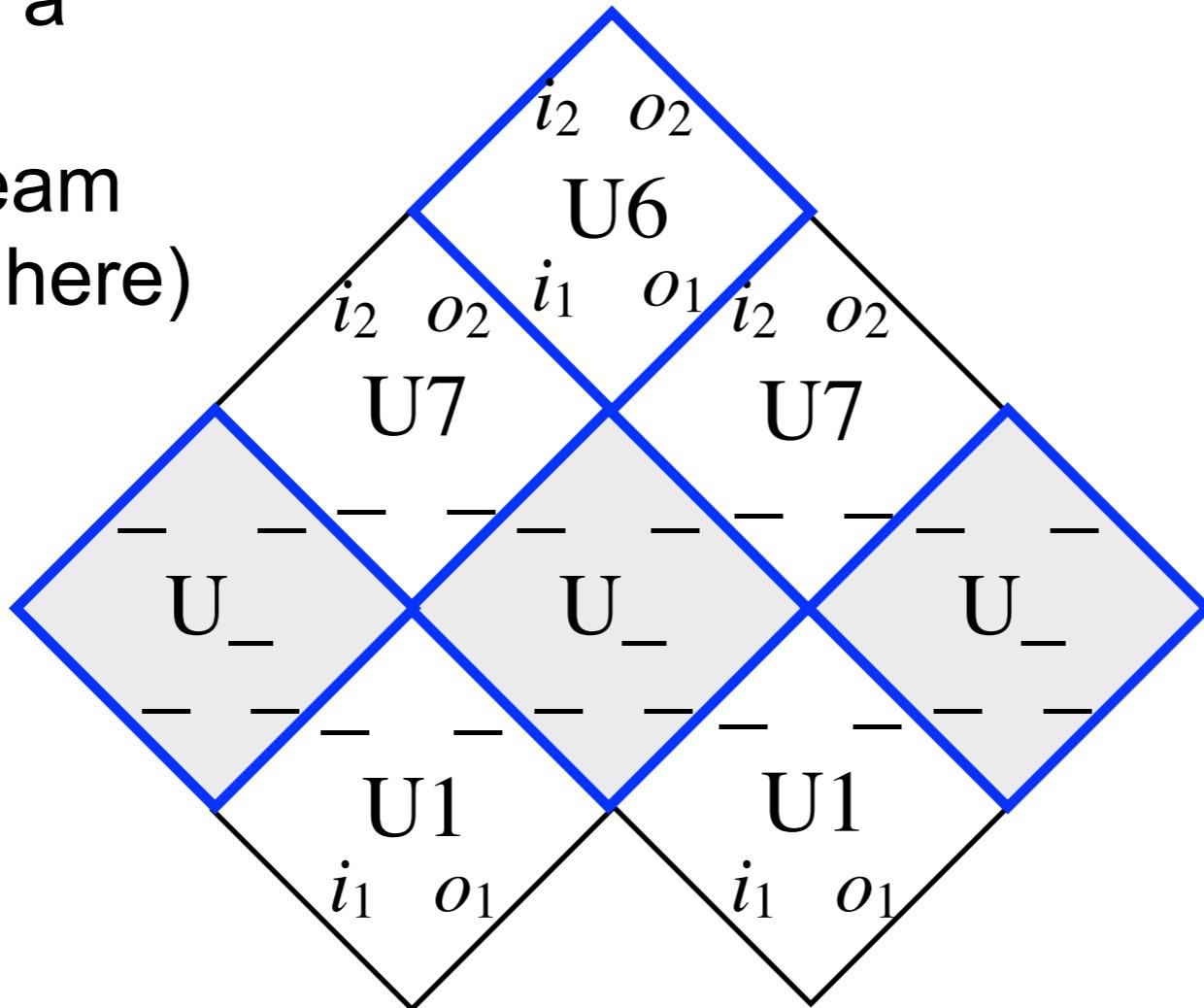


6-bit universal tileset: overview



6-bit universal tileset: overview

2. Wrap into a tube along boundary/seam
("_" = no bit here)



2.1. $U_{_}$ does not encode input/output bits. $U_{_}$ encodes "boundary"

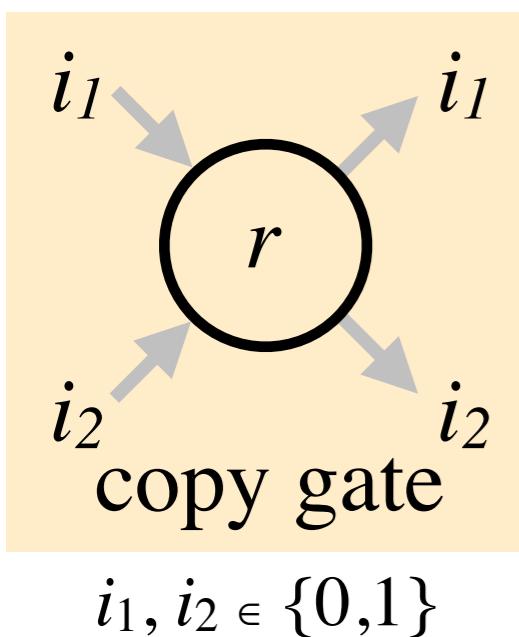
2.2. U_2, \dots, U_6 have 2 input and 2 output bits.
 U_1 & U_7 have only 1 input and 1 output bit.

3. Asynchronous update semantics: assembly frontier grows asynchronously rather than layer-by-layer (does not change expressivity of circuit versus tile model, roughly speaking)

But can we afford all those tiles?

From gates to tiles: savings

- Let's convert the set of R -bit universal gates into tiles, and examine at the resulting R -bit universal tile set
- Suppose I have two different gates, e.g. copying and sorting. If I convert each into 4 tiles I get 8 tiles, but lets look closer at some tile-savings:

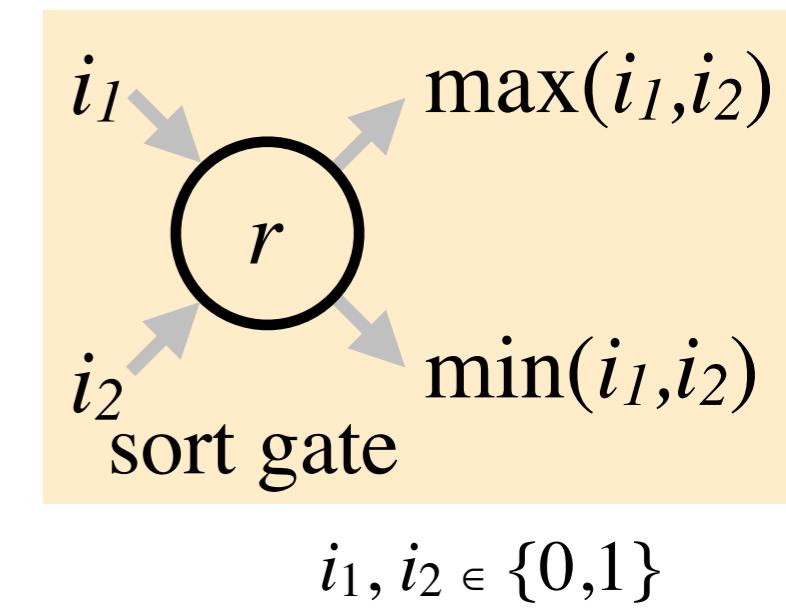
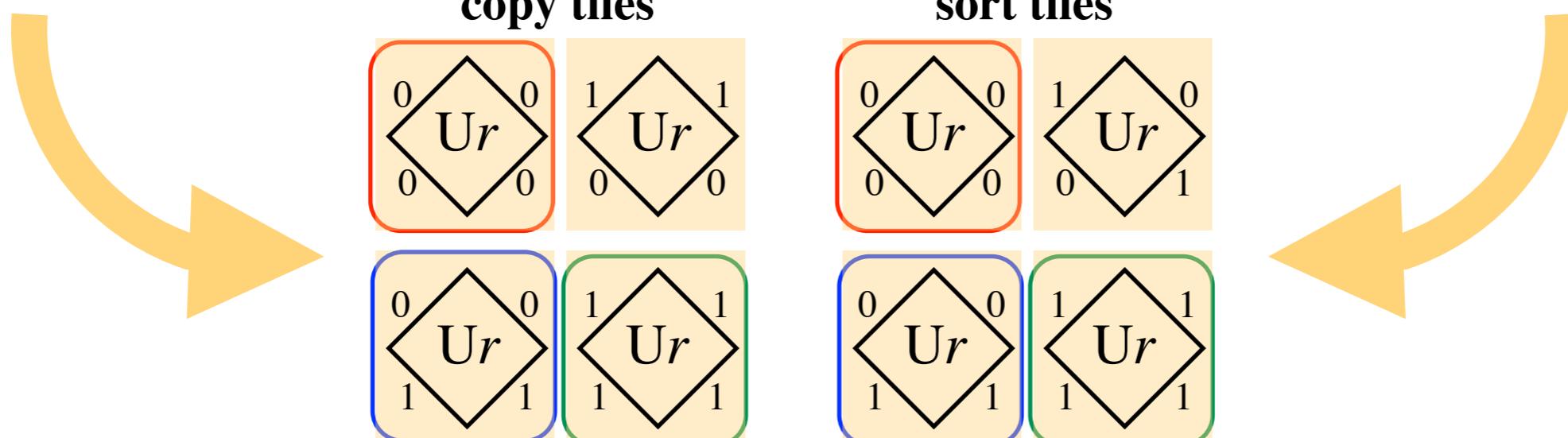


i_1 i_2 o_1 o_2

copy gate

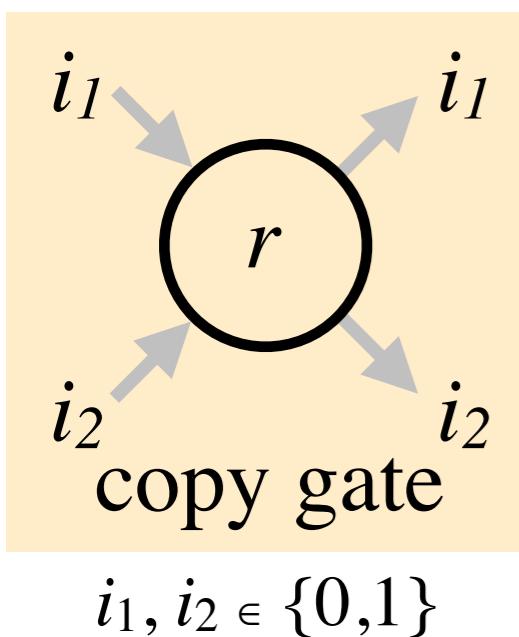
sort gate

Truth tables: 3 identical row-pairs!



From gates to tiles: savings

- Let's convert the set of R -bit universal gates into tiles, and examine at the resulting R -bit universal tile set
- Suppose I have two different gates, e.g. copying and sorting. If I convert each into 4 tiles I get 8 tiles, but let's look closer at some tile-savings:

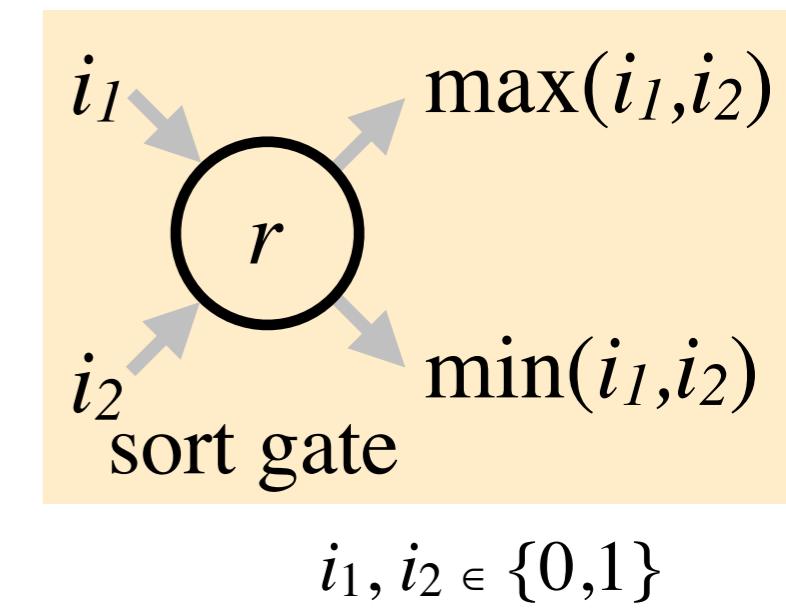
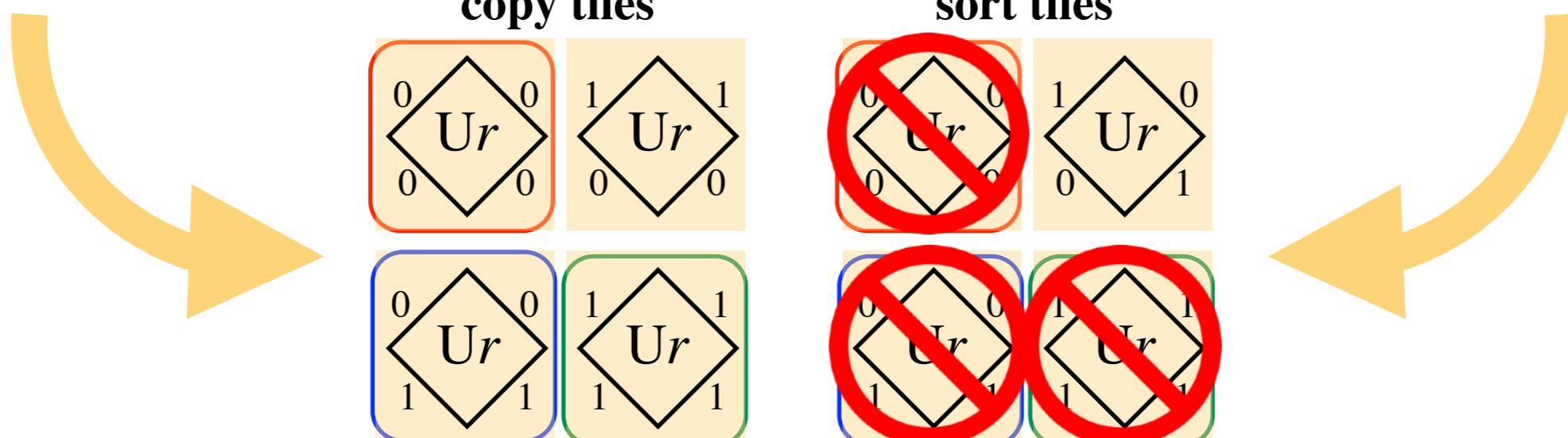


i_1 i_2 o_1 o_2

copy gate

sort gate

Truth tables: 3 identical row-pairs!



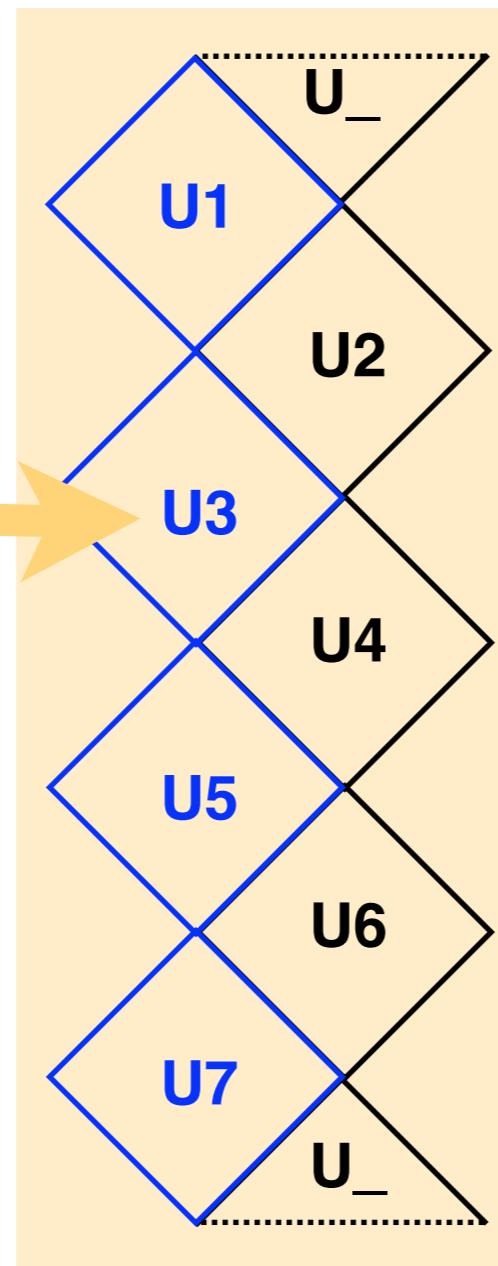
Only 5 tile types needed to do both copying and sorting!

6-bit universal tileset: overview

- Intuition from previous slide: Tiles separate the 4 “elementary operations” of a gate into 4 individual tiles, which results in **fewer tile types** in our universal tile set than gates in the universal gate set
- So how many tiles in the R -bit universal tile set?

E.g. U4: There are **16 U3 tile types** that can go here (a tile is defined by its row & 4 bits), as opposed to 256 gates in the circuit model.

The user may plug and play with these 16 tile types!



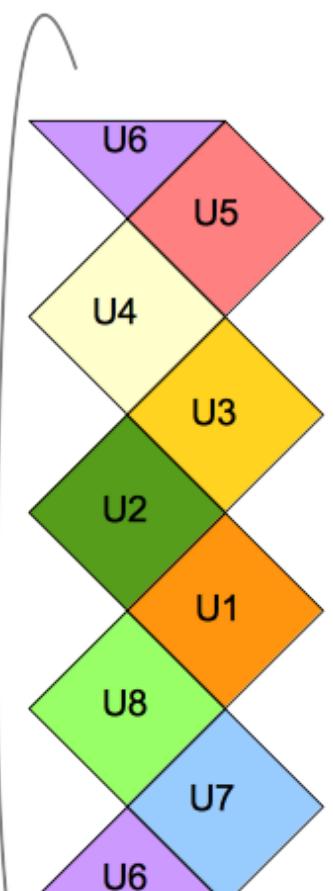
Total: 89 tile types

4	U1 has 1 input and 1 output bit
16	U2,3,4,5,6 each have 2 input and 2 output bits, hence 16 tile types each
16	
16	
16	
16	U7 has 1 input and 1 output bit
4	U __ is seam tile (represents no bits)
1	

1,288 for 2-output gates.
168 for 1 output gates

6-bit universal tileset: details

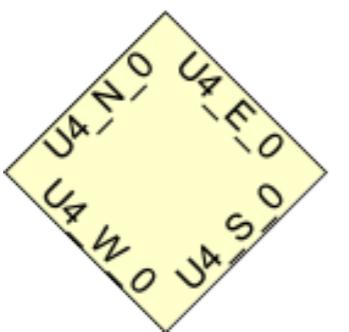
8 rows U1–U8; each has disjoint subset of tile types



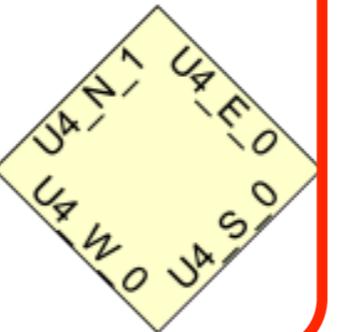
other possible outputs on input 00

glues are between even and odd rows: always named after even row

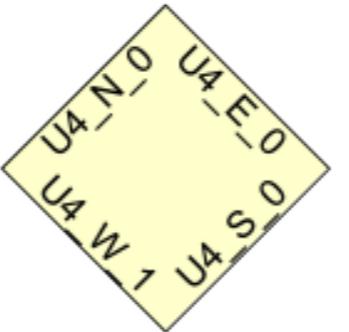
U4;00→00



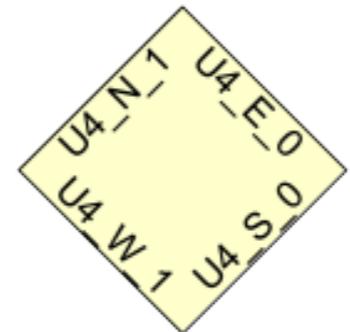
U4;01→00



U4;10→00

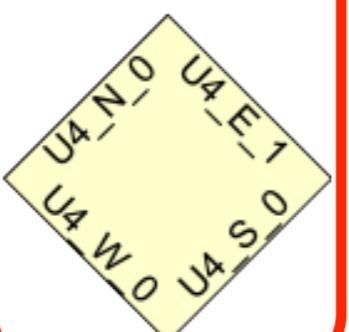


U4;11→00



other possible inputs

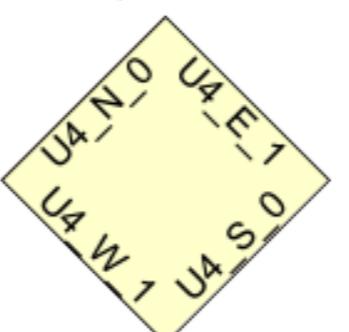
U4;00→01



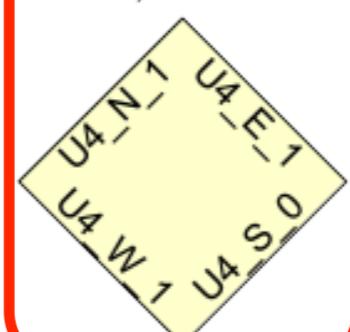
U4;01→01



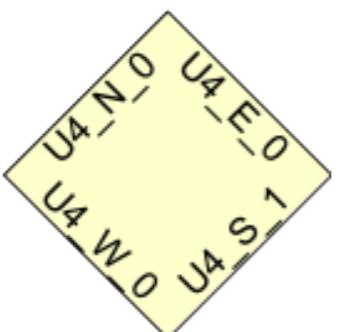
U4;10→01



U4;11→01

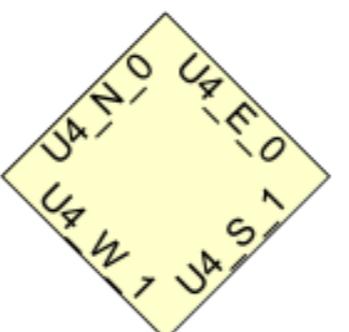


U4;00→10

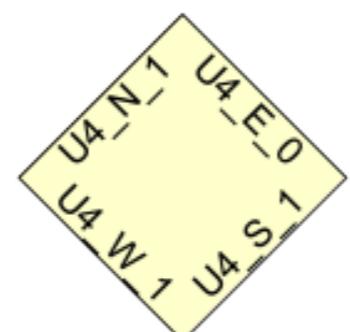


U4;01→10

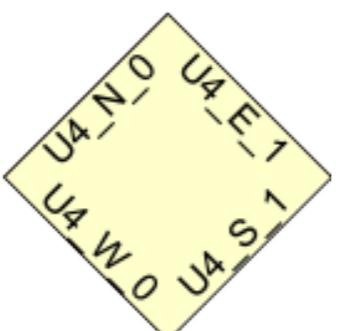
U4;10→10



U4;11→10



U4;00→11

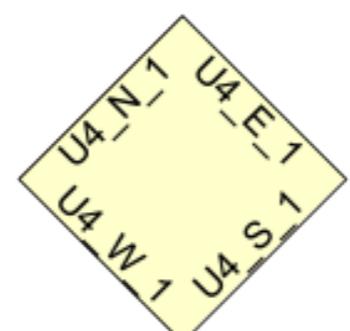


U4;01→11

U4;10→11



U4;11→11



to compute a function, e.g.:

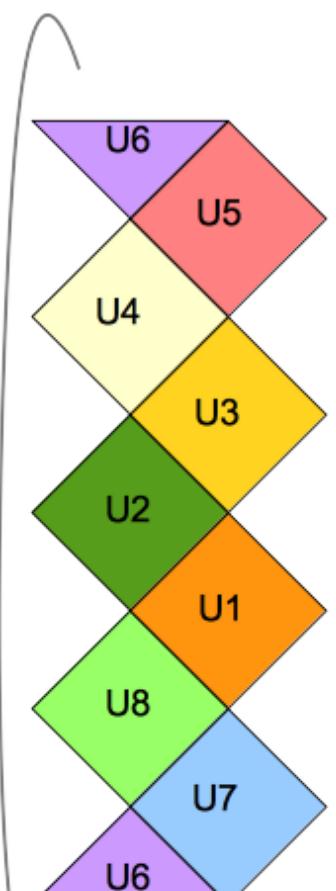
i1	i2	o1	o2
0	0	0	1
0	1	0	0
1	0	1	1
1	1	0	1

select one tile from each column

pic by Dave Doty

6-bit universal tiles set: details

8 rows U1–U8; each has disjoint subset of tile types



other possible outputs on input 00

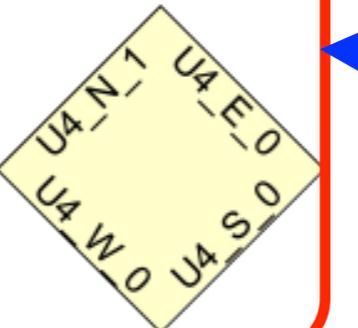
pic by Dave Doty

glues are between even and odd rows: always named after even row

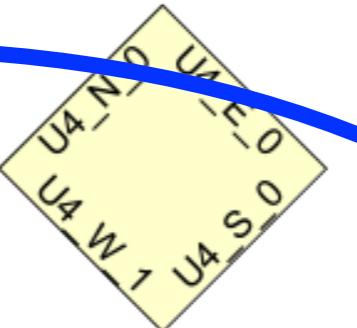
U4;00→00



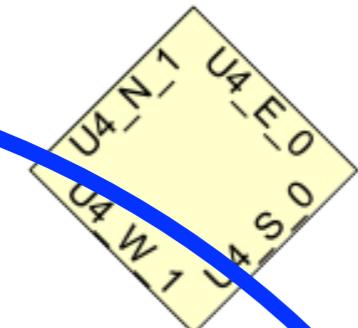
U4;01→00



U4;10→00

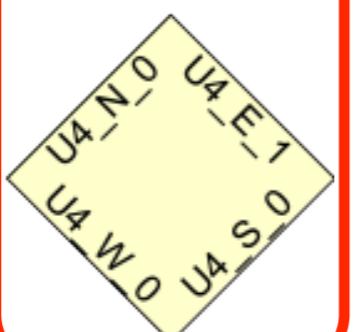


U4;11→00



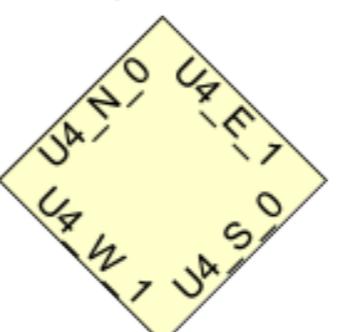
other possible inputs

U4;00→01

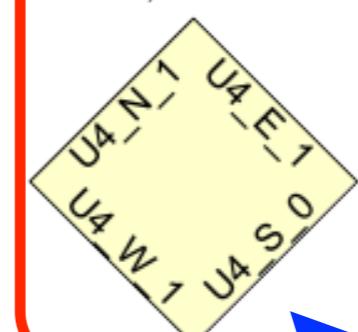


U4;01→01

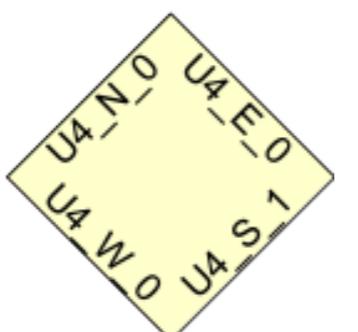
U4;10→01



U4;11→01

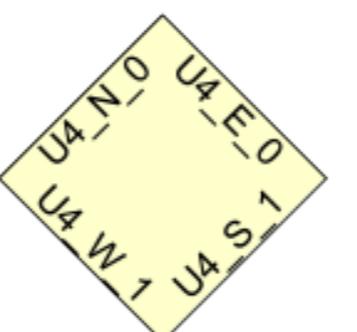


U4;00→10

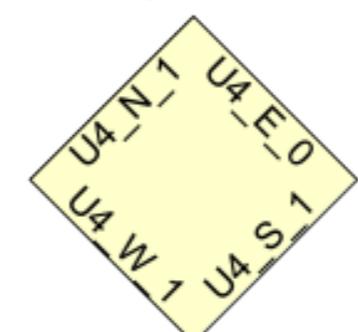


U4;01→10

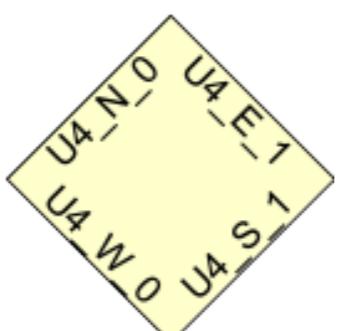
U4;10→10



U4;11→10

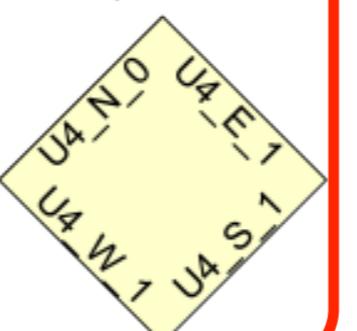


U4;00→11

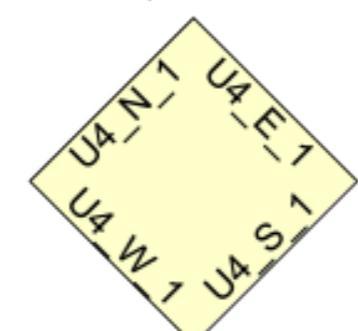


U4;01→11

U4;10→11



U4;11→11



to compute a function, e.g.:

i1	i2	o1	o2
0	0	0	1
0	1	0	0
1	0	1	1
1	1	0	1

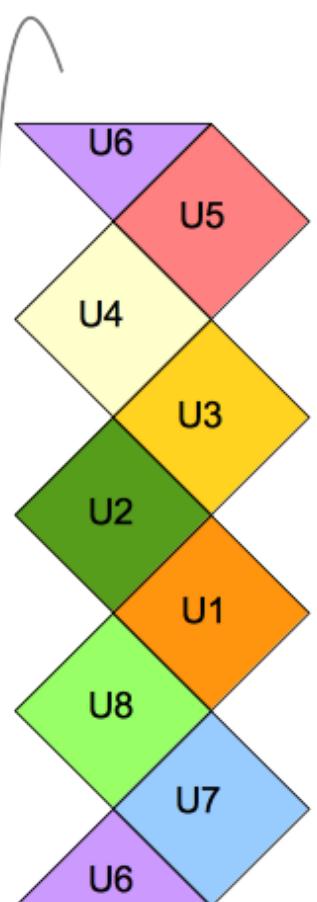
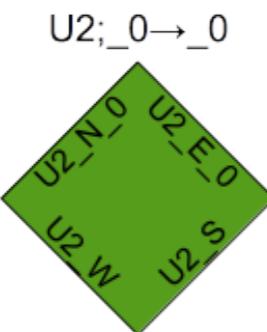
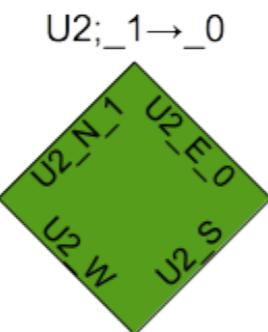
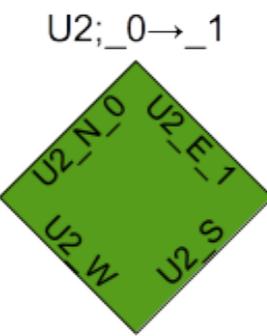
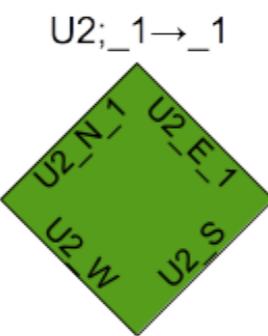
select one tile from each column

tiles in rows U3, U5, U6, U7 selected similarly

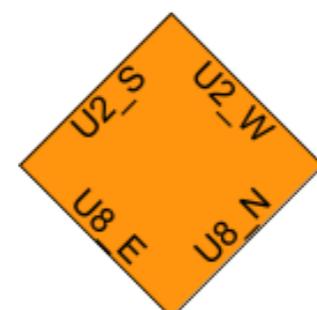
each computes a function $f: \{0,1\}^2 \rightarrow \{0,1\}^2$

6-bit universal tileset: details

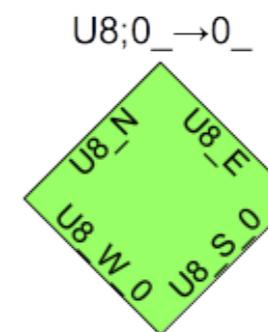
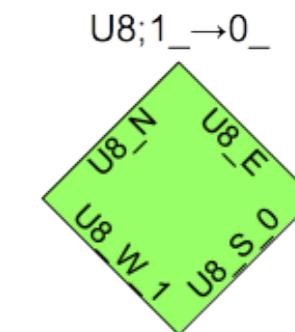
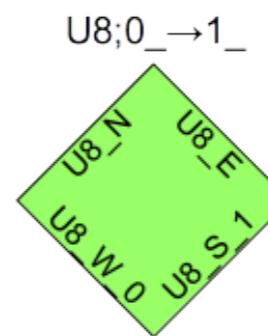
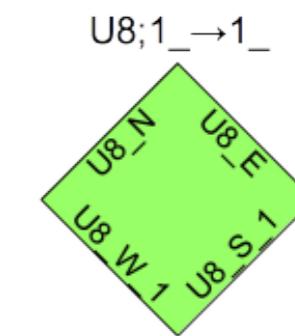
8 rows U1–U8; each has disjoint subset of tile types



U1;__ → __



U2 and U8 have no bit on the helix they share with U1, so they compute a function $f: \{0,1\} \rightarrow \{0,1\}$



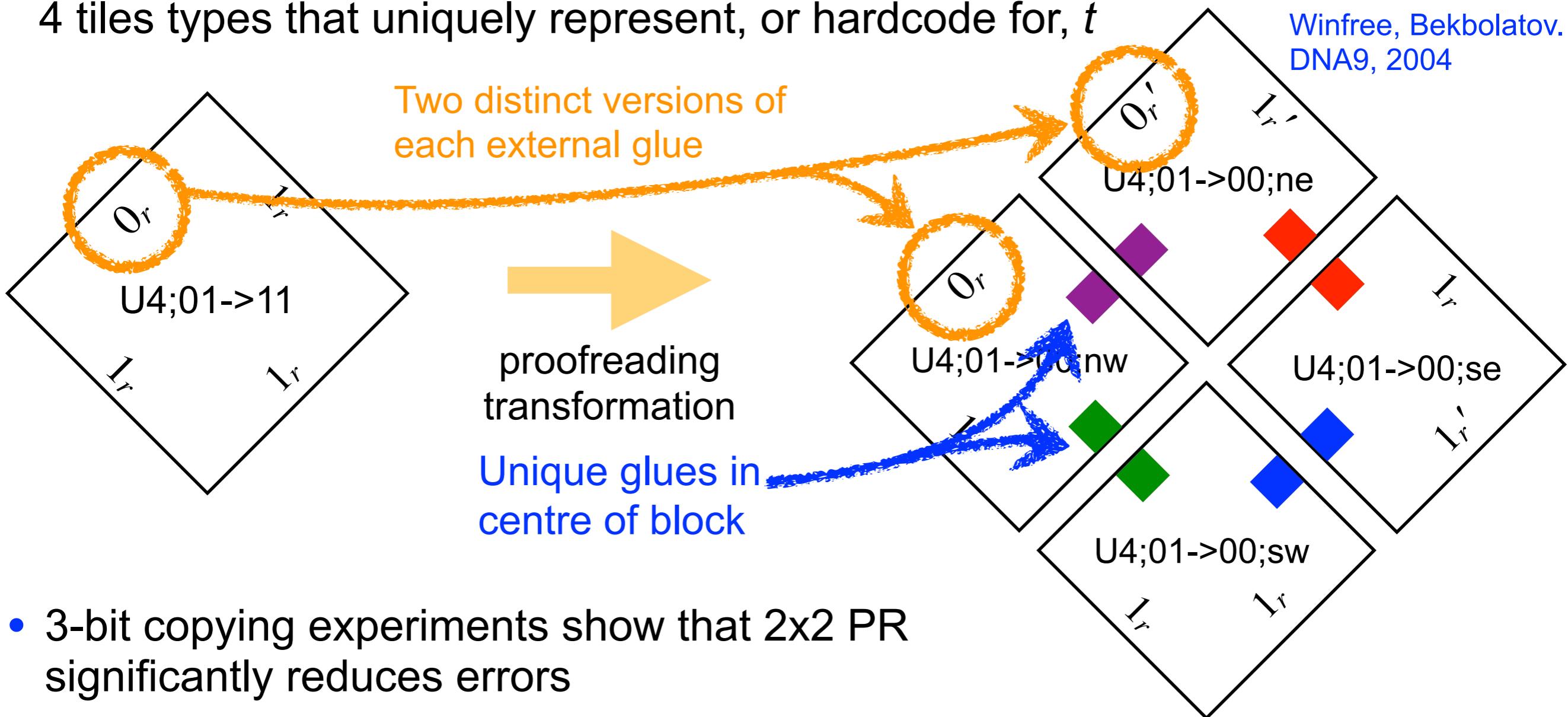
only 1 tile type on position U1, computes trivial function $f(.,.) \rightarrow (.,.)$

pic by Dave Doty

Damien Woods

6-bit universal proofreading (PR) tileset

- Linear/polynomial redundancy for exponential error reduction
- 2x2 PR transformation: each tile type t is transformed into a 2x2 block of 4 tiles types that uniquely represent, or hardcore for, t

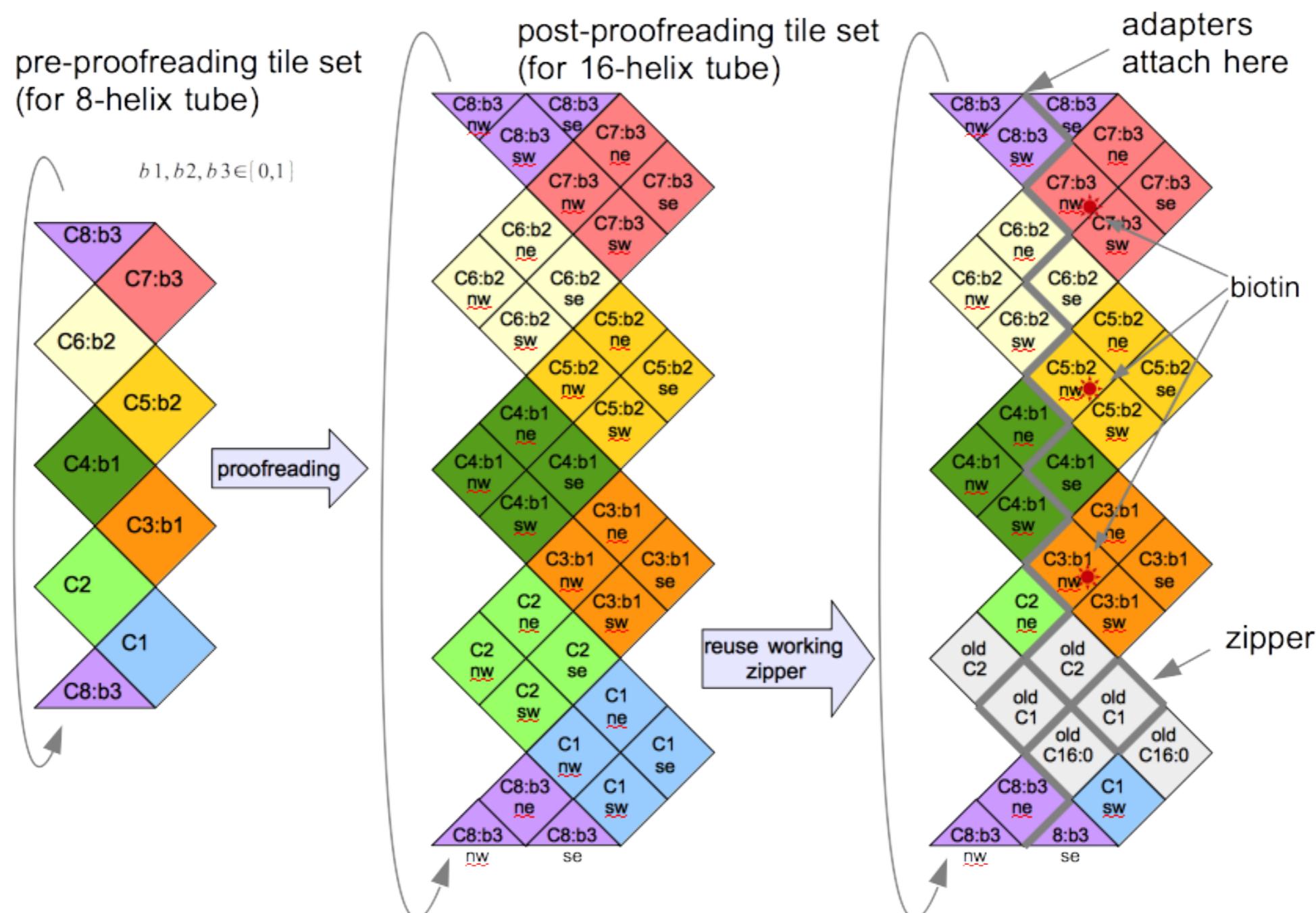


- 3-bit copying experiments show that 2x2 PR significantly reduces errors
- Transforms 89 tiles into **356 proofreading tiles**
- Caveat: we will use only a single tile type along the seam (hence, the 2x2 “U_—” block at the seam is not a proofreading block). => **4*89-1=355 unique strands**

Key property: 1 error forces a 2nd error in the same block, squaring the error rate

3-bit proofreading copying tileset

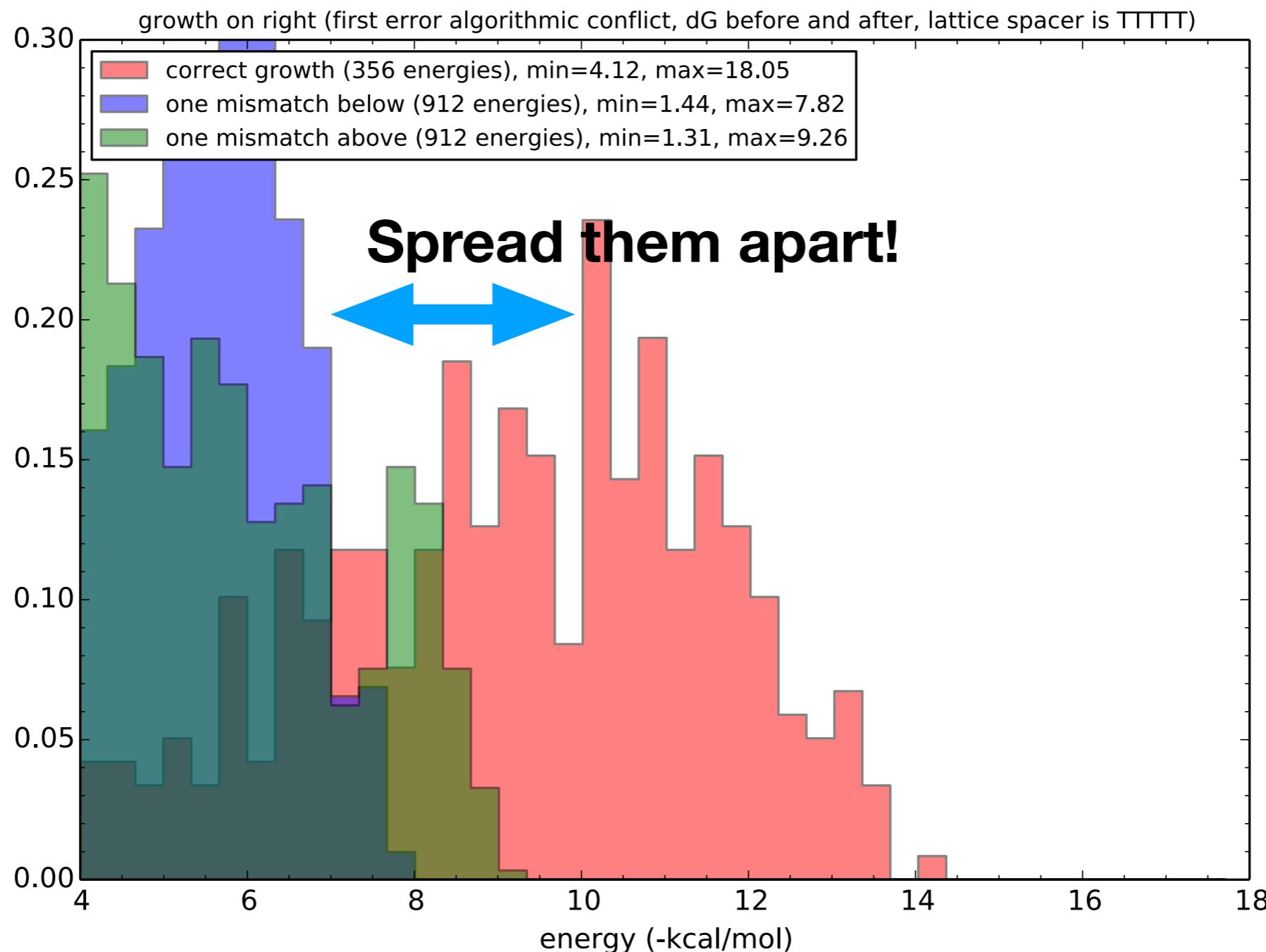
- To give an idea of what a 2x2 proof-reading transformation is here is a 3-bit proofreading copying applied to the 3-bit copying tile set (i.e. for a different tile set)



pic by Dave Doty

Sequence design

Random sequences will not work

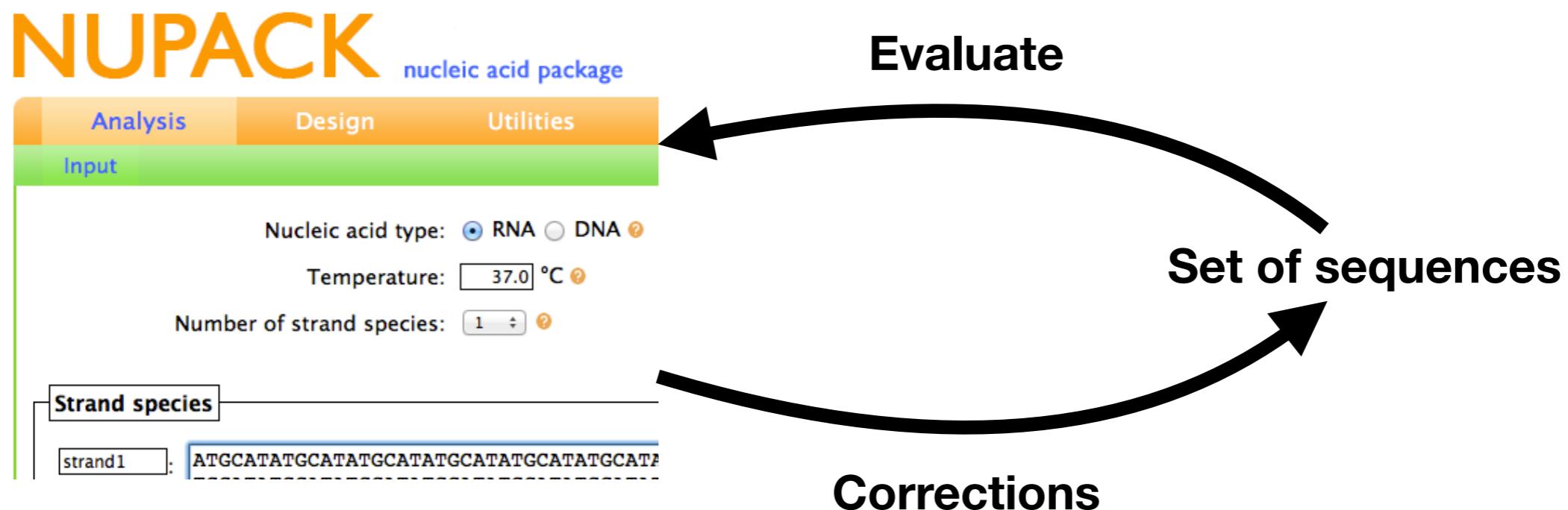


Random sequences over 3-letter code with 1 base exception, and domain-pairs ending with AT stack

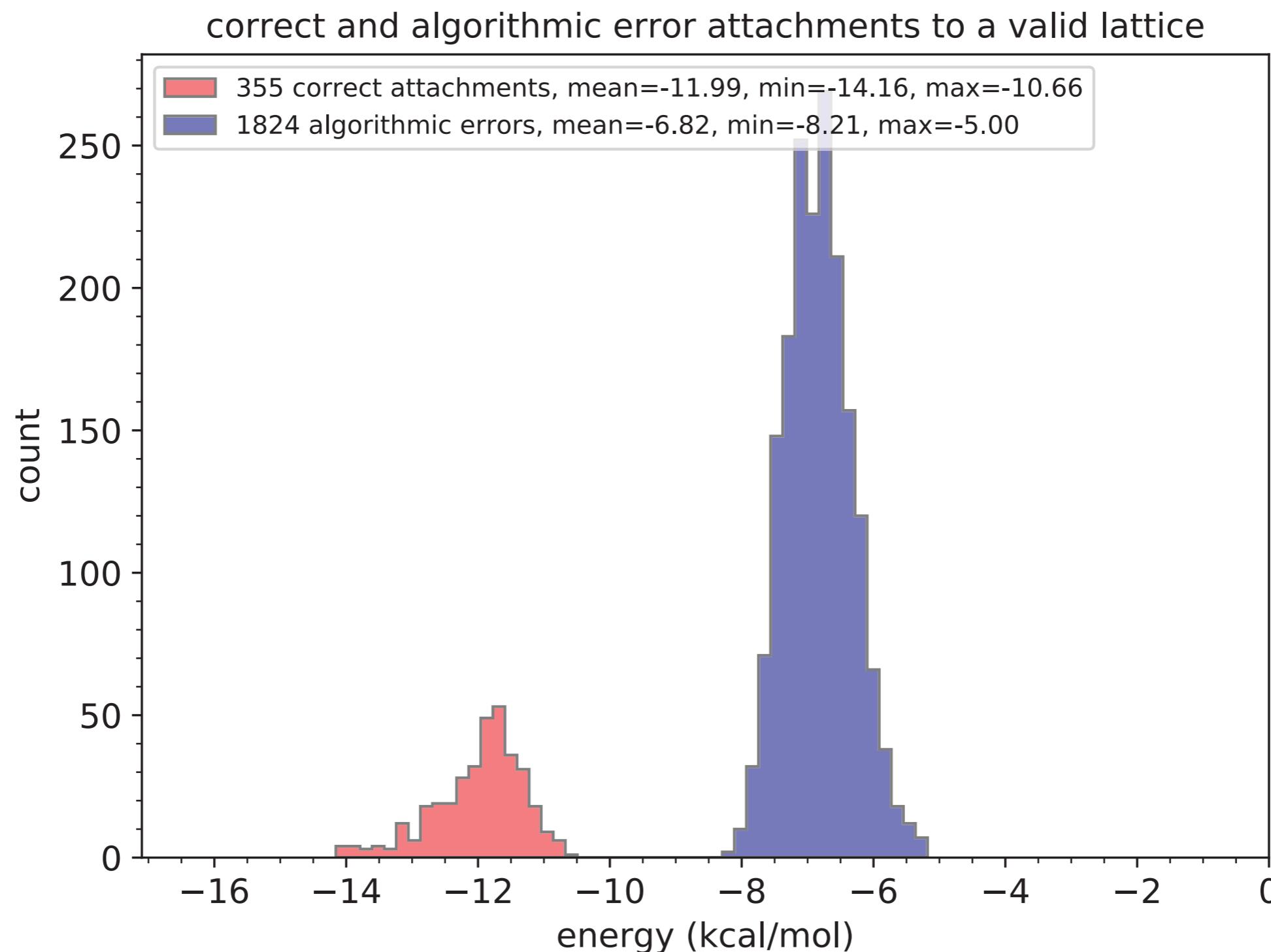
What do we want?

1. No "self-folding"
2. Clean lattice boundary
3. Minimize interactions between strand pairs
4. Uniform correct binding: in a tight range
5. Incorrect binding should have a much higher energy

An iterative process



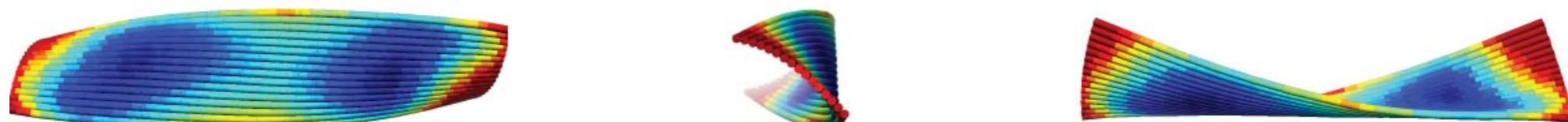
Designed sequences



The experiments

The seed: a DNA origami

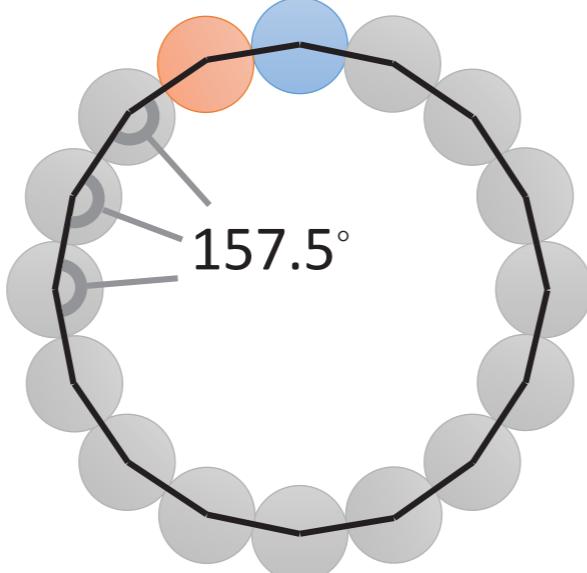
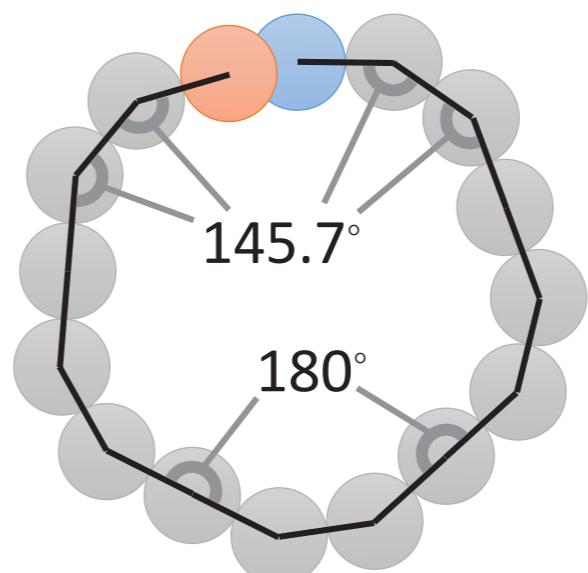
**Classic
rectangle**



**Twist
correction**

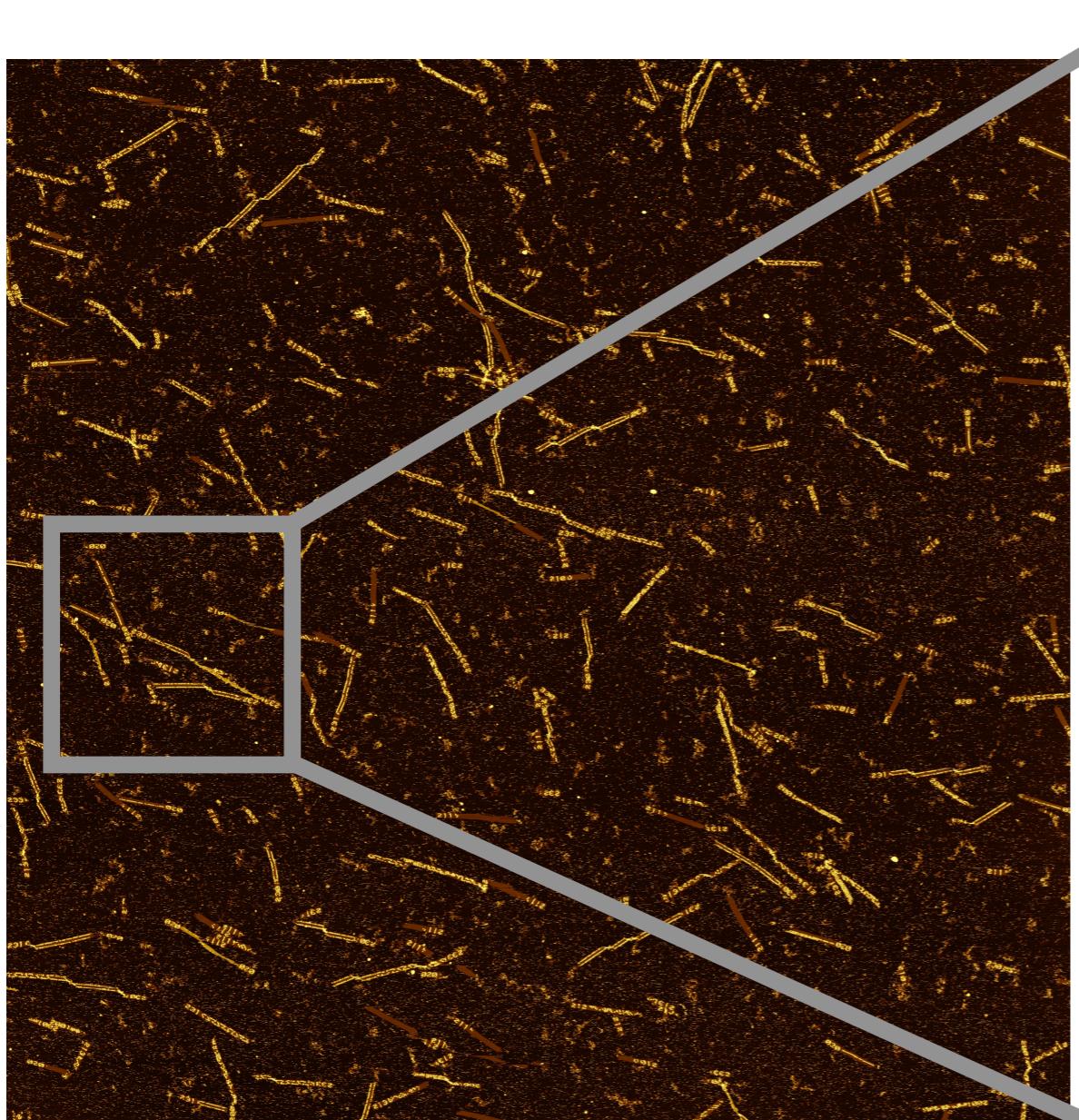
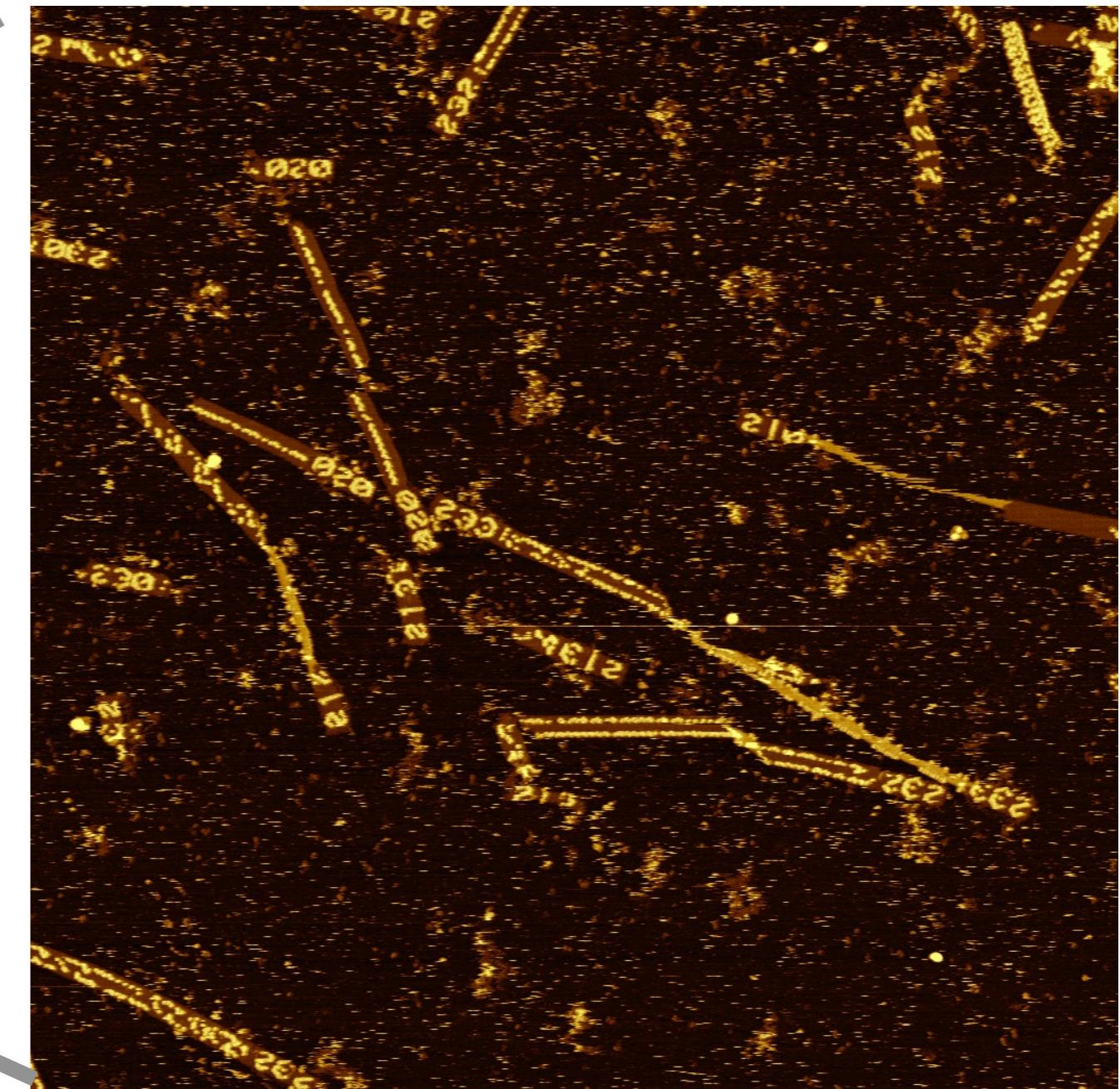
**Barrel
correction**

tiles: idealized cross-section of 16-helix nanotube of single-stranded tiles with crossover between all adjacent helices: regular 16-gon



seed: idealized cross-section of 16-helix DNA origami barrel without crossover from top to bottom helix: irregular 16-gon

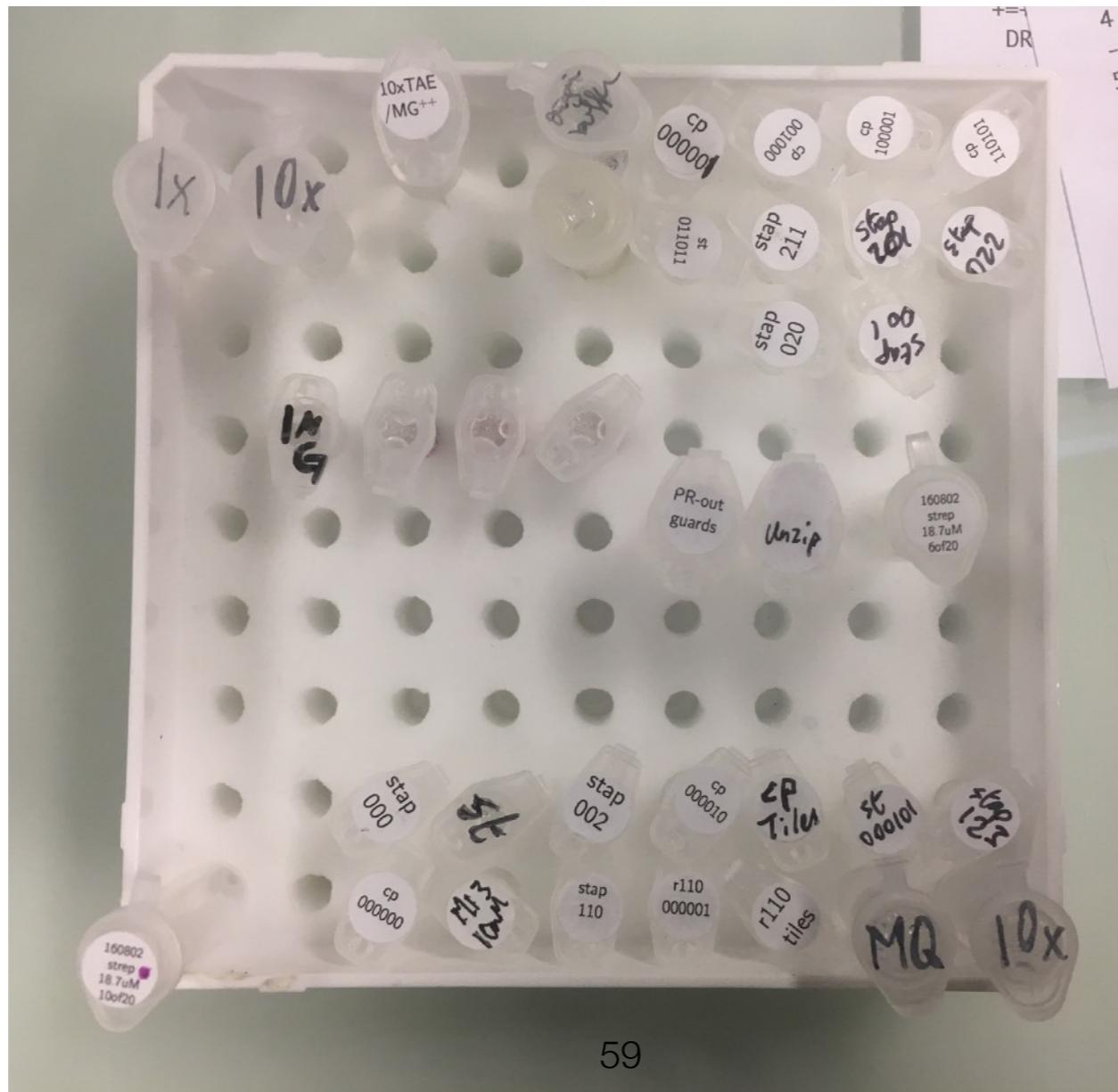
Barcode



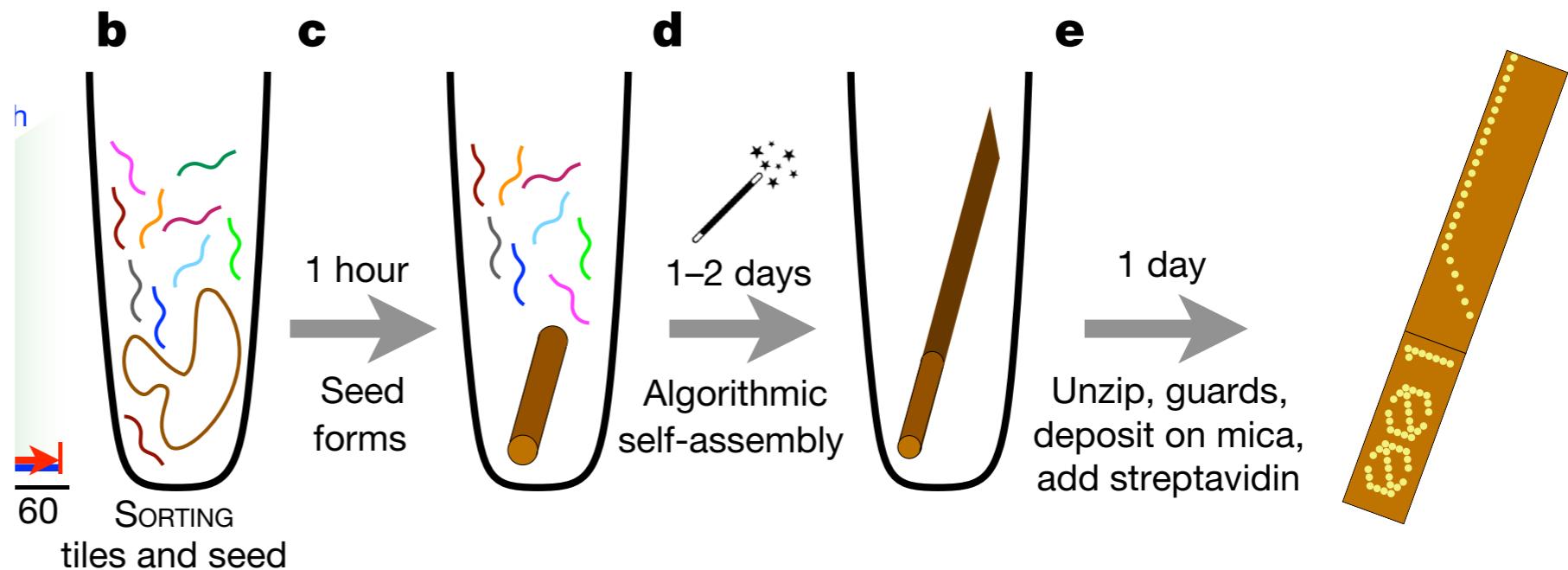
Seed barcodes allow to image many circuits/inputs at the same time

Preparing the tiles

- Mix of the tile strands for each of the circuits in an individual properly labelled tube



Protocol



1. Origami

- 1.1. Mix scaffold and staples and adapters
- 1.2. Heat at 90°C and let it cold down to 51.8°C slowly (1h)

2. Growth

- 2.1. Add tiles
- 2.2. Let it grow at 51.8°C for 1 day

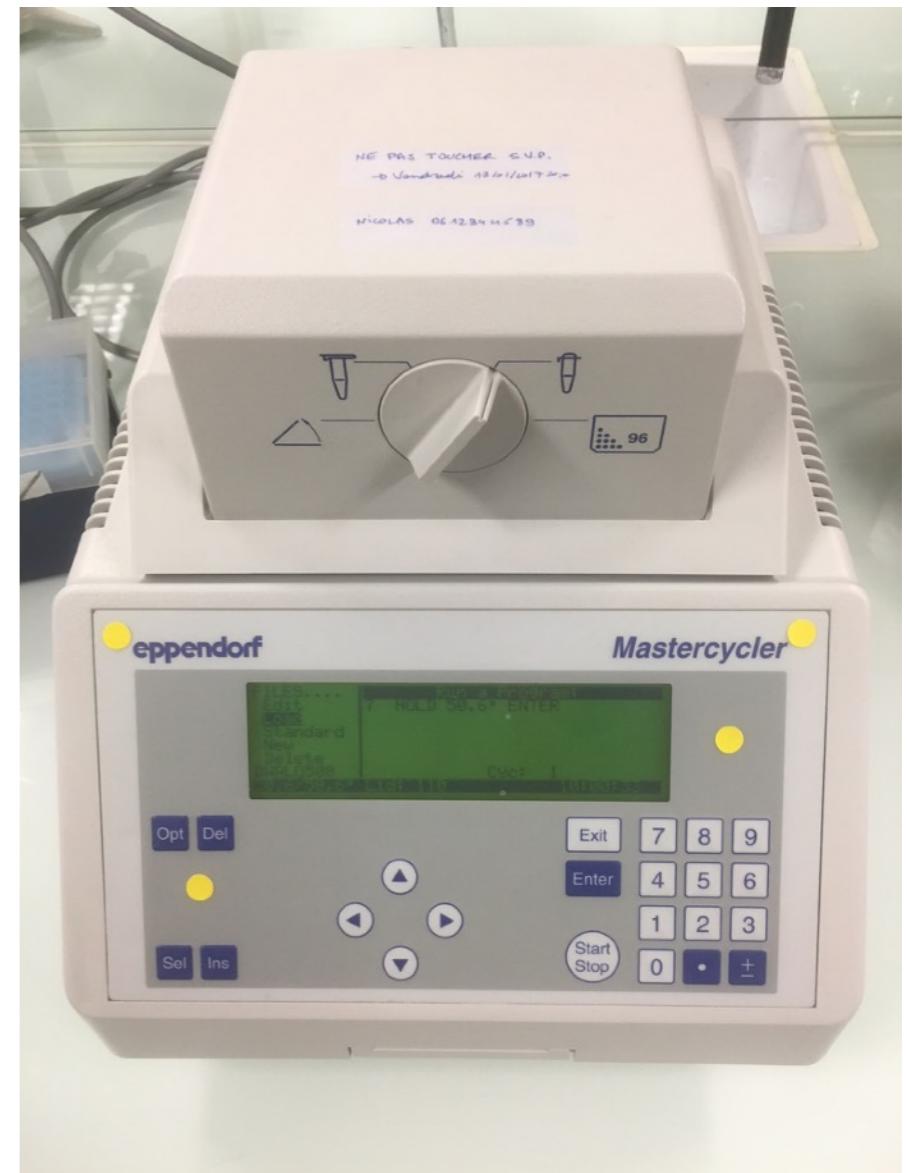
3. Guards

- 3.1. Add Guard staples
- 3.2. Let it attach for 4h

4. Unzip

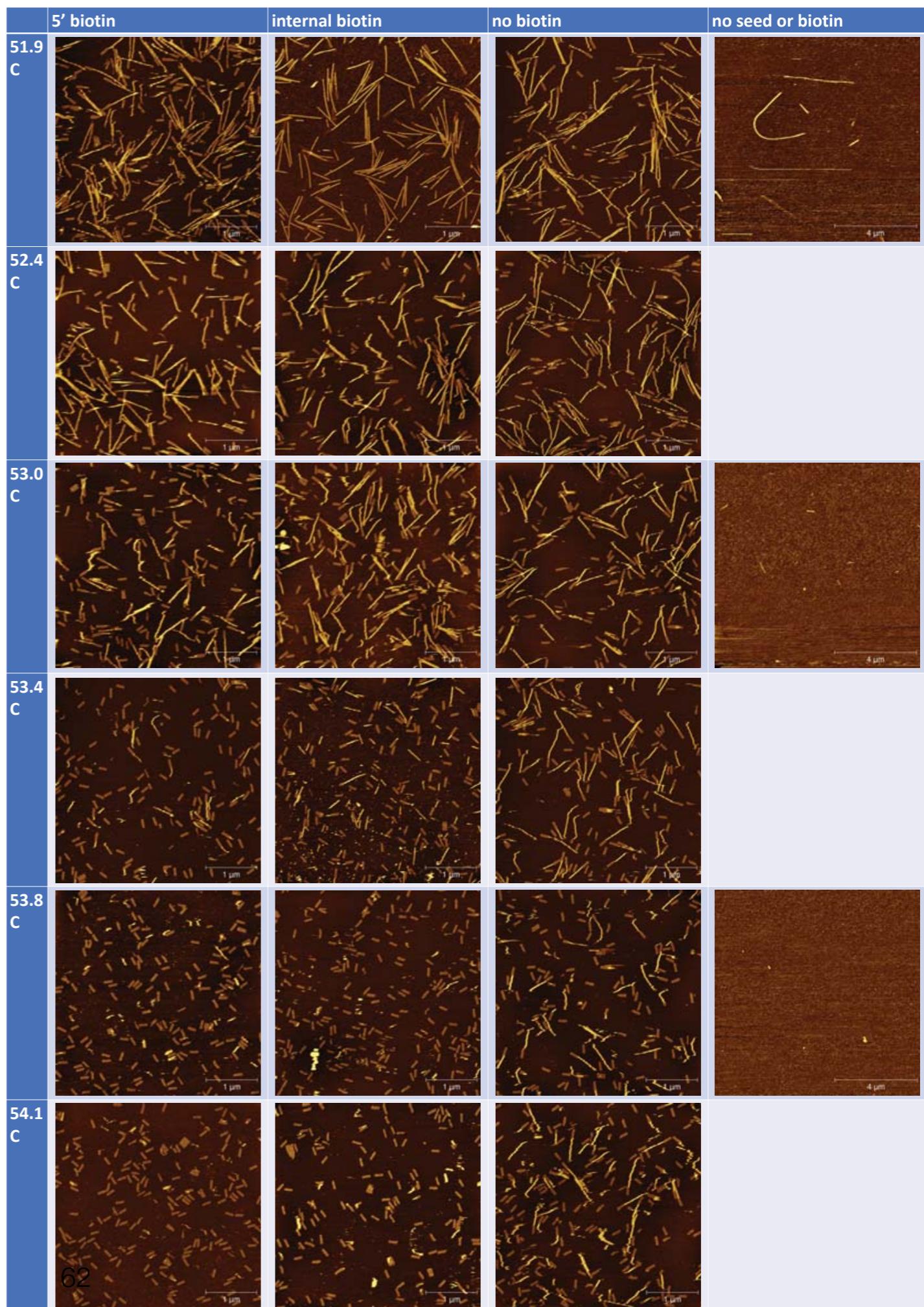
- 4.1. Add the unzippers
- 4.2. Let it rest for 1 night

5. Cool down to room temperature and Image!



The result

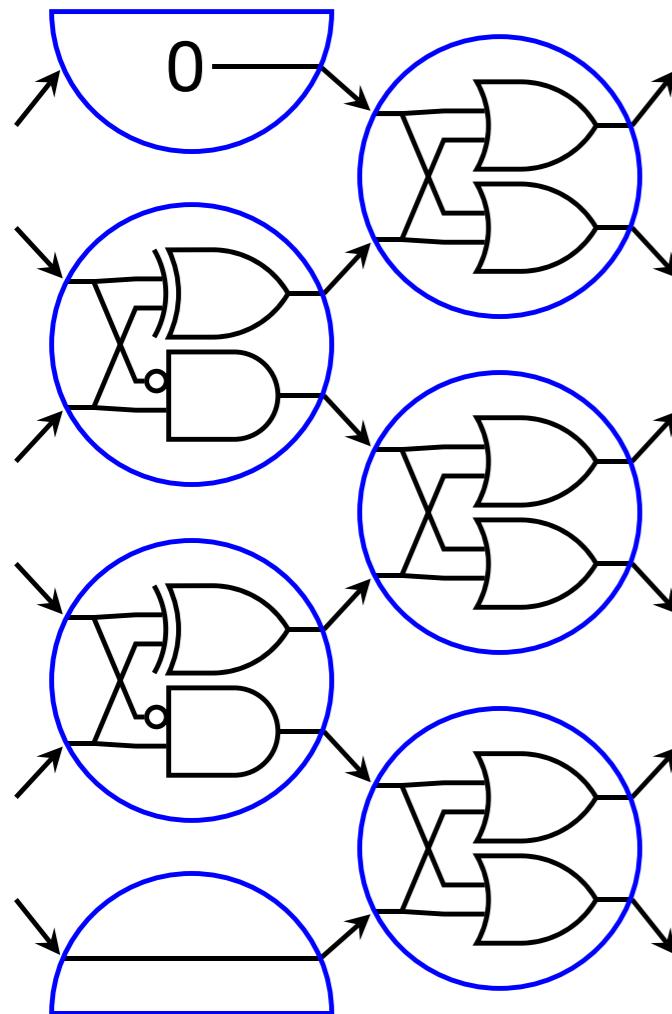
Influence of Temperature



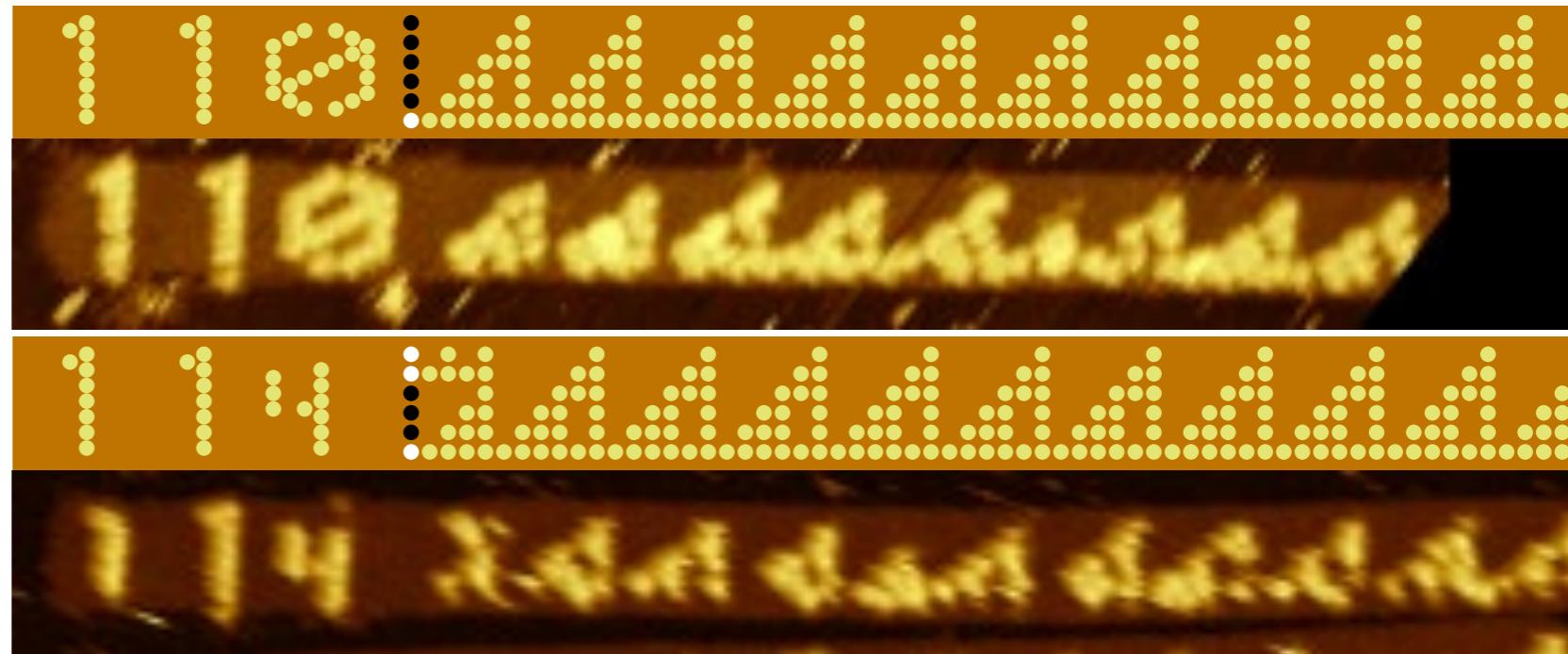
Rule 110: Turing complete!

C

RULE 110

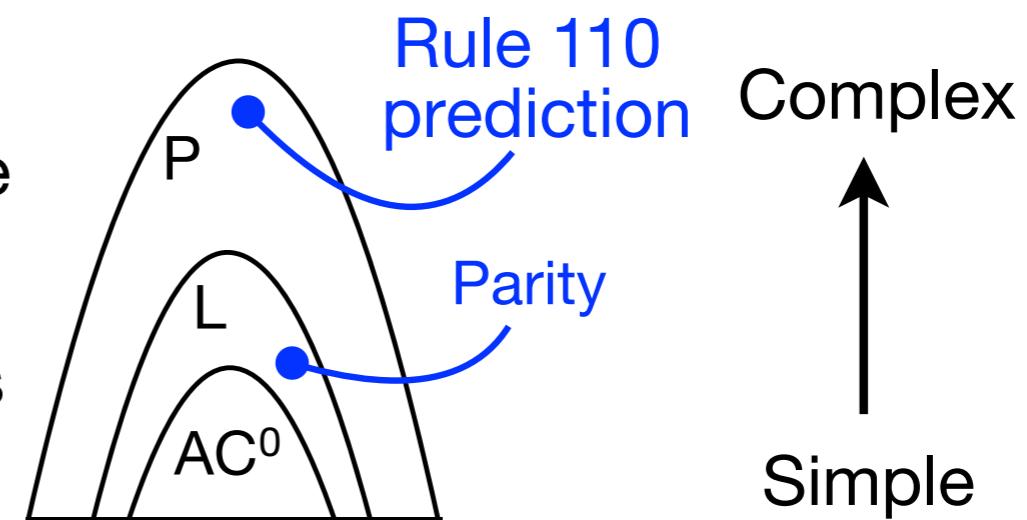


Simulation of a cellular automaton



Tile-attachment error rate 0.03% \pm 0.009
Number of tiles attached 48,789

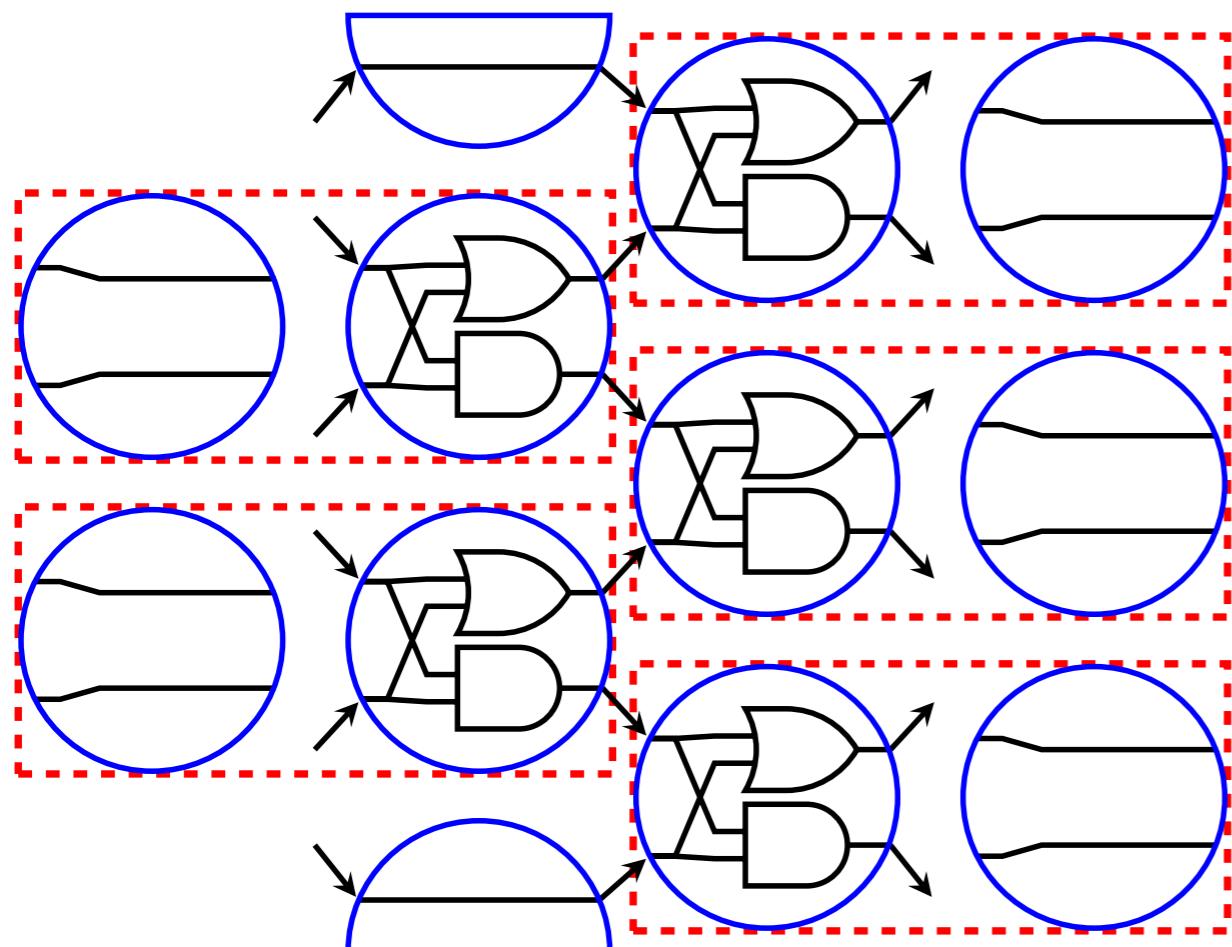
Landscape of circuit decision problems



Lazy sorting

1

LAZY SORTING

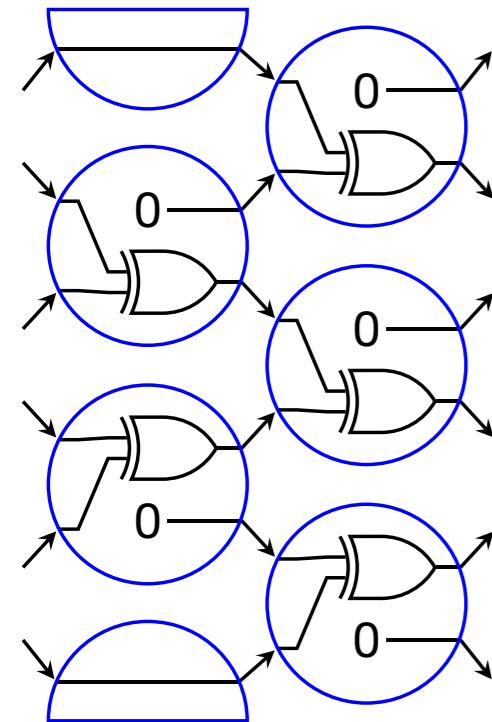


Sort 1s to the top

Parity

a

PARITY



Is the number of 1s odd?

Yes

No

Yes

No

Yes

No

010	308	122
013	301	123
021	303	131
022	321	132
024	323	134
030	304	210
101	404	211
110	410	213
112	420	200
113	431	222
121	32 x no	231
130	32 x yes	232
442	001	234
133	011	302
203	020	310
201	023	320
002	441	330
212	104	400
221	122	401
223	103	411
230	111	421
223	114	430

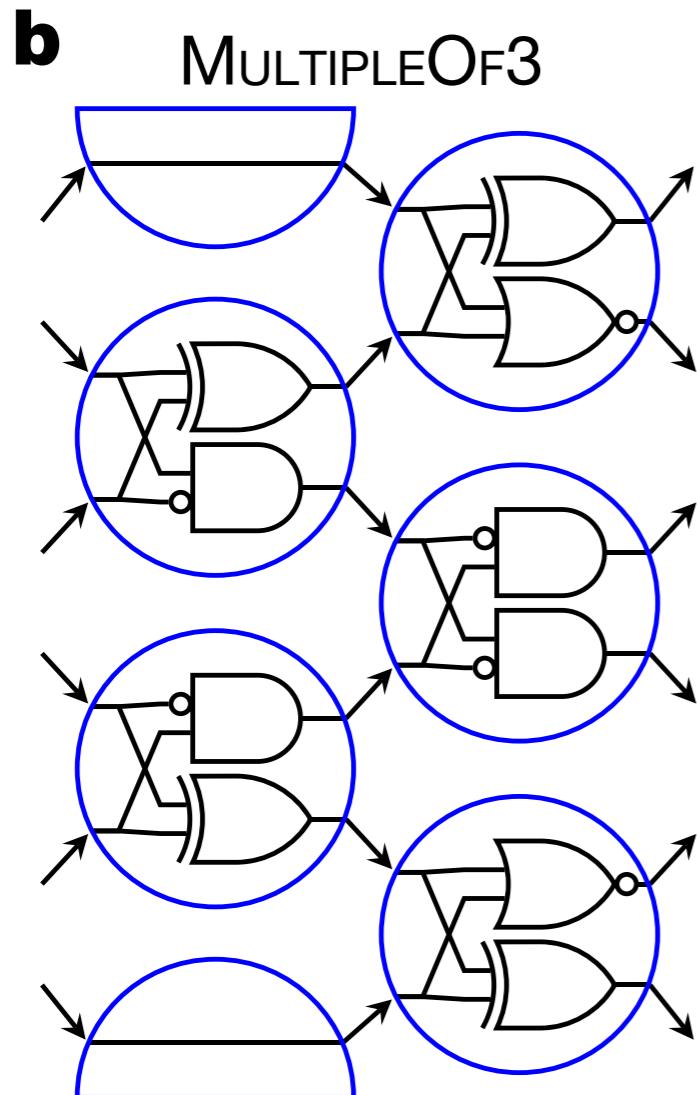
$$2^6 = 64 \text{ inputs}$$

Tile-attachment error rate 0.03% \pm 0.001
Number of tiles attached 1,318,653

000	000	122
010	301	123
021	305	131
022	321	132
024	333	134
030	004	210
101	104	211
110	410	213
112	420	220
113	431	222
121	32 x no	231
130	32 x yes	232
442	001	234
133	011	302
200	020	310
201	023	320
302	441	330
212	100	400
221	102	401
223	103	411
230	111	421
232	114	430

$2^6 = 64$ inputs

Multiple of 3?



Is the input binary number a multiple of 3?



Yes

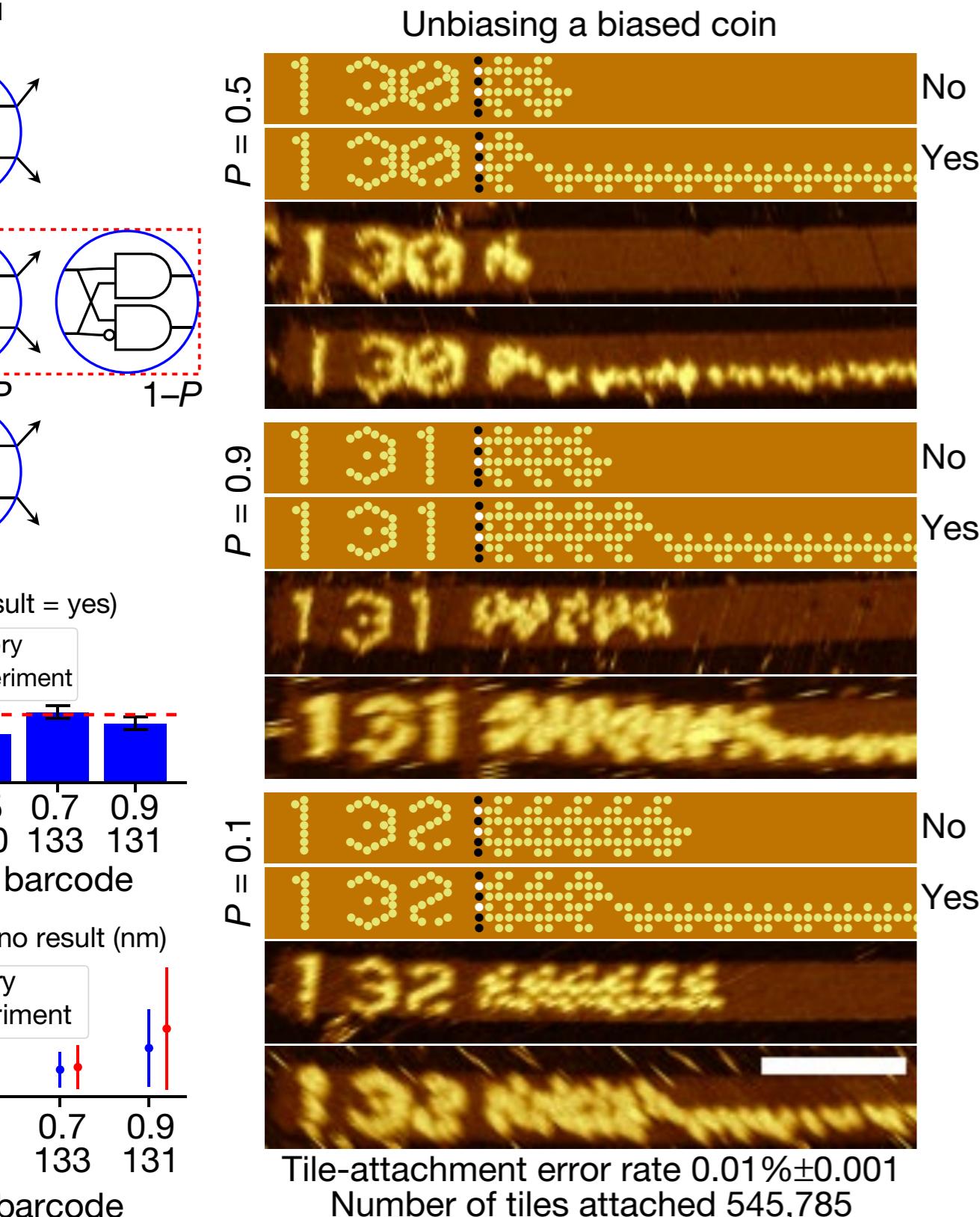
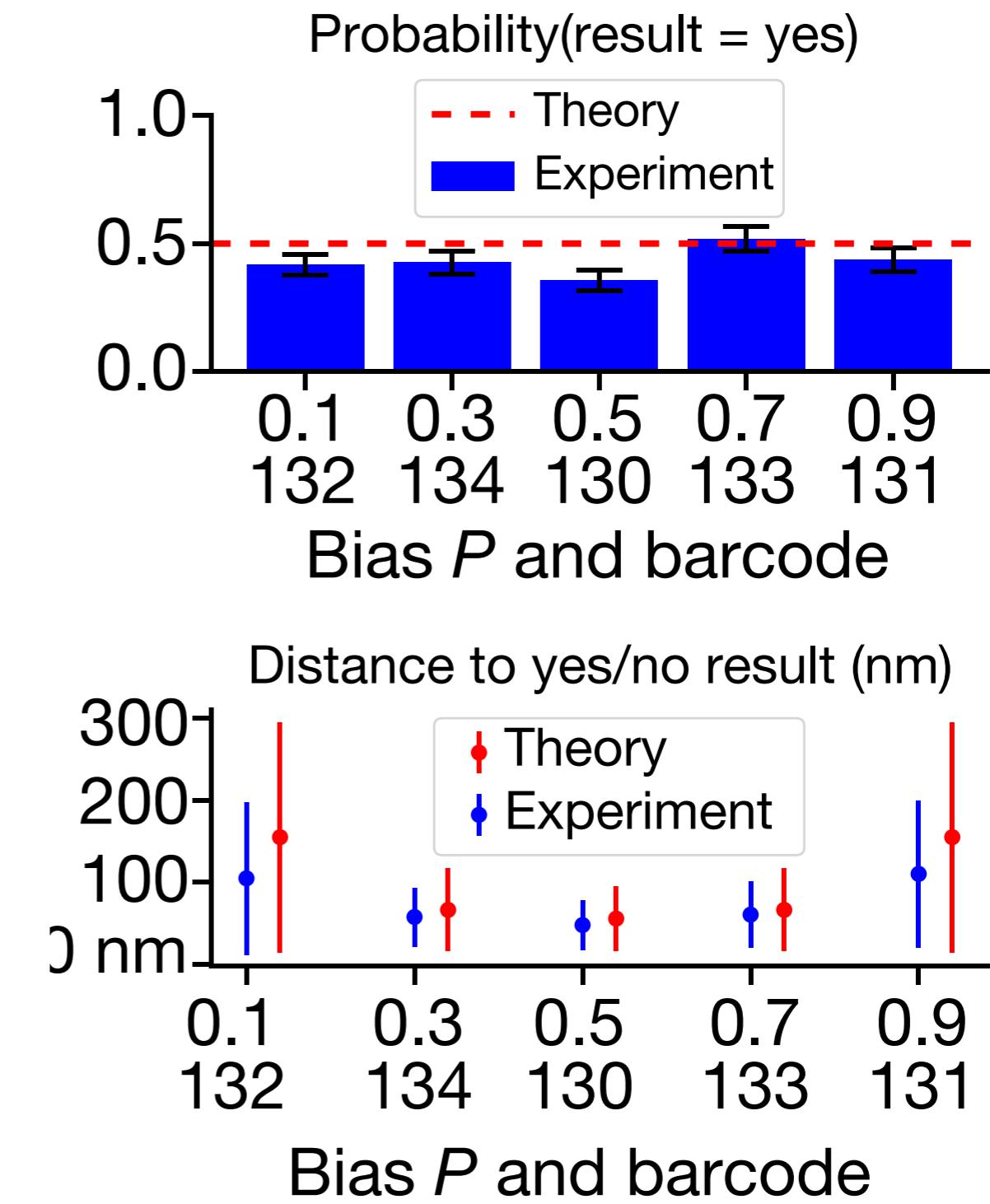
Yes

No

No

Tile-attachment error rate $0.03\% \pm 0.002$
Number of tiles attached 354,355

Unbiasing a biased coin



Conclusion

- A 6-bits universal "efficient" DNA computer based on CA rule 110
- 3-5 years of hard work
- Beautiful results
- OPEN: interface computation for other circuits? reduce errors? have the circuits react to something?