

Bootstrapping: Intrinsic Universality in tile assembly

Nicolas Schabanel
CNRS - *LIP, ENS Lyon & IXXI - France*

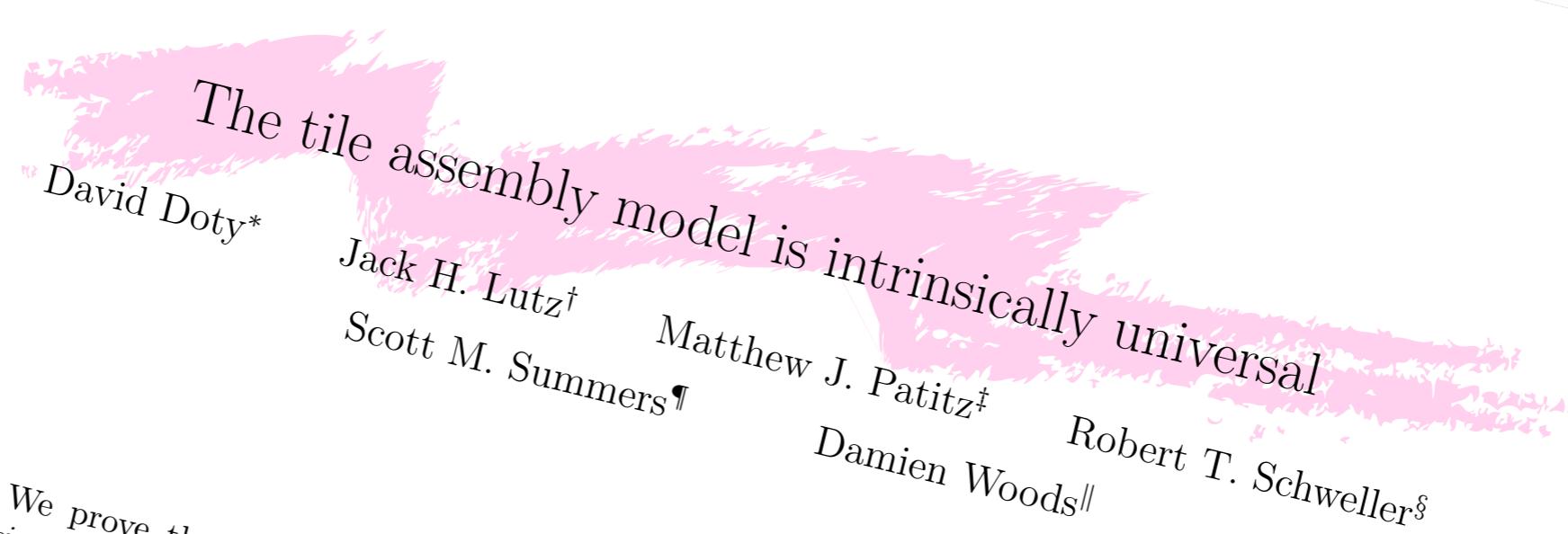
Most slides borrowed from Damien Woods

Universal Tileset at $T^{\circ}2$

A universal tile set to build any (assemblable) shape

Is there a universal tilesset at $T^\circ=2$?

- Yes! Up to rescaling



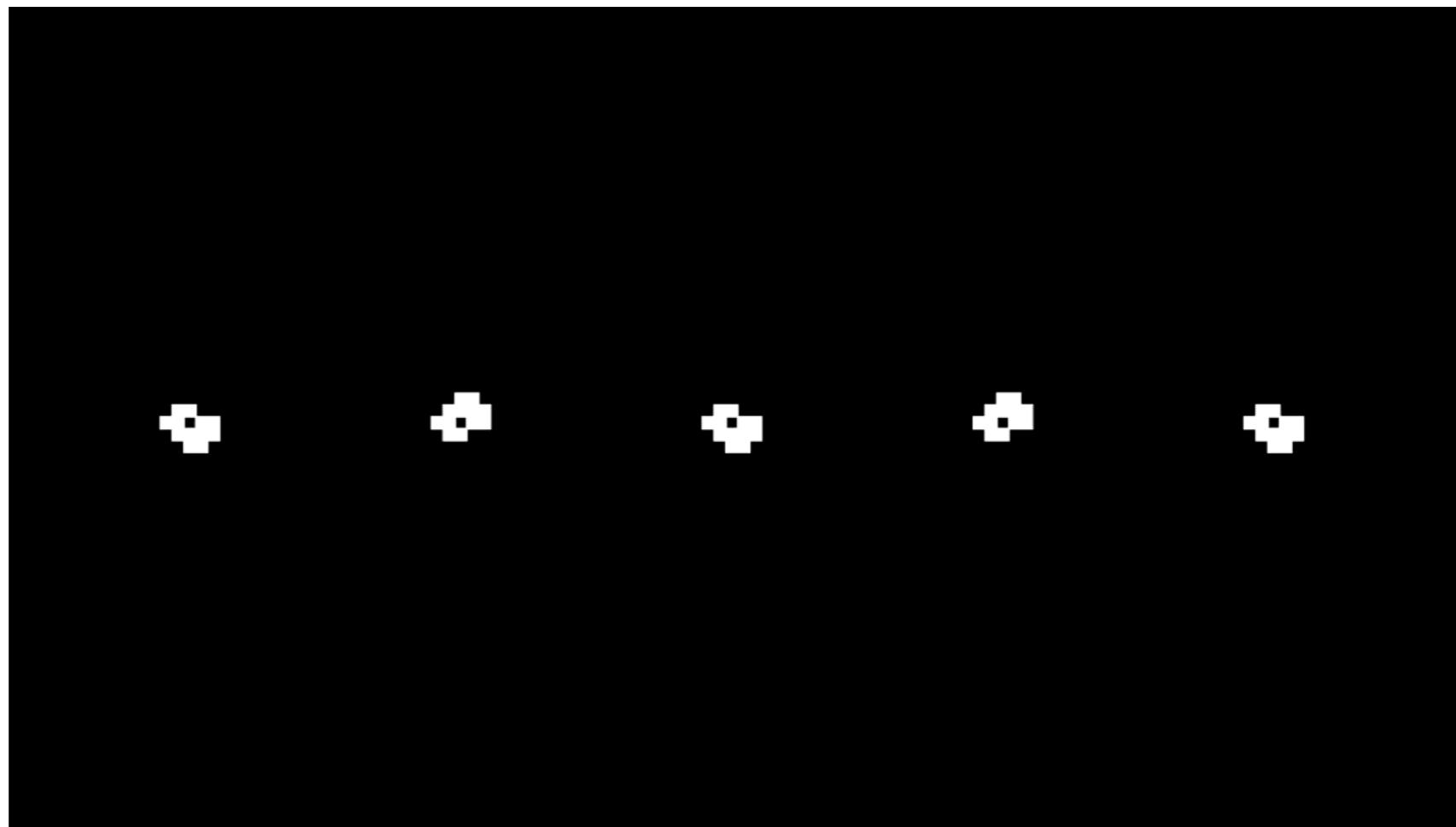
Abstract

We prove that the abstract Tile Assembly Model (aTAM) of nanoscale self-assembly is *intrinsically universal*. This means that there is a single tile assembly system \mathcal{U} that, with proper initialization, simulates any tile assembly system \mathcal{T} . The simulation is “intrinsic” in the sense that the self-assembly process carried out by \mathcal{U} is exactly that carried out by \mathcal{T} , with each tile of \mathcal{T} represented by an $m \times m$ “supertile” of \mathcal{U} . Our construction works for the full aTAM at any temperature, and it faithfully simulates the deterministic or nondeterministic behavior of each \mathcal{T} .

Our construction succeeds by solving an analog of the cell differentiation problem in developmental biology: Each supertile of \mathcal{U} , starting with those in the seed assembly “genome” of the simulated system \mathcal{T} . At each location of a potential assembly of \mathcal{U} , a decision is made whether and how to express a supertile and, if so, which tile of \mathcal{T} it will generate a supertile and, if so, which tile of \mathcal{T} it will use asynchronous communication and global outcome(s).

Is there a universal tileset at $T^\circ=2$?

- Rescaling : ***intrinsic*** simulation

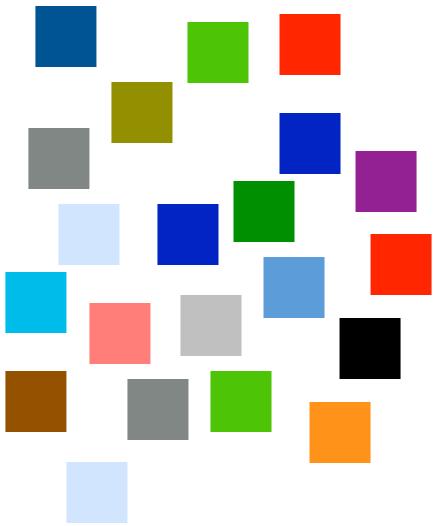


Brice Due 2006

The Game of Life self-simulating itself intrinsically:
Smaller cells simulate macro-cells

Comparing tile assembly models

Is there a set of **intrinsically universal tiles** that can **simulate** any tile set?

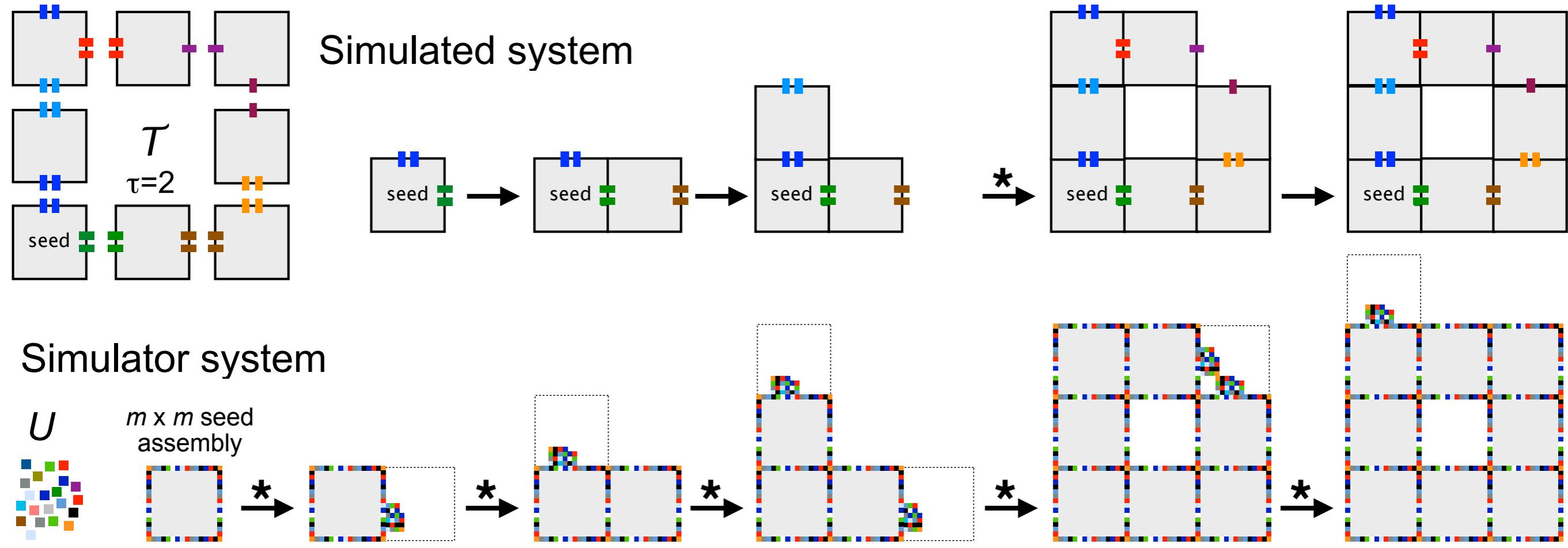


What does “act like” mean?

- What is it that tile assembly systems do?
 - Make shapes and patterns
 - Carry out a crystal-like growth process (dynamics)
- Let define **simulate** using these criteria that are intrinsic to the model

Simulation

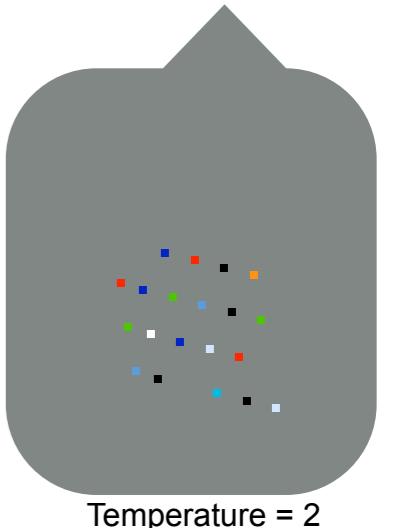
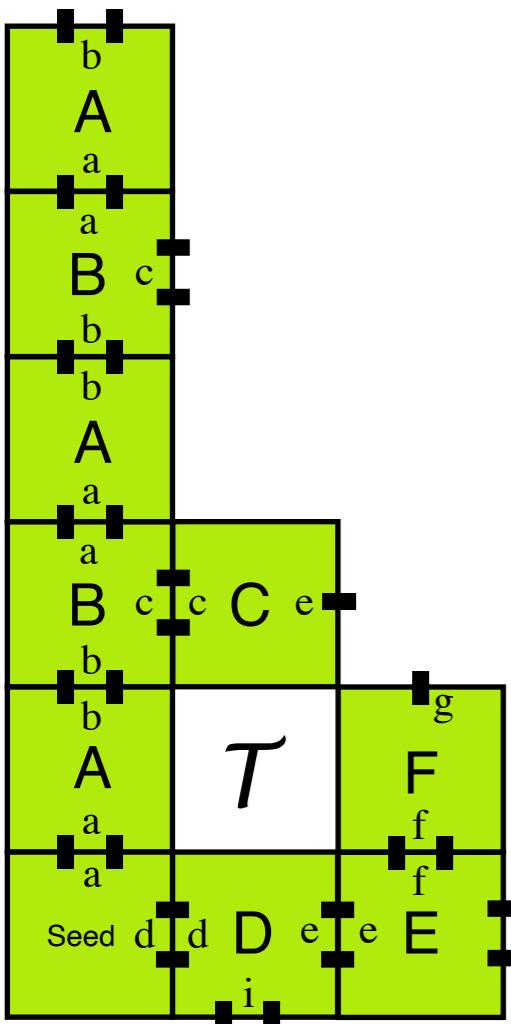
- For (any) simulated tile assembly system \mathcal{T}
 - $\mathcal{T} = (\text{tileset } T, \text{ seed assembly } \sigma, \text{ temperature } \tau)$
- Tile assembly system \mathcal{U} simulates \mathcal{T} if:
 - **Tiles** from \mathcal{T} are represented by **$m \times m$ supertiles** in \mathcal{U}
 - Assemblies produced by \mathcal{U} **represent exactly** assemblies produced by \mathcal{T} (via a representation function R : Blocks of tiles from \mathcal{U} \rightarrow tiles from \mathcal{T})
 - **Dynamics are equivalent** in \mathcal{U} and \mathcal{T} , ignoring $m \times m$ scaling



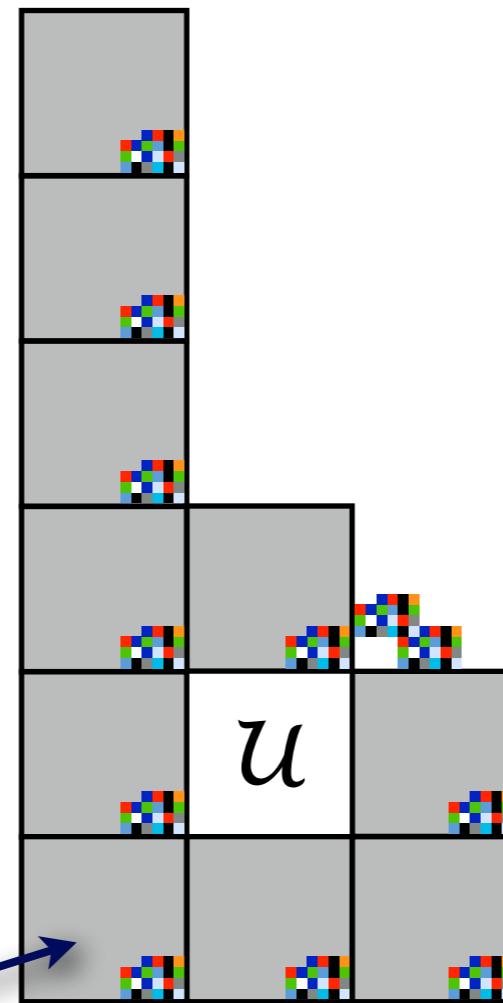
Simulation definition

Ignoring $m \times m$ scaling, production & dynamics are equivalent in the simulated system and simulator

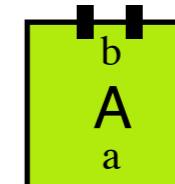
Universal
(simulator)
tile set



Preassembled
seed structure
(encodes simulated
TAS)



Simulated
tile



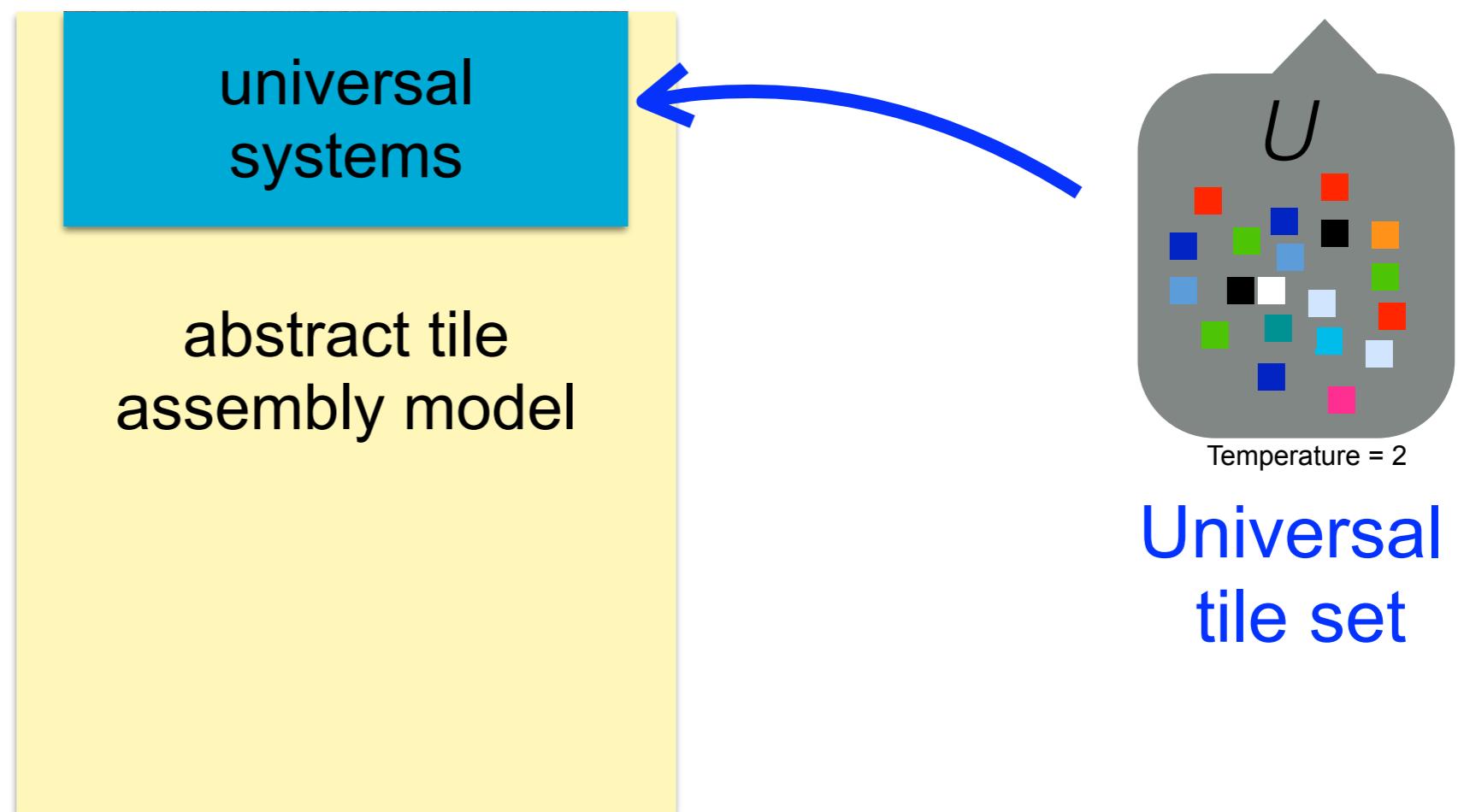
Simulator
supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

etc.

7

Is the abstract tile assembly model intrinsically universal? Yes!

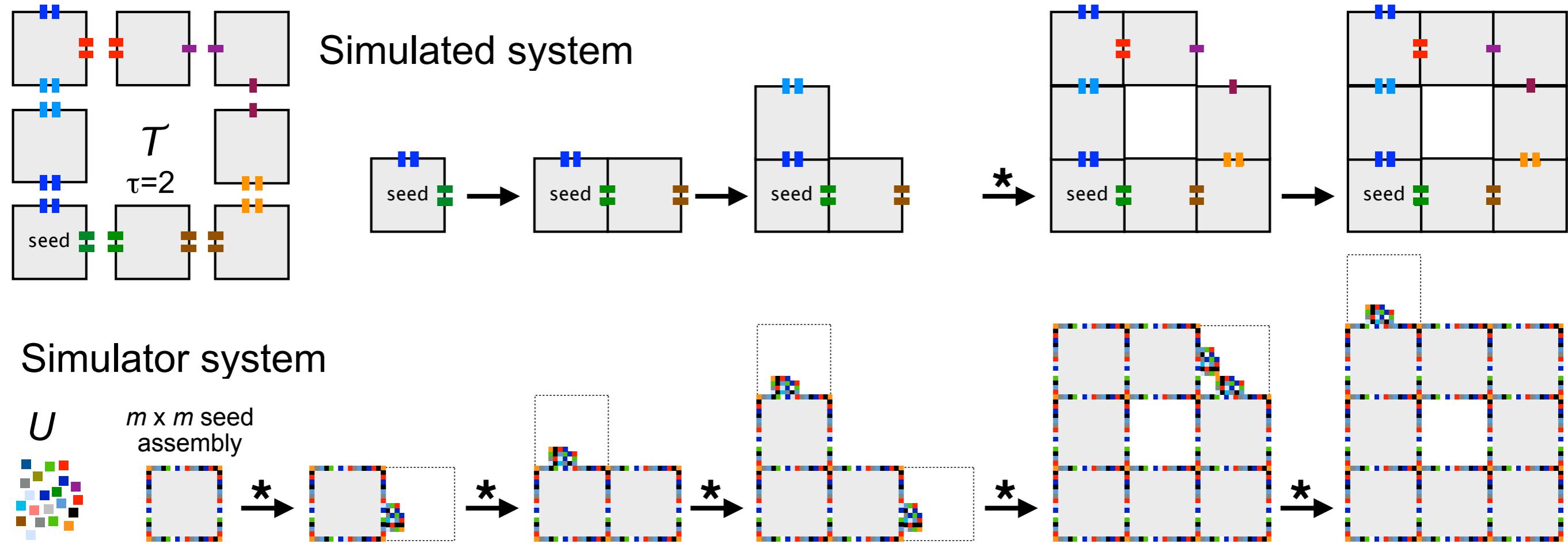


Theorem: There is a single intrinsically universal tile set U that simulates *any* tile assembly system

Doty, Lutz, Patitz, Schweller, Summers, Woods. FOCS 2012

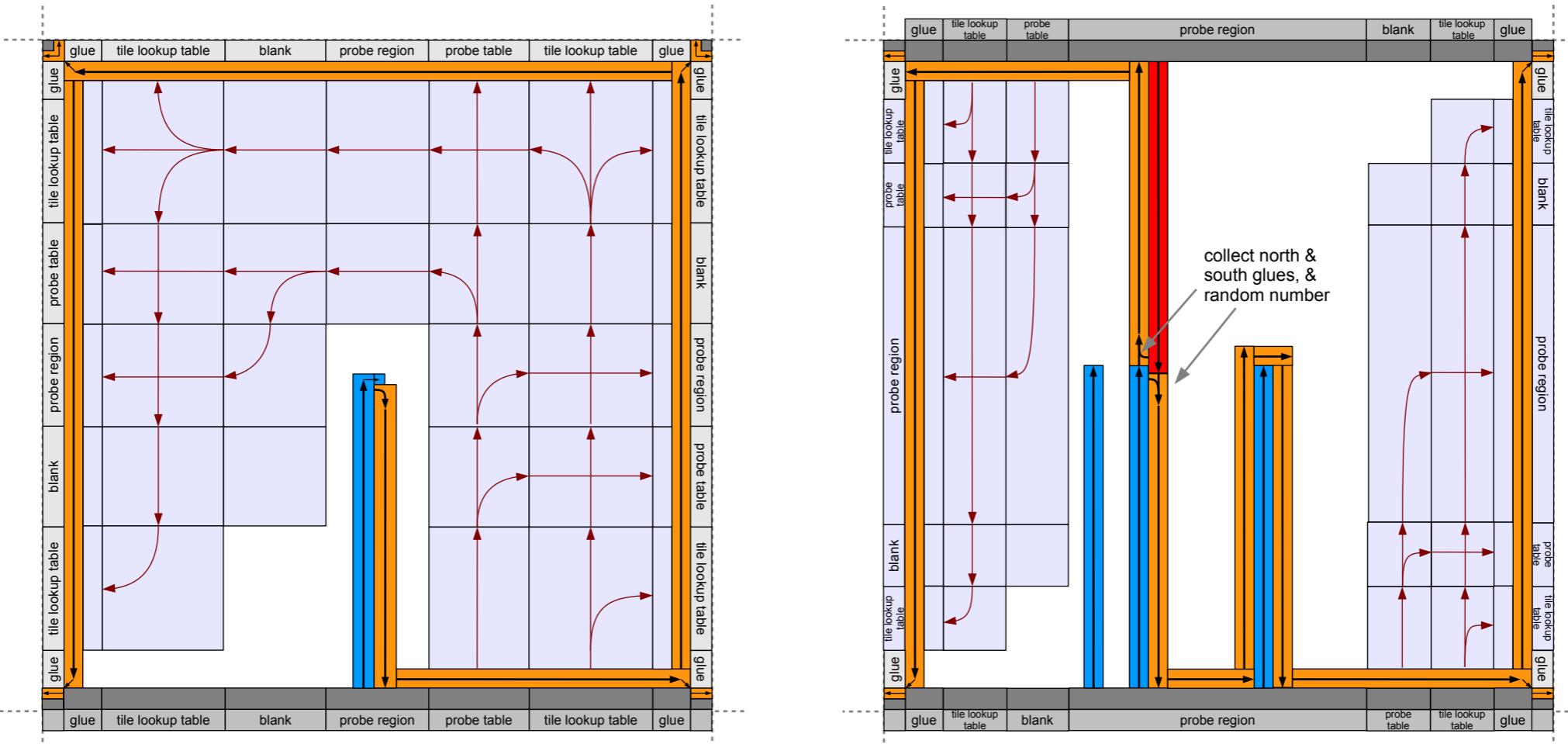
Simulation

- For (any) simulated tile assembly system \mathcal{T}
 - $\mathcal{T} = (\text{tileset } T, \text{ seed assembly } \sigma, \text{ temperature } \tau)$
- Tile assembly system \mathcal{U} simulates \mathcal{T} if:
 - Tiles from \mathcal{T} are represented by $m \times m$ supertiles in \mathcal{U}
 - Assemblies produced by \mathcal{U} represent exactly assemblies produced by \mathcal{T} (via a representation function R : Blocks of tiles from \mathcal{U} \rightarrow tiles from \mathcal{T})
 - Dynamics are equivalent in \mathcal{U} and \mathcal{T} , ignoring $m \times m$ scaling



Is there a universal tilesset at $T^\circ=2$?

- Rescaling : *intrinsic simulation*

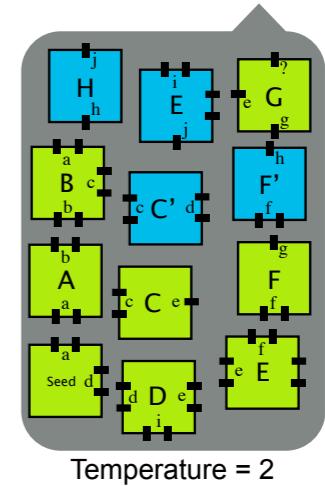


*Doty Lutz
Patitz
Schweller
Summers
Woods 2012*

Examples of macro-tiles

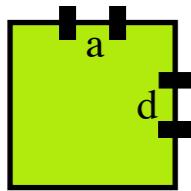
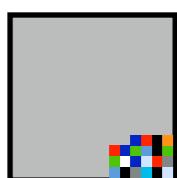
Superside

Encoding of the
entire simulated **tile assembly system**
written down using
tiles from the
simulator U



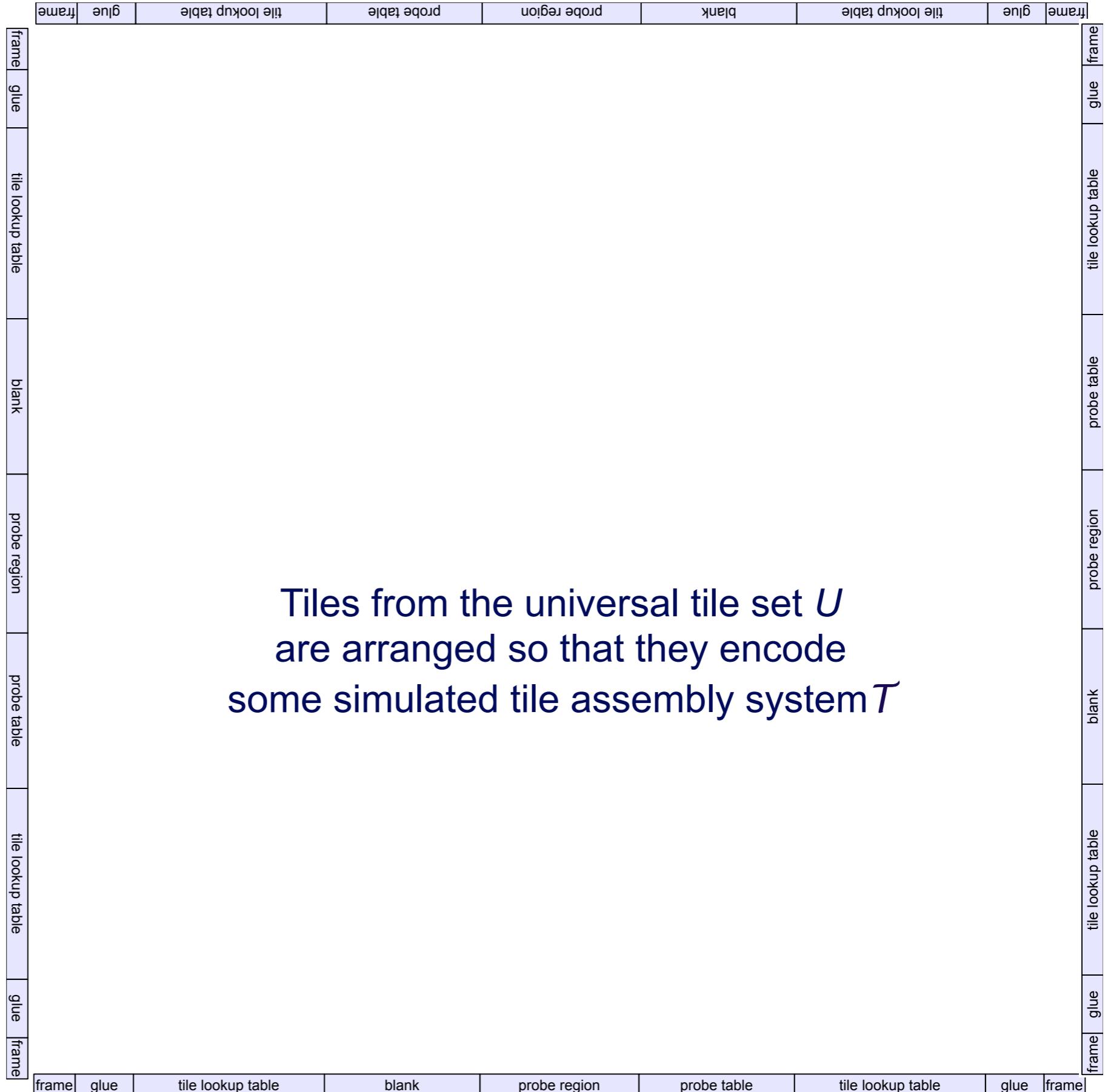
frame	glue	tile lookup table	blank	probe region	probe table	tile lookup table	glue	frame
4	$O(\log T)$	$O(T ^4 \log T)$	$O(T ^2)$	$O(T ^2)$	$O(T ^2)$	$O(T ^4 \log T)$	$O(\log T)$	4

$|T|$ is number of tiles in the simulated tileset T .

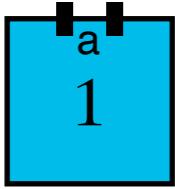


Preassembled
seed supertile

Tiles from the universal tile set U
are arranged so that they encode
some simulated tile assembly system T

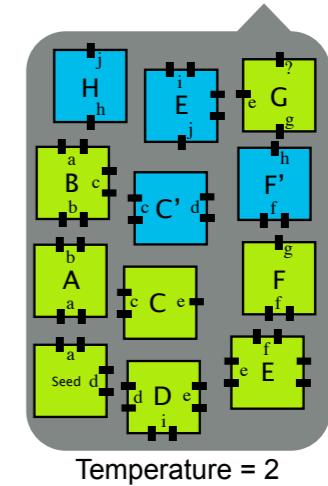


Superside



Encoded glue of this superside (e.g. “a”)

Encoding of the entire simulated **tile assembly system** written down using tiles from the simulator U



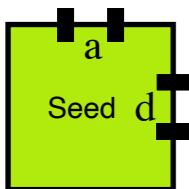
frame	glue	tile lookup table	blank	probe region	probe table	tile lookup table	glue	frame
4	$O(\log T)$	$O(T ^4 \log T)$	$O(T ^2)$	$O(T ^2)$	$O(T ^2)$	$O(T ^4 \log T)$	$O(\log T)$	4

Encoding of tile type 1 from T
 $|T|$ is number of tiles in the simulated tilesset T .

seed supertile

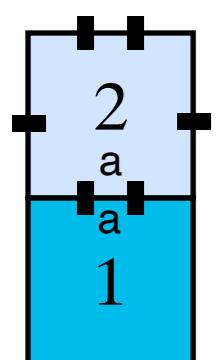
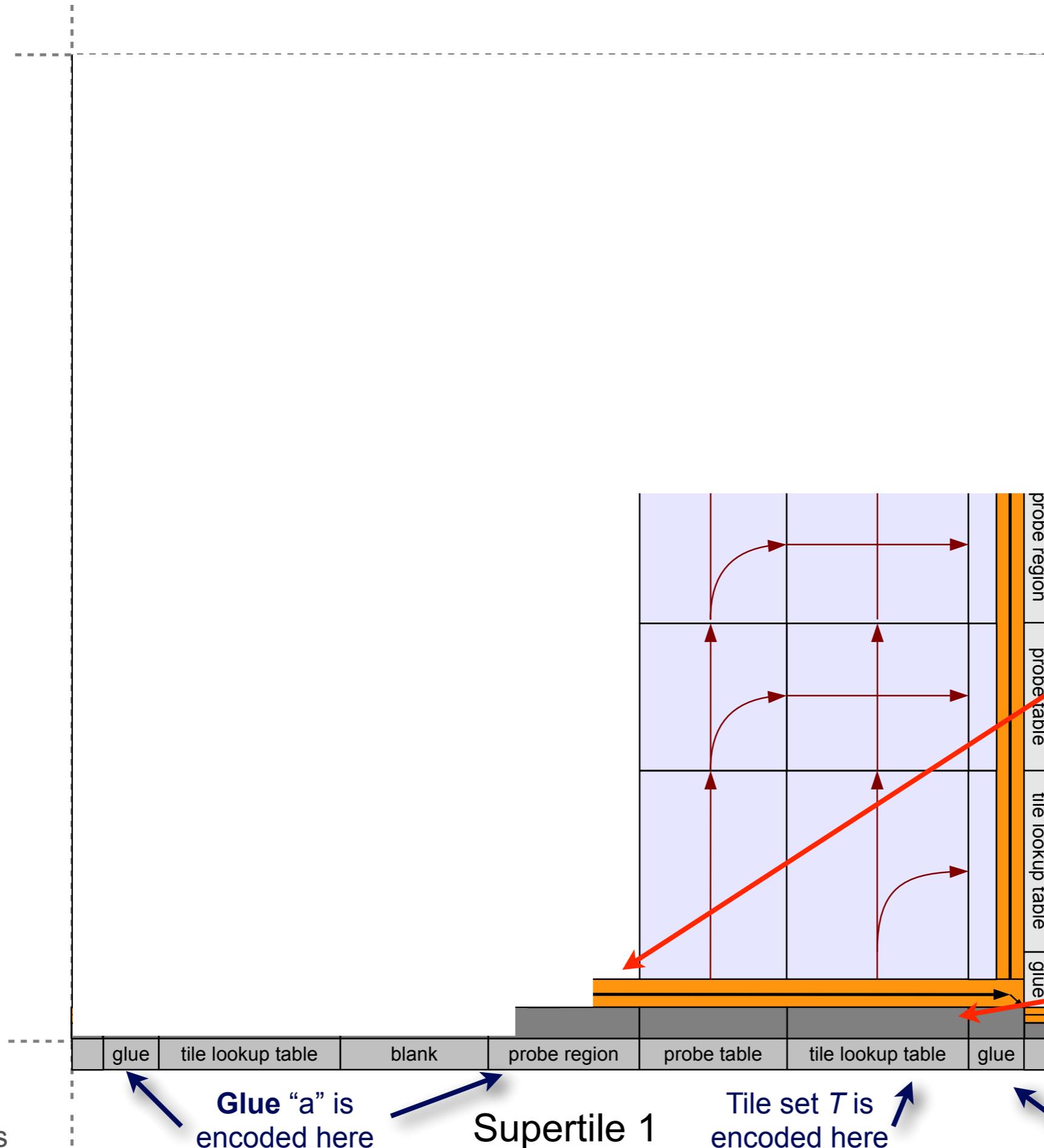
Growth begins from here!

Tiles from the universal tile set U are arranged so that they encode some simulated tile assembly system T



Preassembled seed supertile

One-sided binding with a single strength- τ south superside



Goal: place a description of T and “tile 2” around the 4 super-edges

crawler encodes
glue of south
superside

“Genome” is copied

“Genome” is
read

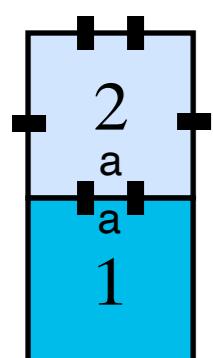
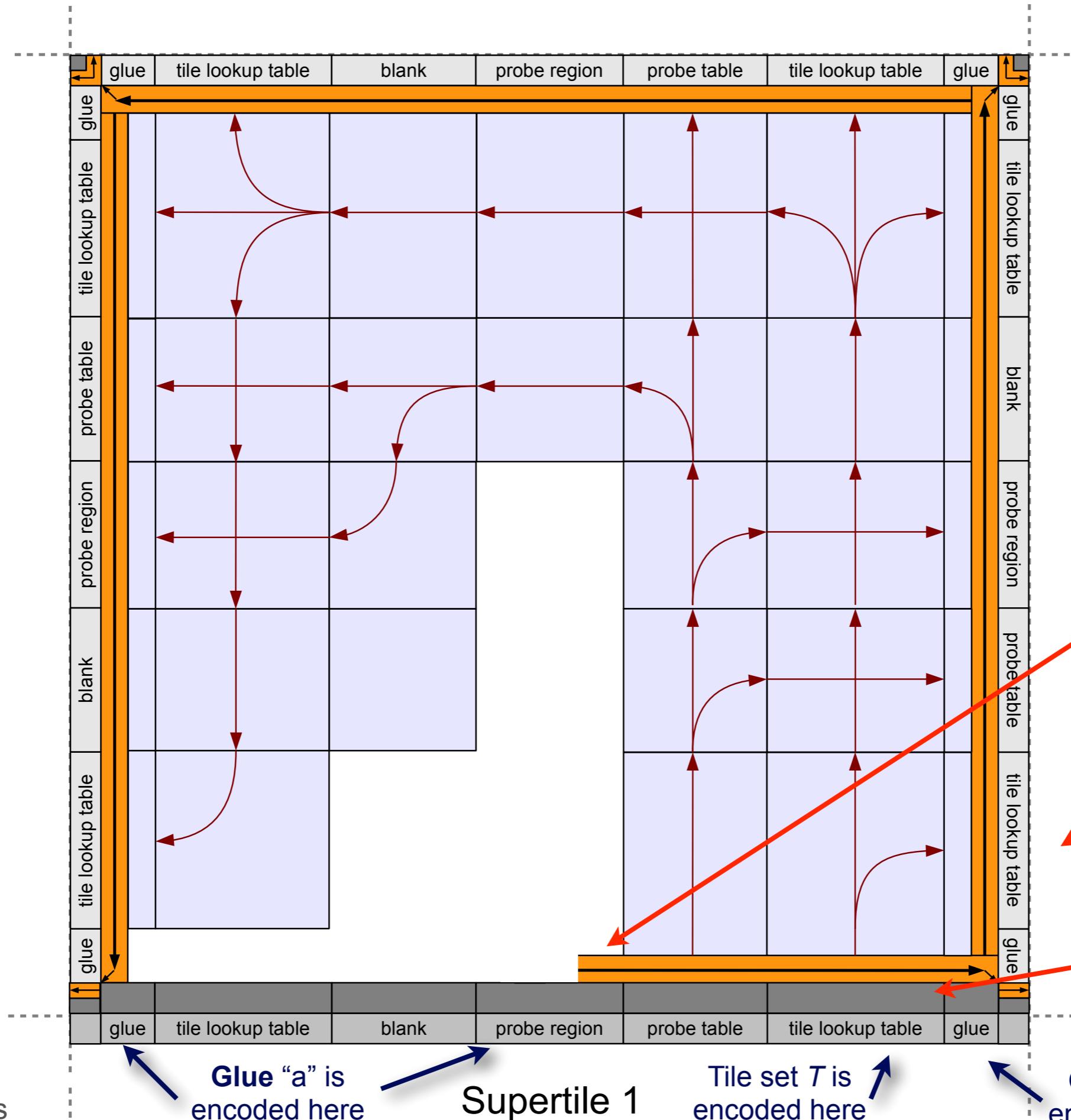
Glue “a” is
encoded here

Supertile 1

Tile set T is
encoded here

Glue “a” is
encoded here

One-sided binding with a single strength-T south superside



Goal: place a description of T and “tile 2” around the 4 super-edges

Nondeterminism
Rotations

crawler encodes
glue of south
superside

“Genome” is
copied

“Genome” is
read

Glue “a” is
encoded here

Tile set T is
encoded here

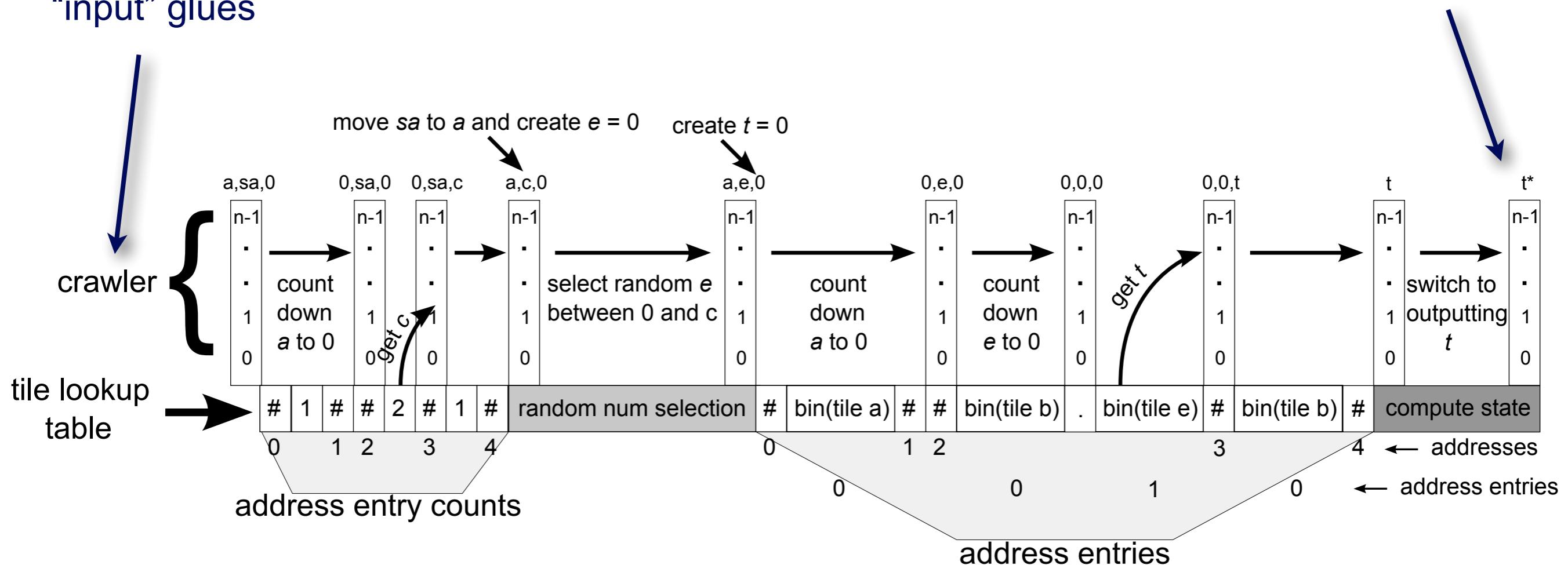
Glue “a” is
encoded here

Supertile 1

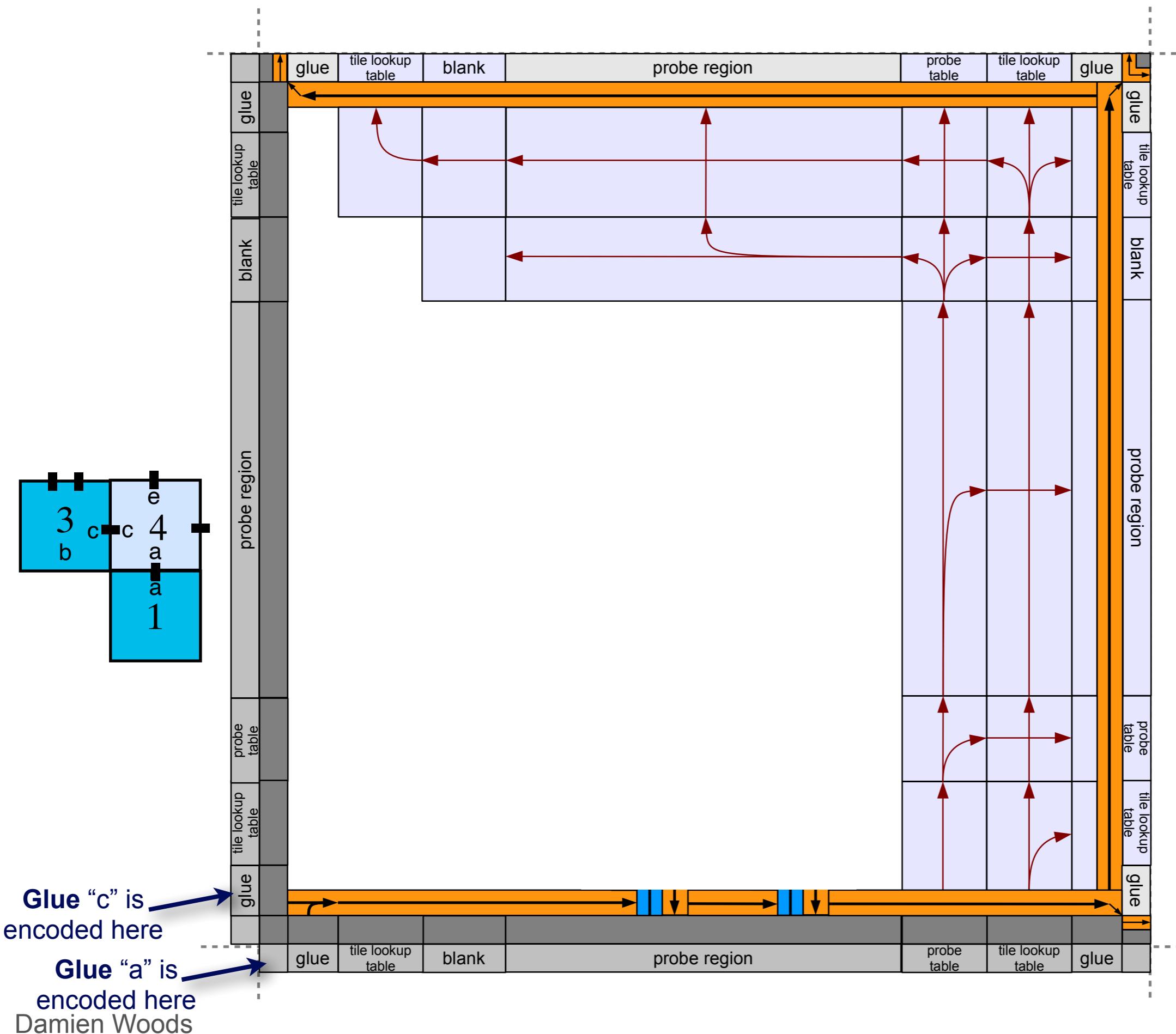
Crawler doing a tile lookup

crawler encodes
“input” glues

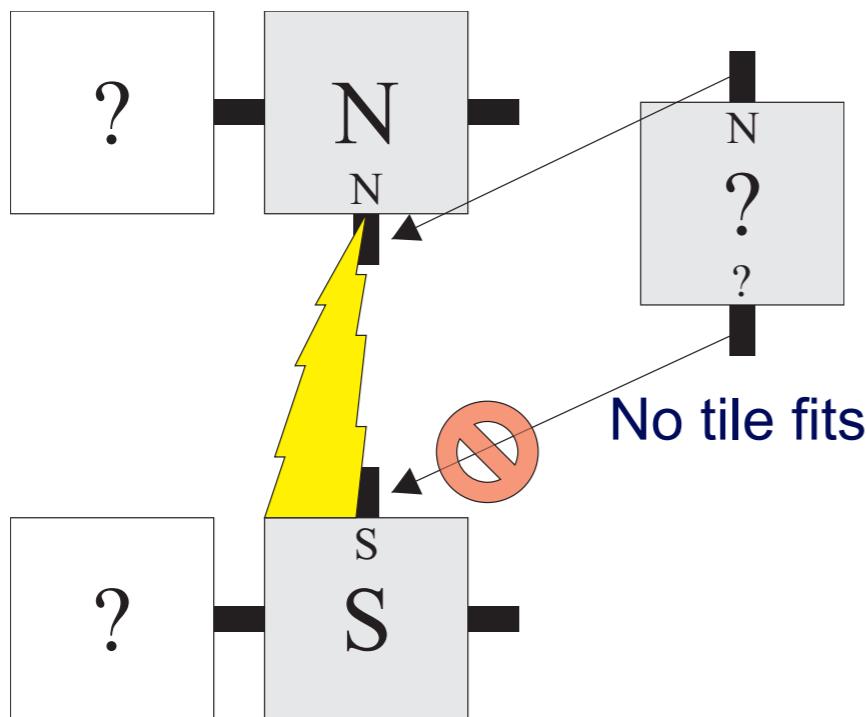
crawler encodes
“output” tile type



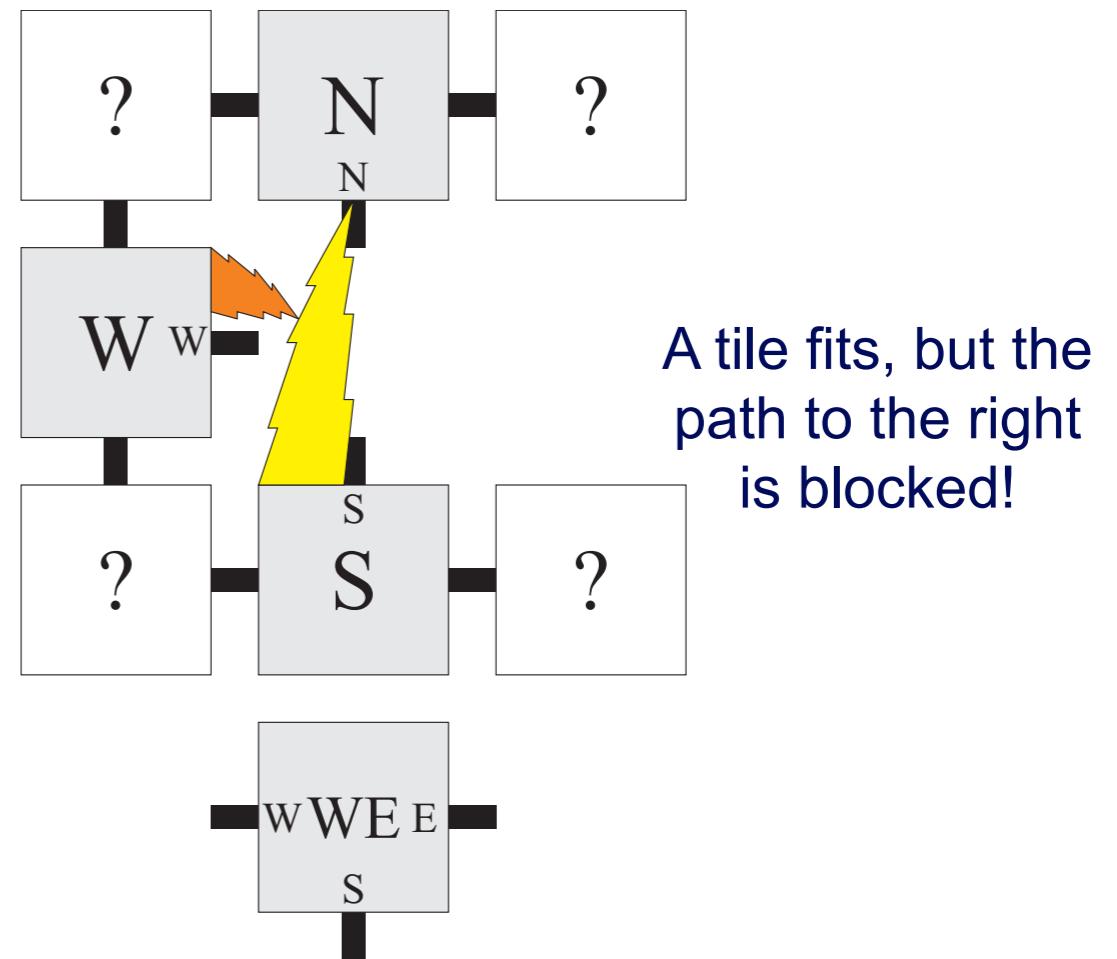
Two-sided binding with adjacent cooperating supersides



A key problem

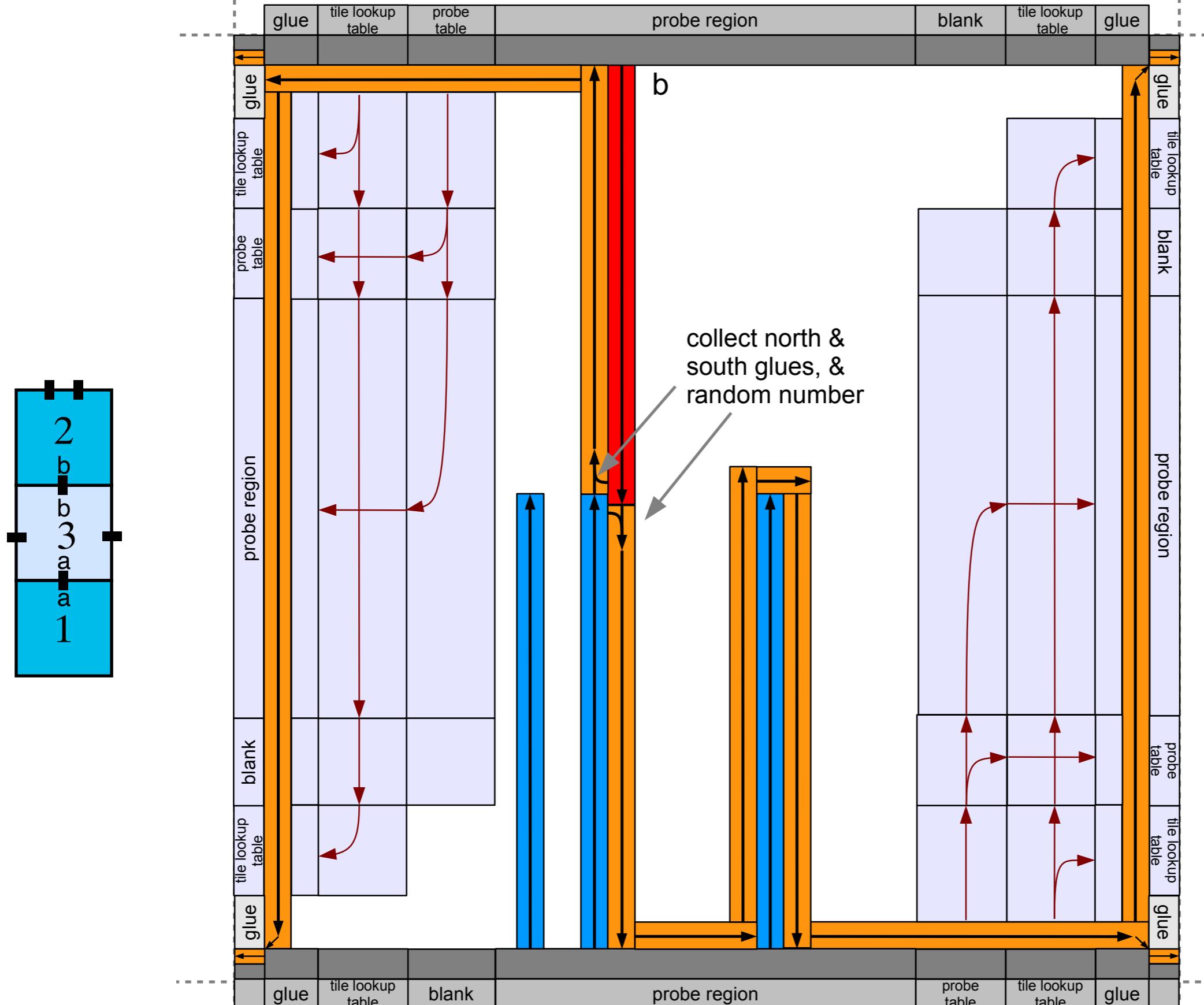


Better luck next time!

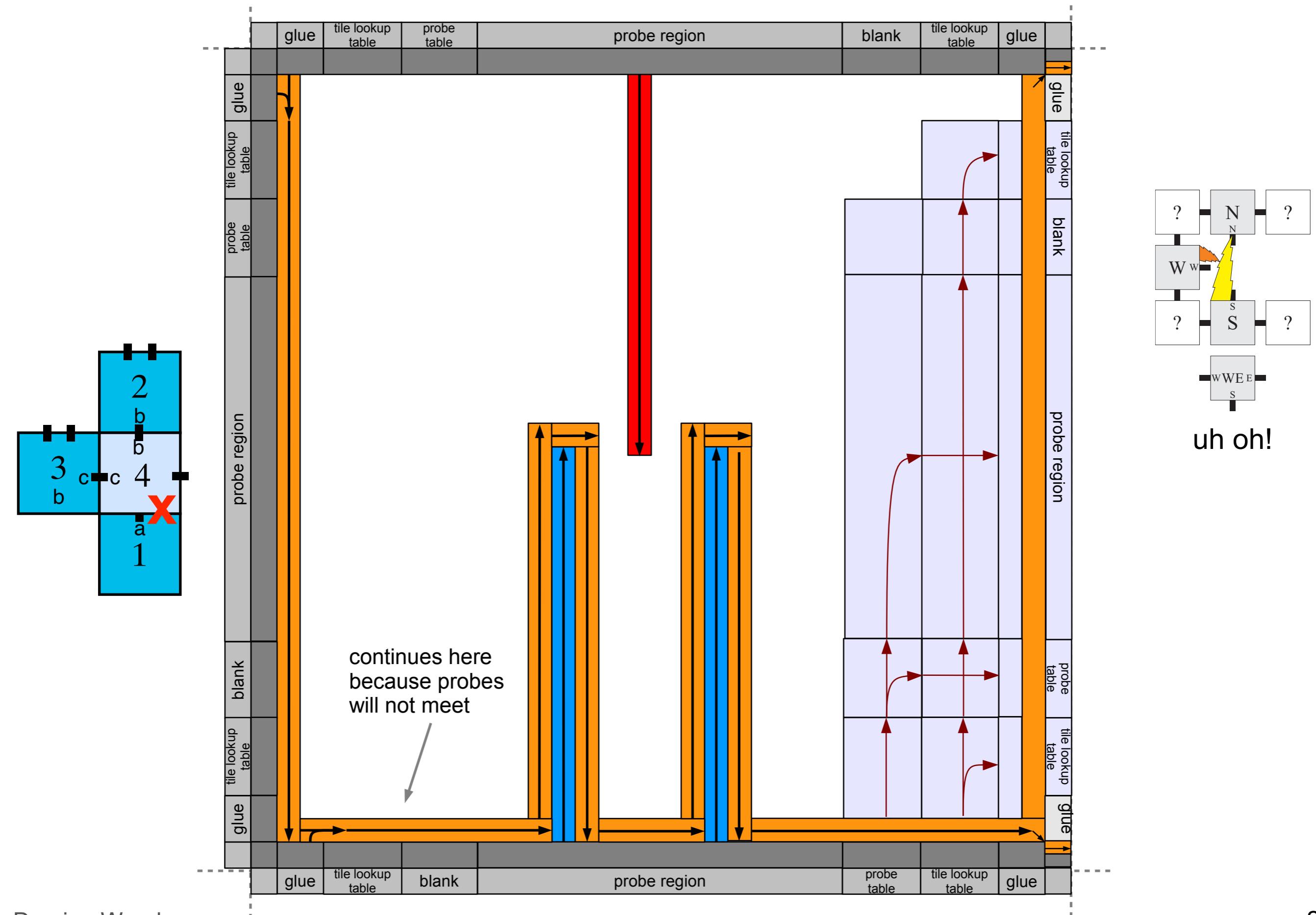


Uh oh!

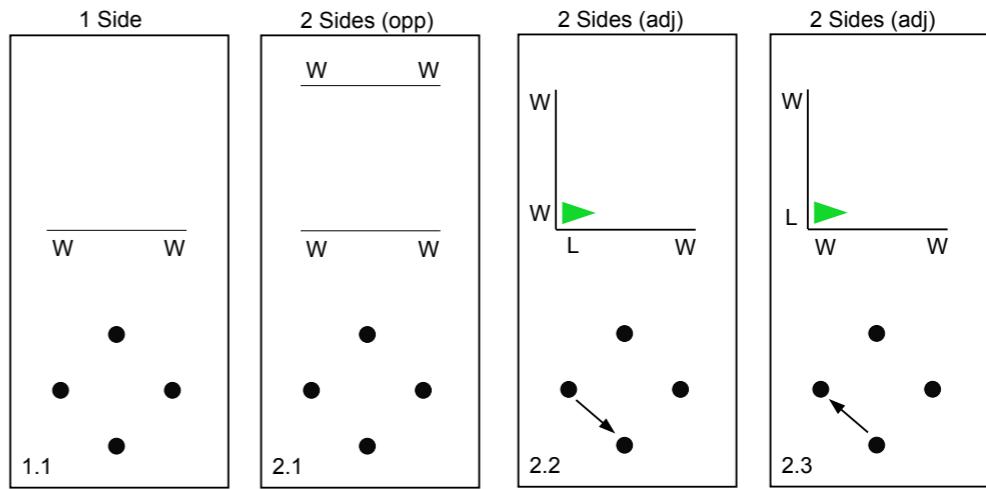
Two-sided binding with opposite cooperating supersides



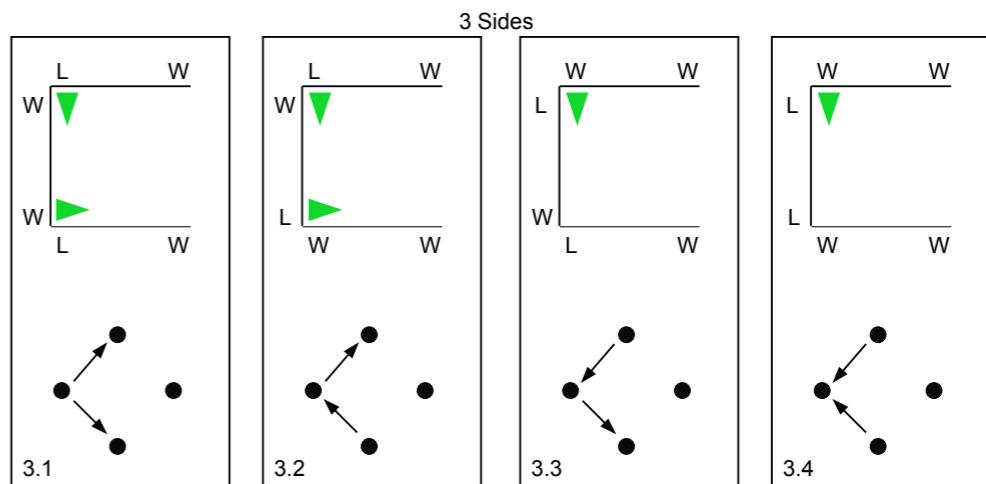
3-sided “uh-oh” example: probes miss each other



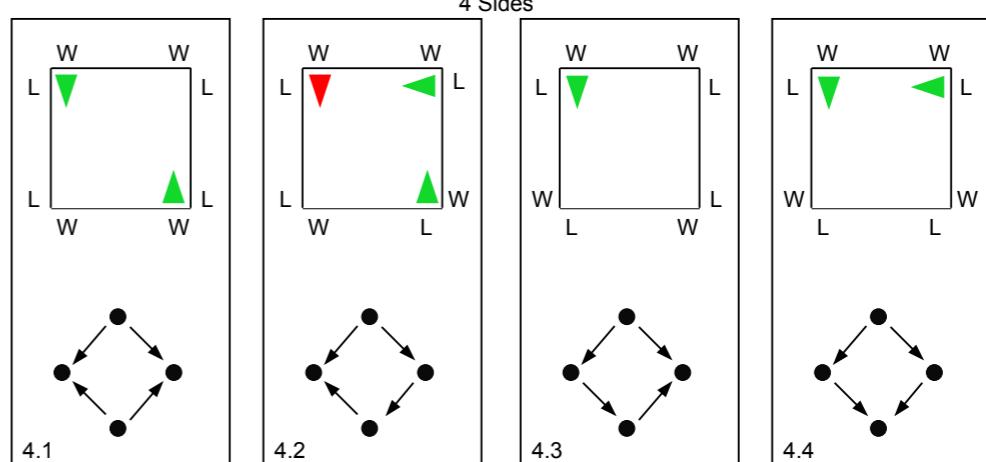
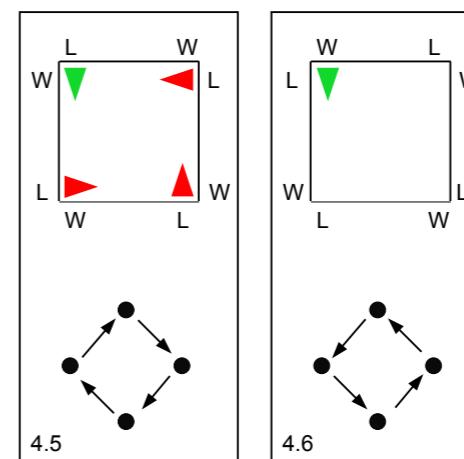
- Variety of cases for different orders of superside arrival

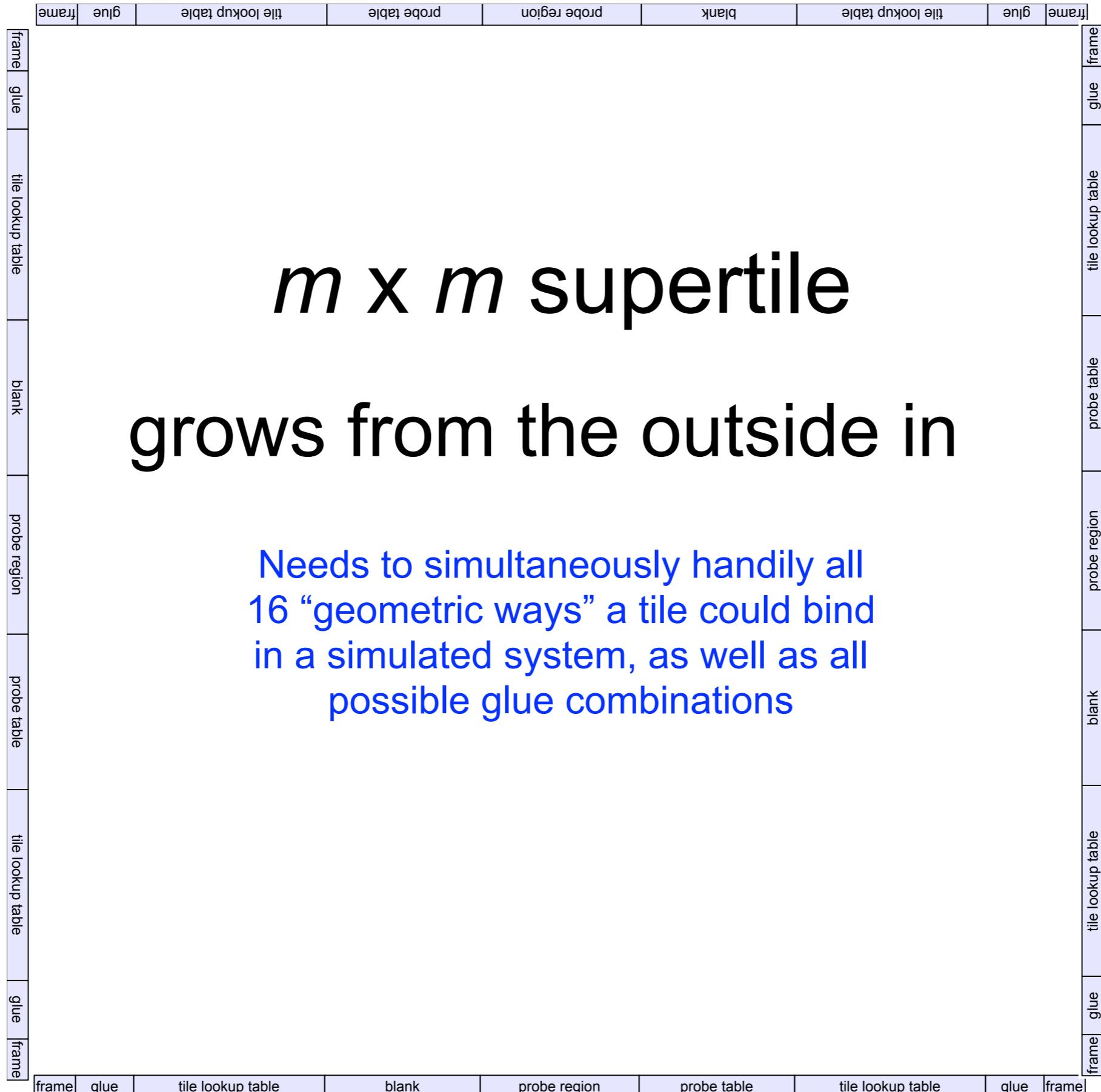


- Superside win/lose configurations and crawler initiation locations (green)



- Proof analogy:
 - Distributed game
 - Computation & geometry
 - Key challenge: make all the tricks work together



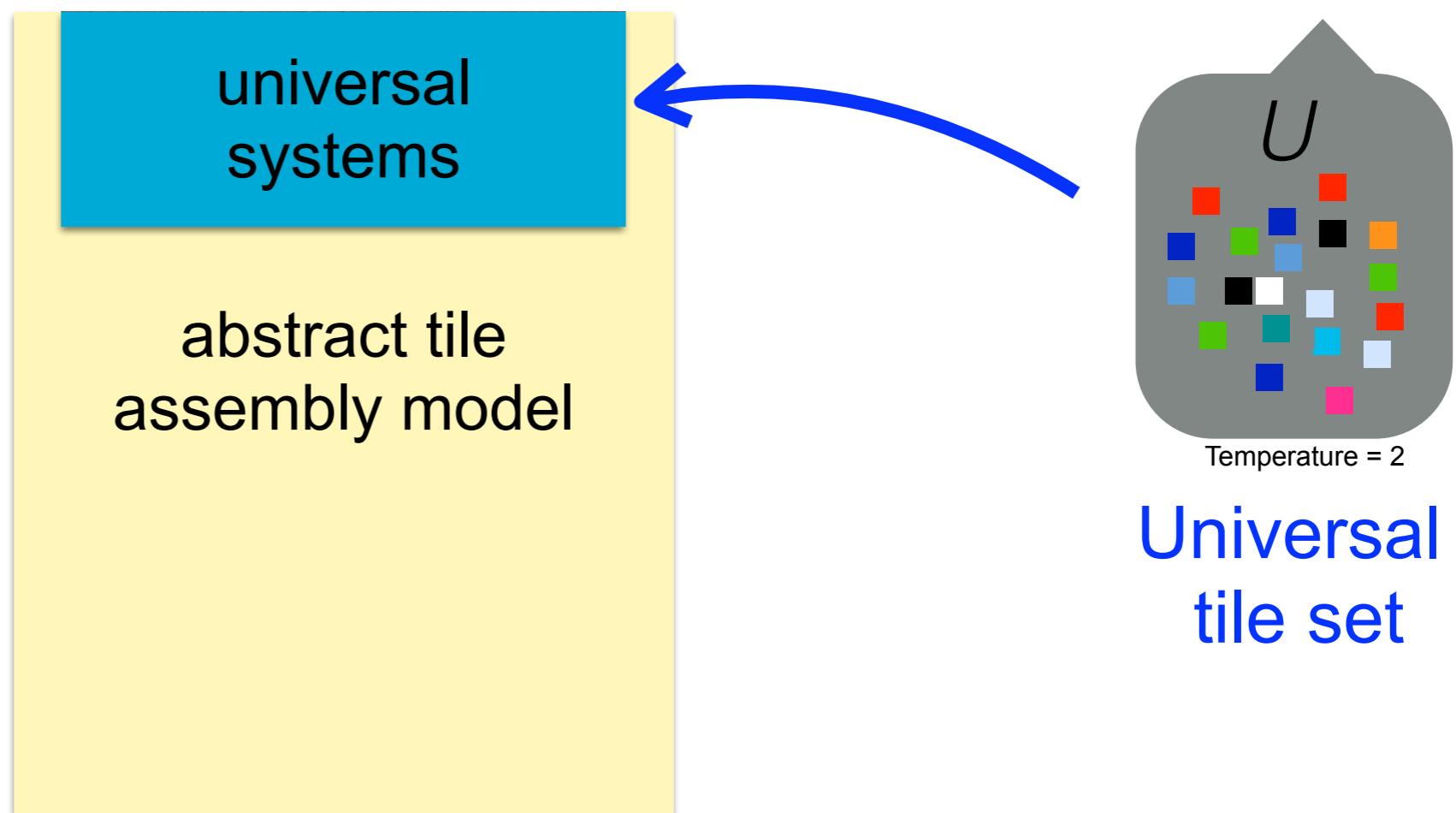


$m \times m$ supertile

grows from the outside in

Needs to simultaneously handle all 16 “geometric ways” a tile could bind in a simulated system, as well as all possible glue combinations

Is the abstract tile assembly model intrinsically universal? Yes!

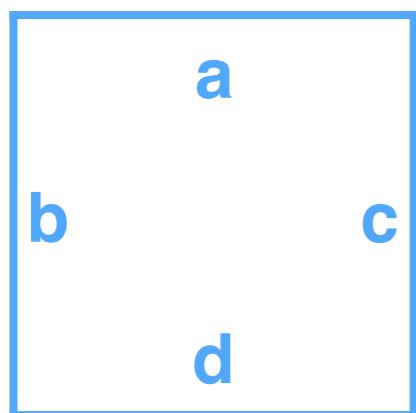
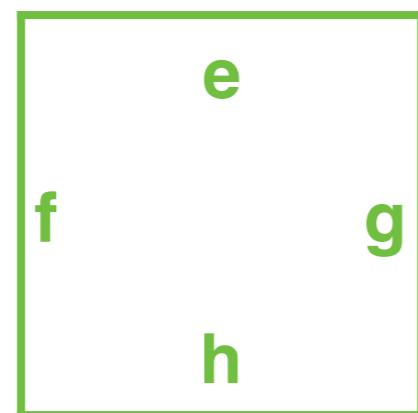
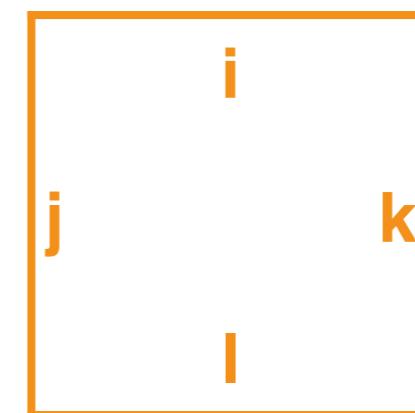
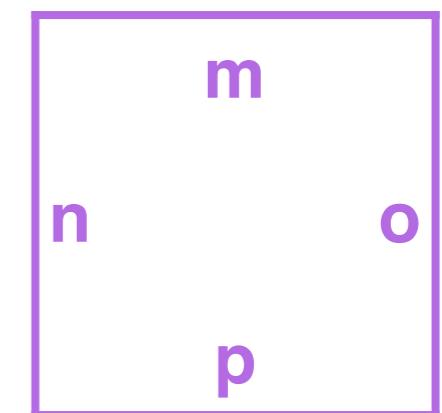


Theorem: There is a single intrinsically universal tile set U that simulates *any* tile assembly system

Doty, Lutz, Patitz, Schweller, Summers, Woods. FOCS 2012

How many tiles do we need?

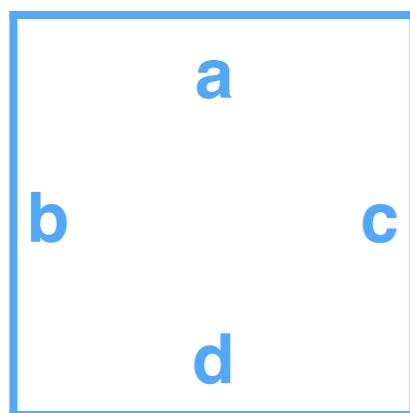
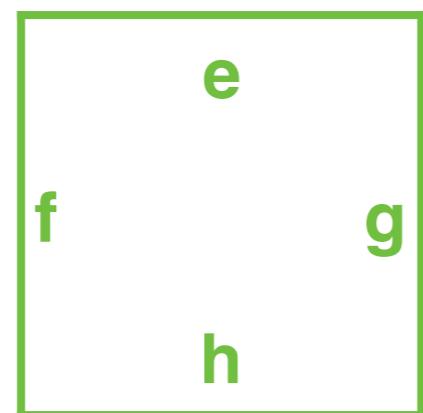
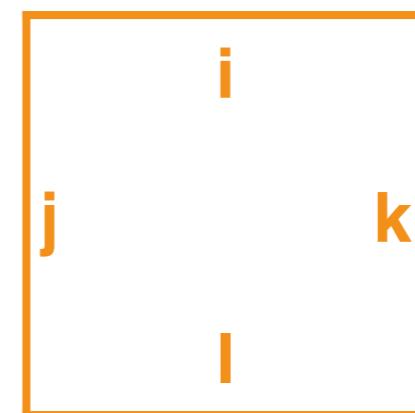
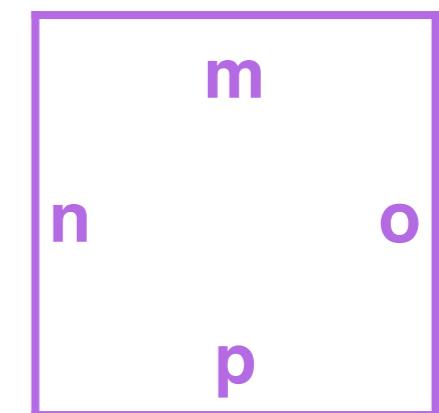
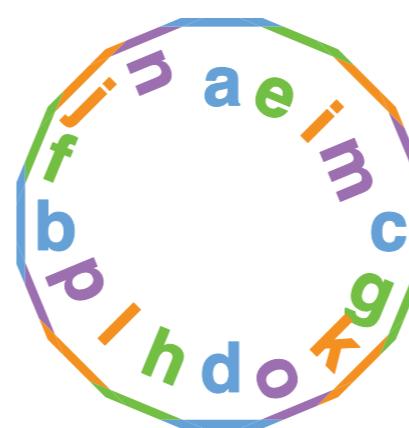
- Just ONE with rotation!... What?!?... But a *polygonal* one



Demaine Demaine Fekete Patitz Schweller Winslow Woods 2012

How many tiles do we need?

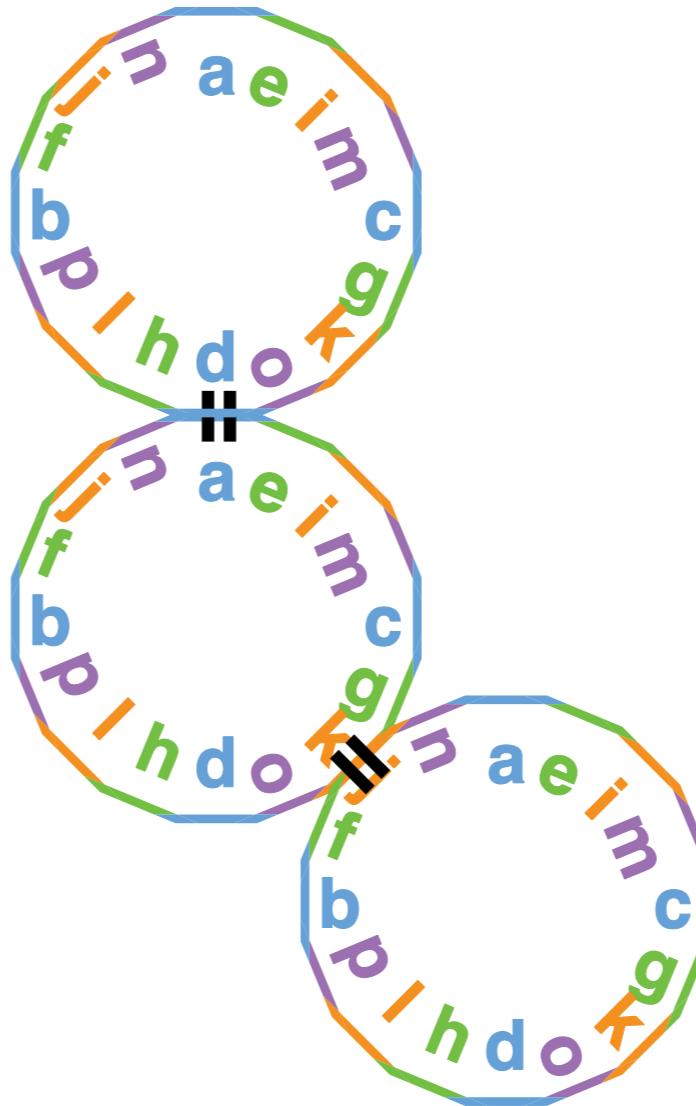
- Just ONE with rotation!... What?!?... But a *polygonal* one



How many tiles do we need?

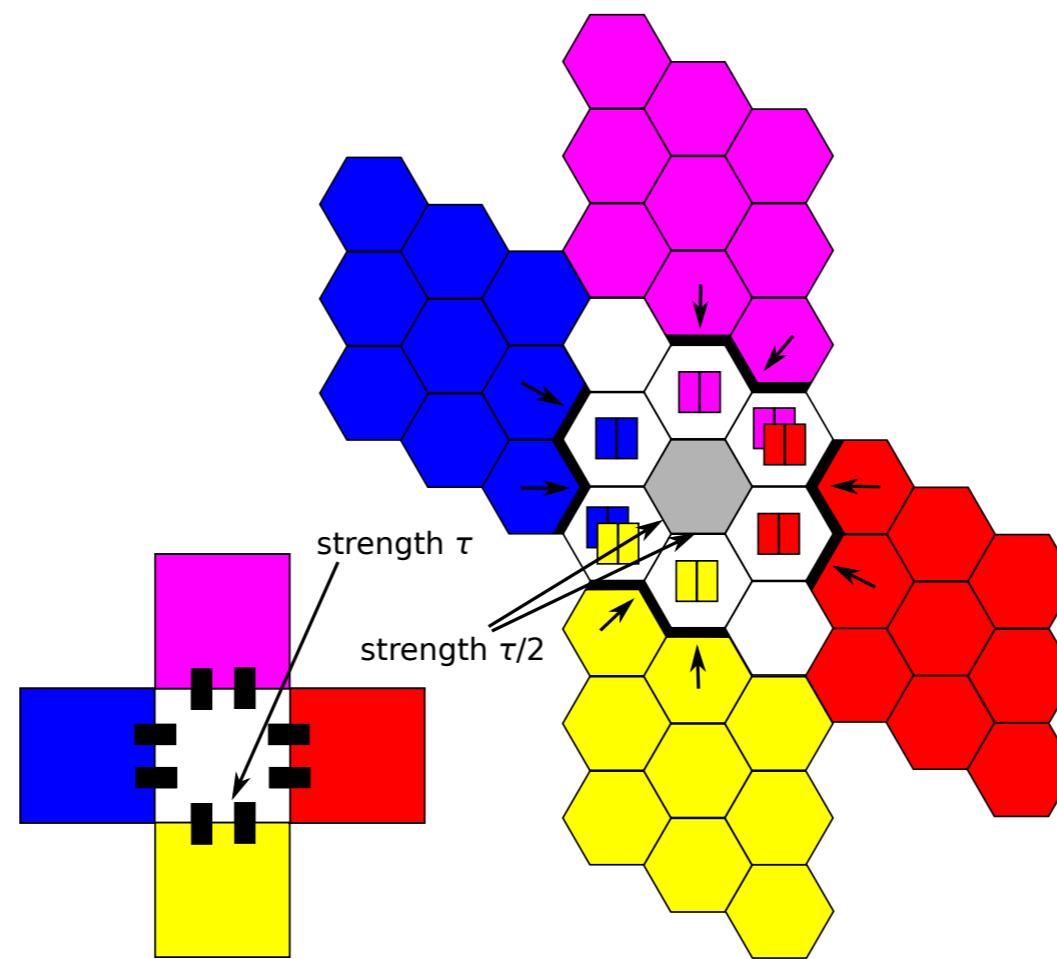
- Just ONE with rotation!... What?!?... But a *polygonal* one

Problem with glue of strength 2 !!!

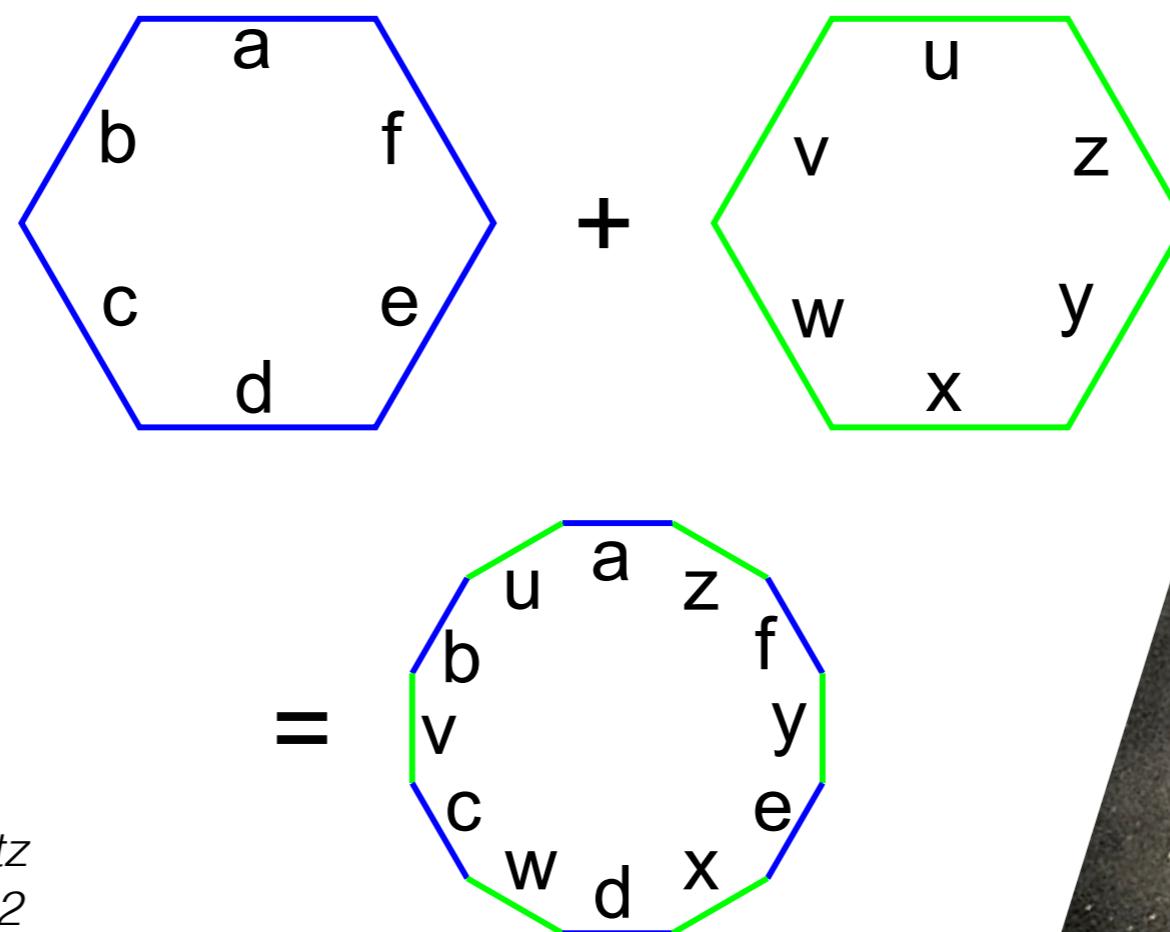


Demaine Demaine Fekete Patitz Schweller Winslow Woods 2012

Encoding strength 2 glues into strength 1 glue in hexagonal tiles



A single (polygonal) tile is enough !



*Demaine Demaine Fekete Patitz
Schweller Winslow Woods 2012*

The magic powder can
assemble anything!

One molecule is
enough !

Co-transcriptional folding

Joint work with Cody Geary, Pierre-Étienne Meunier, Daria Pchelina,
Shinnosuke Seki, Guillaume Theyssier and Yuki Ubukata