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Fujibayashi et al, 2007

Andersen et al, 2009

~100 nm

T°≥50°C

Context: Biomolecular Computing & Engineering

Rule 110 on input 001 - Woods et al, Nature 2019
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Co-transcriptional 
folding

Geary, Rothemund, Andersen, Science 2014
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T° = 37°C
23.6 nm

6 nm

T7 RNA
polymerase
protein

100 nm

Geary, Rothemund, Andersen, Science 2014

RNA  
co-transcriptional folding
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Protocol

6



RNA Origami in Real Time

T7 RNA polymerase produces RNA directionally from 5’ to 3’, at a rate much 
slower than the RNA folds up (few microseconds). 

The polymerase reads the DNA gene, and becomes an RNA origami production 
factory, synthesizing a new RNA origami roughly every 1 second.

Westhof and Leontis (Science, 2014)Slide by Cody Geary 7



AFM imaging of 4H-AE  
co-transcriptional assembly
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Note that the modeled spacing was 33.5nm
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RNA Folding 
(Real time: ~1 second)

Video: Geary
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Oritatami: 
A computational model 

 for  
co-transcriptional 

folding
Geary, Meunier, Schabanel, Seki MFCS 2016
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RNA Folding 
(Real time: ~1 second)

Video: Geary

Part already

folded

Part been

folded

Encoding of the 

transcript
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Oritatami: 
A model for co-transcriptional folding

The program:  
• a sequence of bead types  

(the transcript)

The instructions: 
• the rule  a❤b if bead types a 

and b attract each other

The input configuration:  
• Some beads placed 

beforehand (the seed)

Geary, Meunier, Schabanel, Seki MFCS 2016

Seed
Beads 
already 
folded 

& placed

last δ 
beads 

produced

❤
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Oritatami: 
A model for co-transcriptional folding

The dynamics. 

• Starting from the seed, the 

sequence is produced one bead 
at a time 

• Only the δ last produced beads 
are free to move and explore the 
accessible positions to settle in 
the ones maximizing the 
number of bonds 


• All other beads remain in their 
last locations

Geary, Meunier, Schabanel, Seki MFCS 2016

Seed

Configuration(s) 
with max. 
bonding

Bead 
newly 
placed

Beads 
already 
folded 

& placed
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Oritatami: 
A model for co-transcriptional folding

The dynamics. 

• Starting from the seed, the 

sequence is produced one bead 
at a time 

• Only the δ last produced beads 
are free to move and explore the 
accessible positions to settle in 
the ones maximizing the 
number of bonds 


• All other beads remain in their 
last locations

Geary, Meunier, Schabanel, Seki MFCS 2016

Seed

Bead 
newly 
placed

new bead 
produced
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Oritatami: 
A model for co-transcriptional folding

The dynamics. 

• Starting from the seed, the 

sequence is produced one bead 
at a time 

• Only the δ last produced beads 
are free to move and explore the 
accessible positions to settle in 
the ones maximizing the 
number of bonds 


• All other beads remain in their 
last locations

Geary, Meunier, Schabanel, Seki MFCS 2016

Seed
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Oritatami: 
A model for co-transcriptional folding

The dynamics. 

• Starting from the seed, the 

sequence is produced one bead 
at a time 

• Only the δ last produced beads 
are free to move and explore the 
accessible positions to settle in 
the ones maximizing the 
number of bonds 


• All other beads remain in their 
last locations

Geary, Meunier, Schabanel, Seki MFCS 2016

Seed

Configuration(s) with  
max. bonding

New bead 
placed
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Oritatami: 
A model for co-transcriptional folding

The dynamics. 

• Starting from the seed, the 

sequence is produced one bead 
at a time 

• Only the δ last produced beads 
are free to move and explore the 
accessible positions to settle in 
the ones maximizing the 
number of bonds 


• All other beads remain in their 
last locations

Geary, Meunier, Schabanel, Seki MFCS 2016

There might be several 
configurations with max. bonding
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Oritatami: 
A model for co-transcriptional folding

The dynamics. 

• Starting from the seed, the 

sequence is produced one bead 
at a time 

• Only the δ last produced beads 
are free to move and explore the 
accessible positions to settle in 
the ones maximizing the 
number of bonds 


• All other beads remain in their 
last locations

Geary, Meunier, Schabanel, Seki MFCS 2016

The bead has same 
position in all 

maximal extension 
⇒ deterministic

There might be several 
configurations with max. bonding

19



Oritatami: 
a first construction

Geary, Meunier, Schabanel, Seki ISAAC 201820

here, delay δ = 3 

A glider

A switchbackBoth can be combined together



Oritatami vs aTAM
Some self-assembly seminal work (mostly aTAM) 
• Tile assembly systems are Turing universal [Winfree, 1998]

• Arbitrary shape assembly with optimal tile set size [Soloveichik, Winfree, 2007] 
• Uncomputable limit configurations [Lathrop, Lutz, Pattiz, Summers, 2011]

• Intrinsic universality [Doty et al, 2012] 

Oritatami 
• A binary counter [Geary, Meunier, S., Seki, 2016] 
• Heighdragon fractal [Masuda, Seki, Ubukata, 2018]

• Folding arbitrary shapes [Demaine et al, 2018]

• NP-hardness for oritatami design [Geary et al, 2016; Ota, Seki, 2017; Han, Kim, 

2017] and for non-determinisitic oritatami equivalence [Han et al, 2016] 
• Efficient Turing Machine simulation through tag-systems [Geary et al, 2018] 
• Intrinsic simulation of 1D cellular automata [Pchelina et al, 2020] 
• Intrinsic simulation of Turedo: uncomputable and arbitrary dense limit 

configurations, building arbitrary object from asymptotically minimal seed  
[Pchelina et al, 2022]
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Oritatami. A binary counter
Information is encoded in the geometry
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Oritatami. A binary counter
Information is encoded in the geometry
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Oritatami. A binary counter
Information is encoded in the geometry
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Appendix

Proof of Theorem 4

Proof. The original cyclic tag system by Cook [4] di�ers from the skipping cyclic tag system
only in that in the original, the list rotates by 1 no matter which letter the current word
begins with. It is a folklore that a 2-tag system with m productions (that is, over m letter
alphabet) can be simulated by a cyclic tag system with 2m productions by encoding the m
letters as 10m≠1, 010m≠2, 0210m≠3, . . . , 0m≠11, respectively. We can in turn simulate a cyclic
tag system with n productions p0, p1, . . . , pn≠1, starting from an input u, by a skipping cyclic
tag system with 2n productions Á, f(p0), Á, f(p1), Á, . . . , f(pn≠1), starting from the word f(u),
where f is the automorphism over {0, 1}

ú defined as f(0) = 00 and f(1) = 1. Now it should
su�ce to note that the class of 2-tag systems is e�ciently Turing universal [11, 17]. J

2.3 Oritatami system

2.4 Skipping Cyclic Tag systems

In the next sections, we demonstrate the existence of a single periodic primary structure that
can simulate any Turing computation. Precisely, our construction simulates the following
particular type of tag systems which are known to simulate in O(T 2 ln T ) steps any Turing
machine running in T steps [?].

Skipping Cyclic Tag systems A skipping cyclic tag system consists of a set of n produc-
tions p0, . . . , pn≠1 œ {0, 1}

ú and an initial word u0
œ {0, 1}

ú. At each time step, the tag
system cycles through the productions and decides to append the current production or not
depending on the letter read. We denote by ut the word at time t. Formally, at time t = 0,
its pointer q0 is set to 0. At all time t,
Halting step: If ut is the empty word ‘, then the tag system halts and outputs qt; otherwise
Deletion step: If the first letter ut

0 of ut is 0, then set qt+1 := (qt + 1) mod n and
ut+1 := ut

1 · · · ut
|ut|≠1, the su�x of ut without its first letter; finally

Appending step: if ut
0 = 1, then the tag system appends the next production to ut and

skips to the following production, i.e.: ut+1 := ut
1 · · · ut

|ut|≠1 · p(qt+1 mod n) and set
qt+1 := (qt + 2) mod n.
For instance, the skipping tag system p = È110, ‘, 11, 0Í has the following execution

([qt]ut)t on input word u0 = 010:

[0]010 æ
[1]10

Append
≠≠≠≠æ[2]:11

[3]011 æ
[0]11

Append
≠≠≠≠æ[1]:‘

[2]1
Append
≠≠≠≠æ[3]:0

[0]0 æ
[1] Halt

and outputs thus [1]:‘.

Annotated trimmed space-time diagram. Let us now compress the deletion steps by
simply indicating in exponent the production index for each deleted letter:

[0]0[1]10
Append
≠≠≠≠æ[2]:11

[3]0[0]11
Append
≠≠≠≠æ[1]:‘

[2]1
Append
≠≠≠≠æ[3]:0

[0]0[1] Halt

Consider the following productions:
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[0] [1] [2] [3]

25Geary, Meunier, Schabanel, Seki ISAAC 2018



C. Geary, P.-É. Meunier, N. Schabanel, S. Seki XX:7

and align the resulting words in a 2D diagram according to their common parts:

t0
¿

t1
¿

t2
¿

t3
¿

[0]0 [1]1 0 ≠æ Append [2] : 11
[3]0 [0]1 1 ≠æ Append [1] : ‘

[2]1 ≠æ Append [3] : 0
[0]0 [1]

≠æ Halt [1] : ‘

we obtain the annotated trimmed space-time diagram for the SCTS (p, 010). The follow-
ing lemma gives a formal definition:

I Lemma 5. Given a SCTS (p0, . . . , pn≠1; u0) and we denote by 0 6 t1 < t2 < · · · all the
times t such that the word ut starts with letter 1 and set t0 = ≠1 by convention. The
annotated word on row i (indexed from i = 0) of the annotated trimmed space-time diagram
is: (the production indices in exponent are computed modulo n)

if u1+ti = 0r1 · s for some r > 0 and s œ {0, 1}ú: then, r = ti+1 ≠ ti ≠ 1 and the an-
notated word on row i is [i+1+ti]0 · · ·

[i≠1+ti+1]0[i+ti+1]1 · s whose first letter is placed in
column ti + 1 (the leftmost column is indexed 0);
if u1+ti = 0r for some r > 0: then, row i is the last row of the diagram and its anno-
tated word is [i+1+ti]0 · · ·

[i+ti+r]0[i+ti+r+1] and starts at column ti + 1.

Proof. Observe that qti = i + ti mod n as exactly ti letters have been read and i appending
steps occurred before reading the i-th 1. J

3 The Simulation

Our simulation uses the oblivious dynamics with delay time 3.

3.1 Simulation of SCTS: the Blocks
Our simulation proceeds by mimicking the annotated trimmed space-time diagram of the
SCTS to be simulated. Precisely, Our oritatami system proceeds in phases: each phase trims
all the leading zeros and halts if the remaining word is empty, or proceeds the leading 1
otherwise by appending the corresponding production at the end of the word and rewinding
to the first letter of the word.

The simulation works by folding into a Zig-Zag pattern growing to the south. The
current word ut is encoded at the bottom of the previous zag pattern on top of the currently
folding zig pattern. The simulation is best described in terms of blocks. Blocks consists in
a sequence of beads folded in a specific conformation accomplishing a specific task. There
are seven types of blocks:

Seed encodes the initial word into a conformation beads where 0s are represented as
red-dot spikes and 1s as red rectangles;
ReadI, CopyI, J Copy are responsible for reading, and copying the letters of the current
word;
Append & CR and J CopyLineFeed are responsible for appending a production, carriage
return and line-feed;
Halt is the last block produced corresponding to the halt of the simulated tag system.

Starting from the seed block (see Fig. 3), blocks attach at the orange anchors (>> and
<<) one next to the other as described by the block automaton in Fig. 2. Each block is
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HALT: empty 
word tape
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How hard is it to design 
a molecule and a rule?
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The first challenge: 
Designing the desired shapes
• Design shapes for which a common rule ❤ exists
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The first challenge: 
Designing the desired paths

• Design paths for which a common rule ❤ exists

Read 0

Read 1

Copy 0

Copy 1
Line 
Feed
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The first challenge: 
Designing the paths

• Design paths for which a common rule ❤ exists
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Oritatami design is NP-hard

is therefore to design sequences that can adopt di↵erent conformations, depending on the “input”,
as encoded by surrounding beads.

The rule design problem is a formalization of the problem of finding attraction rules such that
a single sequence can, using these rules, fold into di↵erent conformations depending on the context
(here encoded by “seeds”). This problem is important, as we use an algorithm to solve it in all our
positive results:

Input: a delay time �, a list of n > 0 seeds �1,�2, . . . ,�n, and a list of n confor-
mations c1, c2, . . . , cn of the same length l

Output: an attraction rule ~ such that for all i 2 {1, 2, . . . , n}, Oritatami system
Oi = (s,�i,~, �) deterministically folds into conformation ci, where s is
the sequence of length l such that for all i 2 {1, 2, . . . , l}, si = i.

Lemma 1. For any positive delay time, the rule design problem is NP-complete.

Proof. We reduce from 3-SAT with n variables and m clauses to the rule design with 2n + m
di↵erent conformations to be uniquely folded simultaneously. Let x0, x1, . . . , xn�1 be the variables,
and F0, F1, . . . , Fm�1 be the clauses of a 3-SAT formula.

We will encode all 2n possible literals by distinct bead types in seeds for an Oritatami system
of arity 6 and delay time 5. Then, if we are given a rule that folds all conformations obtained by
our (to be defined) reduction correctly, we will set xi = true whenever literal xi is attracted to
some bead type in the rule, and xi = false if ¬xi is attracted to a bead type. Since both xi and
¬xi could appear in an attraction rule, we will need extra target conformations to prevent overlaps
between these two cases.

First, any clause of the form li^ lj^ lk is encoded into the target seed and conformation pictured
on Figure 1: if exactly this conformation is producible, this means that there is at least one bond
between the orange bead (the first bead produced) and at least one bead of the seed.

li

lj

lk

Figure 1: Encoding of a clause by a target seed (in blue and orange) and conformation (in purple):
if there is at least one attraction between the orange bead and the seed, exactly this conformation
is produced. Else, other conformations (not in the targets) are producible.

We also need to enforce consistency in the attraction rule: indeed, nothing in the problem
prevents an attraction rule to contain both a literal and its negation, or none of them. We first add
n targets, pictured on Figure 2, to enforce that at least xi or ¬xi is chosen in the attraction rule:
indeed, if none of them were chosen, there would be no attraction between the first bead produced
and the seed, and therefore more conformations (not in the targets) would be producible.

Finally, we add another n targets to make sure that xi and ¬xi are not both chosen by the rule:
in the target conformation shown on Figure 3, the first bead produced has two neighboring beads
from the seed. If the first bead were attracted to both xi and ¬xi, another conformation, not in
the targets, would be producible, with the first bead next to xi and ¬xi.

6

xi

¬xi

Figure 2: This set of target seeds (in blue and orange) and conformations (in purple) enforces the
condition that at least one of xi or ¬xi is in the attraction rule.

xi

¬xi

Figure 3: This set of target seed (in blue and orange) and conformation (the purple bead) makes
sure that xi and ¬xi are not both picked by the rule at the same time.

Finally, extending these results for delay time 1 to larger delay times is easy: at delay time �,
for each of our conformations, we simply add a bead � points away from the first bead produced,
and add a straight line of length � � 1 to that point to the target conformation.

Theorem 2. The rule design problem with n target conformations, each of length l, and delay
time � is NP-complete but fixed-parameter tractable, as it can be solved in time and space complexity
l25n�+6⌃k|�k|.

Proof. The NP-completeness comes from Lemma 1.
We first describe an ine�cient version of our algorithm as a depth-first search of all possible

rules: we start with an empty rule, and at each step k � 1 with rule Rk, compute the list Nk

of all neighbors of bead k in each target conformation. Then, for all possible subsets S ✓ Nk, if
Rk [ {(k, n), (n, k)|n 2 Nk} folds the last � beads correctly in all target conformations, we proceed
to the next step with rule Rk+1 = S [Rk.

If we reach the end of the sequence, we have a rule Rl+1 that folds each step correctly: therefore,
by the definition of our dynamics, Rl+1 folds each conformation correctly.

One problem with this algorithm is that in the worst case, it might have to explore 2n
2
possible

rules: indeed, our depth-first search amounts to enumerating all rules for all n beads. In order to
avoid this, we first remark that for both dynamics, each step of the folding depends only on the
last � beads produced. Therefore, we can maintain, for each k, a cache of all rules for beads
k, k + 1, . . . , k + � � 1 only, that do not fold step k deterministically in all conformations.

One complication is that the target seeds could contain bead types that are also present in the
sequence. This is actually an important and useful case in our positive construction, and a key
element of iterating a computation on a word with the same encoding.

Therefore, when folding a conformation whose beads are all fixed up to step k � 0, the folding of
both dynamics only depends on the next � beads, or more precisely, on their (at most) 6 neighbors

7
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between these two cases.
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on Figure 1: if exactly this conformation is producible, this means that there is at least one bond
between the orange bead (the first bead produced) and at least one bead of the seed.
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if there is at least one attraction between the orange bead and the seed, exactly this conformation
is produced. Else, other conformations (not in the targets) are producible.

We also need to enforce consistency in the attraction rule: indeed, nothing in the problem
prevents an attraction rule to contain both a literal and its negation, or none of them. We first add
n targets, pictured on Figure 2, to enforce that at least xi or ¬xi is chosen in the attraction rule:
indeed, if none of them were chosen, there would be no attraction between the first bead produced
and the seed, and therefore more conformations (not in the targets) would be producible.

Finally, we add another n targets to make sure that xi and ¬xi are not both chosen by the rule:
in the target conformation shown on Figure 3, the first bead produced has two neighboring beads
from the seed. If the first bead were attracted to both xi and ¬xi, another conformation, not in
the targets, would be producible, with the first bead next to xi and ¬xi.

6

Ensures it binds to at 
most one of xi and ¬xi

Ensures it binds to at least 
one litteral in li∨ lj∨ lk

The reduction (length=1, δ arbitrary)
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The second challenge: 
Designing the rule ❤

Theorem. There is a FPT algorithm with respect to L 
that designs in linear time in L (but exponential in k and δ) 
a rule ❤ that folds the sequence 1,…,L of length L into k 
prescribed conformations when folded in k prescribed 
environments.  

Proof. • Locality: each bead only sees a bounded number (exponential in δ) 
of other beads when folded.  

• Then, compute all valid local rules for each of these neighborhoods  
• And use dynamic programming to decide whether there is a global 
rule compatible with at least one of the local rule for each environment.
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Building shapes
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Goal: Given a shape S,  
Find an oritatami system, i.e. a 

sequence of bead types,  
that folds into S

Seed

Bead type sequenceBead type sequence

Seed



An Oritatami system folds 
a shape if:

Starting from the seed configuration,  
it folds deterministically to occupy all the positions of 
the shape and only them

Seed

Bead type sequenceBead type sequence

Seed



Seek an Universal 
construction

• Fixed finite size seed

• Fixed finite set of bead types


(independent of the shape)

Seed

Bead type sequenceBead type sequence

Seed



Example of such molecule

C. Geary, P.-É. Meunier, N. Schabanel, S. Seki 314:3

this paper, our goal is twofold: first, explore the engineering possibilities of this mechanism,
in order to make arbitrary shapes and structures. Then, the other aim of our study is to
understand the complexity of sequence operations, to understand the computational processes
which led to the creation of complex molecular networks.

Figure 2 The design of a rectangle, co-transcriptionally folded with RNA, and the corresponding
path on the triangular lattice, where each bead corresponds to two to four nucleotides.

Main contributions. In our model, called Oritatami, we consider a sequence of “beads”,
which are abstract basic components, standing for nucleotides or even sequences of nucleotides
(also called domains). In Oritatami, only the latest produced beads of the molecules are
allowed to move in order to adopt a more favorable configuration. The folding is driven by
the respective attraction between the beads.

Our main construction is a binary counter. Counters are an essential component of many
sophisticated constructions in biological computing, in particular in tile assembly [10, 19].
Counters are also an important benchmark in experiments [11].
§ Theorem 1. There is a fixed periodic sequence 0, 1, . . . , 59, 0, 1, . . . of period 60 whose rule
is given in Fig. 11, which, when started from a seed encoding an integer x in binary with at
most 2k ` 1 bits for some k, folds into a structure encoding x ` 1, x ` 2, . . . , 22k`1 ´ 1, on
the successive rows of the triangular grid.

We prove the correctness of this construction by designing an abstract module system to
handle the complexity of the base mechanism of the model, which is about as low-level as
assembly code in more standard computing models.

We then show a generic construction method in this model, which we applied to automate
parts of the design of the counter. Moreover, this result helps understanding the computational
complexity of sequence programming. Precisely, we prove two results in this direction:
§ Theorem 2. Designing a single sequence that folds into di�erent target shapes in a set of
surrounding environments, is NP-complete in the number of environments.

More surprisingly, it turns out that there is an algorithm to solve this problem in time
linear in the length of the sequence. This algorithm is also practical, as we were able to use it
to find sequences for our main construction:
§ Theorem 3. The sequence design problem is FPT with respect to the length ¸ of the
sequence: there is an algorithm linear in ¸ (but exponential in the number of environments)
to design a single sequence that folds into the target shapes in the given environments.

2 Model and Main Results

2.1 Model
Oritatami system. Oritatami is about the folding of finite sequences of beads, each from a fi-
nite set B of bead types, using an attraction rule , on the triangular lattice graph T “ pZ2, „q

MFCS 2016



Trivial fact:  
Foldable shapes are Hamiltonian

?



Fact: Finitely cutable infinite 
shapes cannot be folded

A finite set of points cutting the shape 

into several infinite pieces



Fact: Finitely cutable infinite 
shapes cannot be folded

trapped!

A finite set of points cutting the shape 

into several infinite pieces

incomplete!

Oritatami systems are thus essentially different from  
tile assembly systems (aTam)



Consider 
upscaling schemes



Upscaling schemes

scale Bn, n = 3scale An, n = 3



Finite shapes are 
Hamiltonian at scale A2

Theorem. There is a quadratic algorithm that computes 
an Hamiltonian path for any finite shape at scale A2 



Upscaling does not help with 
finitely cutable infinite shapes



Upscaling does not help with 
finitely cutable infinite shapes

Thus, we focus on finite shapes



Scale Bn



Use a unique pattern

scale Bn

docking edges



Use a unique pattern

scale Bn

docking edges



Theorem. All finite shapes can 
be folded at scale Bn for n ≥ 3

Proof. By induction:


For all red edges, the 
corresponding three purple 
positions are filled before.

Use a unique pattern

scale Bn

docking edges



How many bead 
types are needed?



13 15 17 0 2 4

16 18 1 3 5 7 9

0 2 4 6 8 10 12 14

3 5 7 9 11 13 15 17 0

6 8 10 12 14 16 18 1 3 5

9 11 13 15 17 0 2 4 6 8 10

14 16 18 1 3 5 7 9 11 13

0 2 4 6 8 10 12 14 16

5 7 9 11 13 15 17 0

10 12 14 16 18 1 3

15 17 0 2 4 6

Theorem. Let Hn be the hexagon of radius n, 

c(i,j) = ni+(n+1)j mod |Hn| 

is a proper coloring of Hn 

Corolary 1. As it is affine, it is a proper 
coloring of any translation of Hn 

Corolary 2. Furthermore, the colors of the 
neighbors of a given node are fixed 
translations modulo |Hn| of its own color

Affine coloring of 
hexagons
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16 18 1 3 5 7 9

0 2 4 6 8 10 12 14

3 5 7 9 11 13 15 17 0

6 8 10 12 14 16 18 1 3 5

9 11 13 15 17 0 2 4 6 8 10

14 16 18 1 3 5 7 9 11 13

0 2 4 6 8 10 12 14 16

5 7 9 11 13 15 17 0

10 12 14 16 18 1 3

15 17 0 2 4 6

Affine coloring of 
hexagons

Theorem. Let Hn be the hexagon of radius n, 

c(i,j) = ni + (n+1)j mod |Hn| 

is a proper coloring of Hn 

Corolary 1. As it is affine, it is a proper 
coloring of any translation of Hn 

Corolary 2. Furthermore, the colors of the 
neighbors of a given node are fixed 
translations modulo |Hn| of its own color



An oritatami system is tight if: 
• delay δ = 1


• every bead destination has a 
tight neighbor, i.e. such that 
there is only one available 
position next to it

Tight oritatami Systems

For tight oritatami system, each bead’s position 
is uniquely determined by whom it is attracted to



An oritatami system is tight if: 
• delay δ = 1


• every bead destination has a 
tight neighbor, i.e. such that 
there is only one available 
position next to it

Tight oritatami Systems

For tight oritatami system, each bead’s position 
is uniquely determined by whom it is attracted to



Each bead located at (i,j)  
receives bead type:


c(i,j) 
and c❤c’ iff 

c’ = c + Δc(d) mod 19

13 15 17 0 2 4

16 18 1 3 5 7 9

0 2 4 6 8 10 12 14

3 5 7 9 11 13 15 17 0

6 8 10 12 14 16 18 1 3 5

9 11 13 15 17 0 2 4 6 8 10

14 16 18 1 3 5 7 9 11 13

0 2 4 6 8 10 12 14 16

5 7 9 11 13 15 17 0

10 12 14 16 18 1 3

15 17 0 2 4 6

19 bead types are enough 
for tight oritatami systems

For tight oritatami system, each bead’s position 
is fully determined by whom it is attracted to

2

22

2

18

Example, folding 2:

18 is the tight

neighbor of 2

20



Each bead located at (i,j)  
receives bead type:


c(i,j) 
and c❤c’ iff 

c’ = c + Δc(d) mod 19
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16 18 1 3 5 7 9
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19 bead types are enough 
for tight oritatami systems
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22

2

18

Example, folding 2:

18 is the tight

neighbor of 2

20

Theorem. 19 beads types are enough



Each bead located at (i,j)  
receives bead type:


c(i,j) 
and c❤c’ iff 

c’ = c + Δc(d) mod 19

19 bead types are enough 
for tight oritatami systems

Theorem. 19 beads types are enough

Seed

Bead type sequence

Seed

Bead type sequence



Each bead located at (i,j)  
receives bead type:


c(i,j) 
and c❤c’ iff 

c’ = c + Δc(d) mod 19

19 bead types are enough 
for tight oritatami systems

Seed

Bead type sequence

Seed

Bead type sequence

Theorem. There is a constant-time incremental algorithm that 
outputs a tight oritatami system using 19 bead types that folds 
any finite shape at scale Bn ≥ 3 from a seed of size 3 



Would increasing the delay 
instead of upscaling help?

Theorem. For any delay δ, there is an infinite shape 
that cannot be folded by no oritatami system with 
delay δ

2δ

δ

δ

δ

δ

δ

δ
δ

10δ

δ

δ

δ

δ

2δ
δ

δ

this simple path end
enforces the seed to start here

only one bond can be made
and the hamiltonian path

cannot cross here

using this 2-beads-wide zigzag pattern
and zigzag turns we can make
sure that the hamiltonian path
must follow this zigzag pattern

and can never go back

Repeat δ3 times
Repeat

infinitely

Because it is impossible to shortcut the shape, the hamiltonian path must follow
the path indicated, in the last section, it consists of δ3 simple paths of length δ

each of thjem can only make one bond, this means that after a short number of them,
we will run out of the 6δ bonds at most at the beginning to build an helper

to make these paths using Matthew&Jaccob arguments for the line



Turedo: building 
nanobots with oritatami 

[Pchelina, S., Seki and Theyssier, STACS 2022]



A finite automata follows a self-avoiding path, moving 
and writing a state according to a uniform local rule 

A clockwise walker 
The rule: Z1 Z2 Z3 Z4 Z0 Z1

Z0 Z1 Z2 Z3 Z4 Z0 Z2

Z4 Z0 Z2 Z3 Z4 Z0 Z1 Z3

Z3 Z4 Z1 Z4 Z0 Z1 Z1 Z2 Z4

Z2 Z3 Z0 Z3 Z2 Z3 Z2 Z2 Z3 Z0

Z1 Z2 Z4 Z2 Z1 Z1 Z4 Z3 Z3 Z4 Z1

Z0 Z1 Z3 Z1 Z0 Z0 Z2 Z0 Z4 Z4 Z0 Z2

Z4 Z0 Z2 Z0 Z4 Z3 Z1 Z0 Z0 Z1 Z3

Z3 Z4 Z1 Z4 Z3 Z2 Z1 Z1 Z2 Z4

Z2 Z3 Z0 Z4 Z3 Z2 Z2 Z3 Z0

Z1 Z2 Z1 Z0 Z4 Z3 Z4 Z1

Z0 Z4 Z3 Z2 Z1 Z0 Z2

Z2 Z1 Z0 Z4 Z3

Turedo
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i

ii+1
?

...



Radius-1 Turedos 
implement cellular automata
Left/Right Swiping 
The rule:

78

Li

Li

Ri

iRi

?i

i?Li

?i

i? Ri

?i?j

? i+j

?j?i

i?i+j



Theorem 1.  
Radius-1 turedos doodle uncomputably

80

Mi halts

k j i

Parallel TM simulation

Mk haltsMj halts

at most k paths cross the k–th area



Delay-3 Oritatami systems simulate 
radius-1 Turedos intrinsically 



• Linear time & scape rescaling

Intrinsic simulation

The Game of Life self-simulating itself intrinsically: 
Smaller cells simulate macro-cells

Brice Due 2006

82



Oritatami systems simulate 
1D CA instrinsically 

• Previous work. [PSSU, 2020]  
1D Cellular automata intrinsic simulation

83

4Qx

1. Init

2. Scaffold

3. Read x,y

4y

Flat

Flat

Shift the lookup table by Δxy=2(Qx + y)

4. Lookup table shifted  
by 2(Qx + y) 

5. Absorb the offset 2(Qx + y)

6. Special beads in the  
lookup table flip  

matching magnets to  
write x',y'

4Qx'

4y'

0

0

0

0

0

0

0

0

0

1

1

0

1

1

0

0

0

1

1

1 1

1

0

0

0

1

1

1

Time

Down

Up

Down

Up

2 Problems. Macrocells must be isotropic 

 We need to exit from an arbitrary side…



the Macrocell
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Bit-weighted encoding for 
Turedos

• Turedo 
Q = 2q – 1 states and the empty state ⊥  
Transition function:  
            F : (Q∪{⊥})6 → Q × {←,↖︎,  ↗,→,↘︎, ↙} 

             (x0,…, x5) ⟼ (y, d) 

• Bit-weight encoding 
wij = weight of the j-th bit xij  of xi 
          F(x) = Φ(w(x)) where w(x) = ∑ij wij xij 

• wij = 2qi+j works for all F

85

x0

x1

x2

x3

x4

x5

y d



the Macrocell
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the Macrocell

86

1. Scaffold layer
2. Read layer
3. Write layer
4. Exit layer



Reading. Reading pockets

88

If j–th bit = 1, then Shift += wij 

⇒ Shift on i–th side = ∑j wij xij = w(xi) 

⇒ Total Shift on all side = w(x)

0 0

wi,2 wi,1 wi,0

Shift read layer 
by wi,1 1



Uturn pocket. Read to write

89

Read layer 
shifted by w(x)

Write layer 
shifted by w(x)



the Macrocell

90

1. Scaffold layer
2. Read layer
3. Write layer



Writing. Shift pushes the 
transition table to the right

W WWW
ShiftShiftShift

Shift w(x) Entry w(x)Entry w(x)Entry w(x)

Shift

The pockets hide the W = ∑ij wij 
unused entries in the transition table 

bits 0 and 1 fold differently



bits 0 and 1 fold differently 
⇒ the exit layer shows or hide the special beads

Writing. Shift pushes the 
transition table to the right

0 01

W WWW

Exit

The pockets hide the W = ∑ij wij 
unused entries in the transition table 



the Macrocell

93

1. Scaffold layer
2. Read layer
3. Write layer

Resynchronize



Resynchronizing. 
Speedbumps [PSSU2020]

94

Can absorb  
any offset ≤ W 

(in Zig-Zags! ")



the Macrocell

95

1. Scaffold layer
2. Read layer
3. Write layer
4. Exit layer



Exiting… or not

96

By default, exit layer follows the 
border of the exit box 

exit pocket 

Exit



Exiting… or not

97

With the proper signal (offset!), exit 
layer folds upon itself and… exit!

Entry w(x)

Write layer shifted by w(x)

exit pocket 

Exit



T5 T6 T7 B0 B1 B2 B3 B4 B5 B6 B7

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 T8 B15 T0 B7 T8 B15 T0 B7 T8 B15 T0 B7 T8 B15 T0 T1 T2 T3 T4 T5 T6 T7 B0 B1 B2 B3 B4 B5 B6 B7 T8 T9 T10 T11

S0 T9 B14 T1 B6 T9 B14 T1 B6 T9 B14 T1 B6 T9 B14 S1 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

S0 T10 B13 T2 B5 T10 B13 T2 B5 T10 B13 T2 B5 T10 B13 S1

S0 T11 B12 T3 B4 T11 B12 T3 B4 T11 B12 T3 B4 T11 B12 S1

S0 T12 B11 T4 B3 T12 B11 T4 B3 T12 B11 T4 B3 T12 B11 S1

S0 T13 B10 T5 B2 T13 B10 T5 B2 T13 B10 T5 B2 T13 B10 S1

S0 T14 B9 T6 B1 T14 B9 T6 B1 T14 B9 T6 B1 T14 B9 S1

S0 T15 B8 T7 B0 T15 B8 T7 B0 T15 B8 T7 B0 T15 B8 S1

S0 B8 T15 B0 T7 B8 T15 B0 T7 B8 T15 B0 T7 B8 T15 S1

S0 B9 T14 B1 T6 B9 T14 B1 T6 B9 T14 B1 T6 B9 T14 S1

S0 B10 T13 B2 T5 B10 T13 B2 T5 B10 T13 B2 T5 B10 T13 S1

S0 B11 T12 B3 T4 B11 T12 B3 T4 B11 T12 B3 T4 B11 T12 S1

S0 B12 T11 B4 T3 B12 T11 B4 T3 B12 T11 B4 T3 B12 T11 S1

S0 B13 T10 B5 T2 B13 T10 B5 T2 B13 T10 B5 T2 B13 T10 S1

S0 B14 T9 B6 T1 B14 T9 B6 T1 B14 T9 B6 T1 B14 T9 S1

S0 B15 T8 B7 T0 B15 T8 B7 T0 B15 T8 B7 T0 B15 T8 S1

S0 T0 B7 T8 B15 T0 B7 T8 B15 T0 B7 T8 B15 T0 B7 S1

S0 T1 B6 T9 B14 T1 B6 T9 B14 T1 B6 T9 B14 T1 B6 S1

S0 T2 B5 T10 B13 T2 B5 T10 B13 T2 B5 T10 B13 T2 B5 S1

S0 T3 B4 T11 B12 T3 B4 T11 B12 T3 B4 T11 B12 T3 B4 S1

S0 T4 B3 T12 B11 T4 B3 T12 B11 T4 B3 T12 B11 T4 B3 S1

S0 T5 B2 T13 B10 T5 B2 T13 B10 T5 B2 T13 B10 T5 B2 S1

S0 T6 B1 T14 B9 T6 B1 T14 B9 T6 B1 T14 B9 T6 B1 S1

S0 T7 B0 T15 B8 T7 B0 T15 B8 T7 B0 T15 B8 T7 B0 S1

S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1

Key new tool: Folding meter

it folds upon itself into pockets
99
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S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2

S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2

Xq91 Xq90 Xq89 Xq88 Xq87 Xq86 Xq85 Xq84 Xq83 Xq82 Xq81 Xb80 Xb79 Xb78 Xp77 Xp76 Xp75 Xp74 Xp73 Xp72 Xp71 Xp70 Xp69 Xp68 Xp56 Xp55 Xt54 Xt53 Xt52 Xq51 Xq50 Xq49 Xq48 Xq47 Xq46 Xq45 Xq44 Xq43 Xq42 Xq41 Xq40 Xq39 Xq38 Xq37 Xq36 Xq35 Xq34 Xq33 Xq32 Xq31 Xq30 Xq29 Xb28 Xb27 S2 S2

61 wα62 wα63 wα64 wα65 wα66 wα67 wα68 wα69 wα70 wα71 wα72 wα73 wα74 wα75 wα76 wα77 wb78 wb79 wb80 wq81 wq82 wq83 wq84 Xp67 Xp57 wq45 wq46 wq47 wq48 wq49 wq50 wq51 wt52 wt53 wt54 wα55 wα56 wα57 wα58 wα59 wα60 wα61 wα62 wα63 wα64 wα65 wα66 wα67 wα68 wα69 wα70 wα71 wα72 wα73 wα74 S2 S2

Rq91 Rq90 Rq89 Rq88 Rq87 Rq86 Rq85 Rq84 Rq83 Rq82 Rq81 Rb80 Rb79 Rb78 Rp77 Rp76 Rp75 Rp74 Rp73 Rp72 Rp71 Rp70 Rp69 wq85 Xp66 Xp58 wq44 Rp3 Rt2 Rt1 Rt0 Rq103 Rq102 Rq101 Rq100 Rq99 Rq98 Rq97 Rq96 Rq95 Rq94 Rq93 Rq92 Rq91 Rq90 Rq89 Rq88 Rq87 Rq86 Rq85 Rq84 Rq83 Rq82 Rq81 Rb80 Rb79 Rb78 S2 S2

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 Rp68 wq86 Xp65 Xp59 wq43 Rp4 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S2

S0 Rp67 wq87 Xp64 Xp60 wq42 Rp5 S0

S0 Rp66 wq88 Xp63 Xp61 wq41 Rp6 S0

S0 Rp65 wq89 Xp62 wq40 Rp7 S0

S0 Rp64 wq90 wq39 Rp8 S0 S0 S0 S0 S0 S0 S0

S0 Rp63 wq91 wq38 Rp9 S0 S0 Rp13 S0 S0 Rp17 S0 S0 Rp21 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

S0 Rp62 wq92 wq37 Rp10 Rp11 Rp12 Rp14 Rp15 Rp16 Rp18 Rp19 Rp20 Rp22 Rp23 Rp24 Rp25 Rb26 Rb27 Rb28 Rq29 Rq30 Rq31 S0

S0 Rp61 wq93 wq36 wq35 wq34 wq33 wq32 wq31 wq30 wq29 wb28 wb27 wb26 wα25 wα24 wα23 wα22 wα21 wα20 wα19 wα18 Rq32 S0

S0 Rp60 wq94 wα17 Rq33 S0

S0 Rp59 wq95 wα16 Rq34 S0

S0 Rp58 wq96 wα15 Rq35 S0

S0 Rp57 wq97 wα14 Rq36 S0

S0 Rp56 wq98 wα13 Rq37 S0

S0 Rp55 wq99 wα12 Rq38 S0

S0 Rt54 wq100 wq101 wq102 wq103 wα11 Rq39 S0

S0 Rt53 Rt52 Rq51 Rq50 wt0 wq51 wt52 wα10 Rq40 S0

S0 S0 S0 S0 Rq49 wt1 wq50 wt53 wα9 Rq41 S0

S0 Rq48 wt2 wq49 wt54 wα8 Rq42 S0

S0 Rq47 wα3 wq48 wα55 wα7 Rq43 S0

S0 Rq46 wα4 wq47 wα56 wα6 Rq44 S0

S0 Rq45 wα5 wq46 wα57 wα5 Rq45 S0

S0 Rq44 wα6 wq45 wα58 wα4 Rq46 S0

S0 Rq43 wα7 wq44 wα59 wα3 Rq47 S0

S0 Rq42 wα8 wq43 wα60 wt2 Rq48 S0

S0 Rq41 wα9 wq42 wα61 wt1 Rq49 S0

S0 Rq40 wα10 wq41 wα62 wt0 Rq50 S0

S0 Rq39 wα11 wq40 wα63 wq103 Rq51 S0

S0 Rq38 wα12 wq39 wα64 wq102 Rt52 S0

S0 Rq37 wα13 wq38 wα65 wq101 Rt53 S0

S0 Rq36 wα14 wq37 wα66 wq100 Rt54 S0

S0 Rq35 wα15 wq36 wα67 wq99 Rp55 S0

S0 Rq34 wα16 wq35 wα68 wq98 Rp56 S0

S0 Rq33 wα17 wq34 wα69 wq97 Rp57 S0

S0 Rq32 wα18 wq33 wα70 wq96 Rp58 S0

S0 Rq31 wα19 wq32 wα71 wq95 Rp59 S0

S0 Rq30 wα20 wq31 wα72 wq94 Rp60 S0

S0 Rq29 wα21 wq30 wα73 wq83 wq84 wq85 wq86 wq87 wq88 wq89 wq90 wq91 wq92 wq93 Rp61 S0

S0 Rb28 wα22 wq29 wα74 wq82 Rp72 Rp71 Rp70 Rp69 Rp68 Rp67 Rp66 Rp65 Rp64 Rp63 Rp62 S0

S0 Rb27 wα23 wb28 wα75 wq81 Rp73 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

S0 Rb26 wα24 wb27 wα76 wb80 Rp74 S0

S0 Rp25 wα25 wb26 wα77 wb79 Rp75 S0

S0 Rp24 wb26 wα25 wb78 Rp76 S0

S0 Rp23 wb27 wα24 Rp77 S0

S0 Rp22 wb28 wα23 Rb78 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

S0 Rp21 wq29 wα22 Rb79 Rb80 Rq81 Rq82 Rq83 Rq84 Rq85 Rq86 Rq87 Rq88 Rq89 Rq90 Rq91 Rq92 Rq93 Rq94 Rq95 Rq96 Rq97 Rq98 S0

S0 Rp20 wq30 wα21 Rq99 S0

S0 Rp19 wq31 wα20 Rq100 S0

S0 Rp18 wq32 wα19 Rq101 S0

S0 Rp17 wq33 wα18 Rq102 S0

S0 Rp16 wq34 wα17 Rq103 S0

S0 Rp15 wq35 wα16 Rt0 S0

S0 Rp14 wq36 wα15 Rt1 S0

S0 Rp13 wq37 wα14 Rt2 S0

S0 Rp12 wq38 wα13 Rp3 S0

S0 Rp11 wq39 wα12 Rp4 S0

S0 Rp10 wq40 wα11 Rp5 S0

S0 Rp9 wq41 wα10 Rp6 S0

S0 Rp8 wq42 wα9 Rp7 S0

S0 Rp7 wq43 wα8 Rp8 S0

S0 Rp6 wq44 wα7 Rp9 S0

S0 Rp5 wq45 wα6 Rp10 S0

S0 Rp4 wq46 wα5 Rp11 S0

S0 Rp3 wq47 wα4 Rp12 S0

S0 Rt2 wq48 wα3 Rp13 S0

S0 Rt1 wq49 wt2 Rp14 S0

S0 Rt0 wq50 wt1 Rp15 S0

S0 Rq103 wq51 wt0 Rp16 S0

S0 Rq102 wt52 wq103 Rp17 S0

S0 Rq101 wt53 wq102 Rp18 S0

S0 Rq100 wt54 wq101 Rp19 S0

S0 Rq99 wα55 wq100 Rp20 S0

S0 Rq98 wα56 wq99 Rp21 S0

S0 Rq97 wα57 wq98 Rp22 S0

S0 Rq96 wα58 wq97 Rp23 S0

S0 Rq95 wα59 wq96 Rp24 S0

S0 Rq94 wα60 wq95 Rp25 S0

S0 Rq93 wα61 wq94 Rb26 S0

S0 Rq92 wα62 wq93 Rb27 S0

S0 Rq91 wα63 wq92 Rb28 S0

S0 Rq90 wα64 wq91 Rq29 S0

S0 Rq89 wα65 wq90 Rq30 S0

S0 Rq88 wα66 wq89 Rq31 S0

S0 Rq87 wα67 wq88 Rq32 S0

S0 Rq86 wα68 wq87 Rq33 S0

S0 Rq85 wα69 wq86 Rq34 S0

S0 Rq84 wα70 wq85 Rq35 S0

S0 Rq83 wα71 wq84 Rq36 S0

S0 Rq82 wα72 wq83 Rq37 S0

S0 Rq81 wα73 wq82 Rq38 S0

S0 Rb80 wα74 wq81 Rq39 S0

S0 Rb79 wα75 wb80 Rq40 S0

S0 Rb78 wα76 wb79 Rq41 S0

S0 Rp77 wα77 wb78 Rq42 S0

S0 Rp76 Rq43 S0

S0 Rp75 Rq44 S0

S0 Rp74 Rq45 S0

S0 Rp73 Rq46 S0

S0 Rp72 Rq47 S0

S0 Rp71 Rp70 Rp69 Rp68 Rp67 Rp66 Rp65 Rp64 Rp63 Rp62 Rp61 Rp60 Rp59 Rp58 Rp57 Rp56 Rp55 Rt54 Rt53 Rt52 Rq51 Rq50 Rq49 Rq48 S0

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

Xq89 Xq88 Xq87 Xq86 Xq85 Xq84 Xq83 Xq82 Xq81 Xb80 Xb79 Xb78 Xp77 Xp76 Xp75 Xp74 Xp73 Xp72 Xp71 Xp70 Xp69 Xp68

wα64 wα65 wα66 wα67 wα68 wα69 wα70 wα71 wα72 wα73 wα74 wα75 wα76 wα77 wb78 wb79 wb80 wq81 wq82 wq83 wq84 Xp67

Rq89 Rq88 Rq87 Rq86 Rq85 Rq84 Rq83 Rq82 Rq81 Rb80 Rb79 Rb78 Rp77 Rp76 Rp75 Rp74 Rp73 Rp72 Rp71 Rp70 Rp69 wq85 Xp66

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 Rp68 wq86 Xp65

S0 Rp67 wq87 Xp64

S0 Rp66 wq88 Xp63

S0 Rp65 wq89 Xp62

S0 Rp64 wq90

S0 Rp63 wq91

S0 Rp62

S0 Rp61

S0

S0

Xp69 Xp68 Xp56 Xp55 Xt54 Xt53 Xt52 Xq51 Xq50 Xq49 Xq48 Xq47 Xq46 Xq45 Xq44 Xq43 Xq42 Xq41 Xq40

wq83 wq84 Xp67 Xp57 wq45 wq46 wq47 wq48 wq49 wq50 wq51 wt52 wt53 wt54 wα55 wα56 wα57 wα58 wα59 wα60 wα61

Rp69 wq85 Xp66 Xp58 wq44 Rp3 Rt2 Rt1 Rt0 Rq103 Rq102 Rq101 Rq100 Rq99 Rq98 Rq97 Rq96 Rq95 Rq94 Rq93 Rq92

Rp68 wq86 Xp65 Xp59 wq43 Rp4 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

S0 Rp67 wq87 Xp64 Xp60 wq42 Rp5 S0

S0 Rp66 wq88 Xp63 Xp61 wq41 Rp6 S0

S0 Rp65 wq89 Xp62 wq40 Rp7 S0

S0 Rp64 wq90 wq39 Rp8 S0 S0 S0 S0 S0 S0 S0

S0 Rp63 wq91 wq38 Rp9 S0 S0 Rp13 S0 S0 Rp17 S0 S0 Rp21 S0 S0 S0 S0 S0 S0

S0 Rp62 wq92 wq37 Rp10 Rp11 Rp12 Rp14 Rp15 Rp16 Rp18 Rp19 Rp20 Rp22 Rp23 Rp24 Rp25 Rb26 Rb27 Rb28

S0 Rp61 wq93 wq36 wq35 wq34 wq33 wq32 wq31 wq30 wq29 wb28 wb27 wb26 wα25 wα24 wα23 wα22 wα21

S0 Rp60 wq94

S0 Rp59 wq95

S0 Rp58 wq96

S0 Rp57 wq97

S0 Rp56 wq98

Suspiciously 
simple fact

All layers stay 
synchronized
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Read pocket

xp
59

xp
58

xp
57

xp
56

xp
55

xt
54

xt
53

xt
52

xq
51

xq
50

xq
49

xq
48

xq
47

xq
46

xq
45

xq
44

xq
43

xq
42

xq
41

xq
40

xq
39

xq
38

xq
37

xq
36

xq
35

xq
34

xq
33

xq
32

xq
31

xq
30

xq
29

xb
28

xb
27

xb
26

xp
25

xp
24

xp
23

xp
22

xp
21

xp
20

xp
19

xp
18

xp
17

xp
16

xp
15

xp
14

xp
13

xp
12

xp
11

xp
10 xp9 xp8 xp7 xp6 xp5 xp4 xp3 xt2 xt1 xt0 xq

103
xq
102

xq
101

xq
100

xq
99

xq
98

Wq
93

Wq
94

Wq
95

Wq
96

Wq
97

Wq
98

Wq
99

Wq
100

Wq
101

Wq
102

Wq
103 Wt0 Wt1 Wt2 Wp3 Wp

4 Wp5 Wp6 Wp7 Wp
8 Wp9 Wp

10
Wp
11

Wp
12

Wp
13

Wp
14

Wp
15

Wp
16

Wp
17

Wp
18

Wp
19

Wp
20

Wp
21

Wp
22

Wp
23

⎋p
24

Wp
25

Wb
26

Wb
27

Wb
28

Wq
29

Wq
30

Wq
31

Wq
32

Wq
33

Wq
34

Wq
35

Wq
36

Wq
37

Wq
38

Wq
39

Wq
40

Wq
41

Wq
42

Wq
43

Wq
44

Wq
45

Wq
46

Wq
47

Wq
48

Wq
49

Wq
50

Wq
51

Wt
52

Wt
53

Wt
54

rq
85

rq
84

rq
83

rq
82

rq
81

rb
80

rb
79

rb
78

rp
77

rp
76

rp
75

rp
74

rp
73

rp
72

rp
71

rp
70

rp
69

rp
68

rp
67

rp
66

rp
65

rp
64

rp
63

rp
62

rp
61

rp
60

rp
59

rp
58

rp
57

rp
56

rp
55

rt
54

rt
53

rt
52

rq
51

rq
50

rq
49

rq
48

rq
47

rq
46

rq
45

rq
44

rq
43

rq
42

rq
41

rq
40

rq
39

rq
38

rq
37

rq
36

rq
35

rq
84

rq
83

rq
82

rq
81

rb
80

rb
79

rb
78

rp
77

rp
76

rp
75

rp
74

rp
73

rp
72

S7 S1 S3 S5 S7 S1 S3 S5 S7 S1 S3 S5 S7 S1 S3 S5 S7 S1 S3 S5 S7 S1 S3 S5 S7 S1 S3 S5 S7 S1 S3 S5 S7 S1 S3 S5 S7 S1 S3 S5 S7 S1 S3 S5 S7 S1 S3 S5 Ci1 ea1 !0 rq
34

rq
85 !9 ea3 Ex1 S1 S3 S5 B0 S1 S3 S5 Ci1 eo1

S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 Ci0 ea0 !1 rq
33

rq
86 !8 ea0 Ex2 S2 S4 S6 S0 S2 S4 Ci0 eo0 Z3

Z0 J7 !2 rq
32

rq
87 Z1 Ci

12 eo3

oo1 Ci
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Write pocket
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Almost there

Exit sliding pocket
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Almost there

Curvy speedbump



Almost there
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Almost there
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6ω



Almost there

106

6ω
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Example: A bouncy right hand turedo

Theorem 2. Delay-3 oritatami 
simulates intrinsically radius-1 turedos



Some examples
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A Sierpinsky turedo



The density of limit 
configurations



Theorem 3. The densities of radius-1 
Turedos limit configuration are all 𝜫2
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F
ill
ed
wi

th
densit

y q
n+1

Filled

w
it
h
de

nsity qn

slowly growing
computation

Rn+1

Rn

limsupn qn = q ∈ 𝜫2 

Next annulus erases previous 
one by computing Rn such 
that: 
(Rn+1)2qn+1 ≫ (Rn)2qn 

Fact. The densities of limit configurations for directed aTAM and 
freezing cellular automata belong to 𝜫2 also. 



Corollary. The densities of oritatami 
limit configuration are all 𝜫2
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Must beware of the rotation induced by the oritatami simulation

λ(z)+M

v'1
v'2

v1v2 z

Oritatami world Turedo world
The target balls The simulated balls



Corollary. The densities of oritatami 
limit configuration are all 𝜫2
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Fill a hardcoded hexagon in the center of an extended macrocell



Conclusion
• No need for parallelism 

• No need for 3D 

• Lines just don't cross!


• We have a running implementation: 
https://hub.darcs.net/turedo2oritatami/turedo2oritatami/


• New tools for Oritatami: Folding meter, pockets, distant sensor 
& crazy-curvy speedbump, and… Turedo!


• Some interesting turedos implemented in oritatami and… RNA ?  
e.g.: simple plane filling oritatami


• What about turedos ? → S. Nalin & G. Theyssier (coming soon)
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https://hub.darcs.net/turedo2oritatami/turedo2oritatami/

