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Co-transcriptional
folding

Geary, Rothemund, Andersen, Science 2014



RNA
co-transcriptional folding
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RNA Origami in Real Time

T7 RNA Polymerase

Assembly of
RNA tiles

Formation of helices Formation of Formation of
and hairpins junctions tertiary (3D) interactions

T7 BRNA polymerase produces RNA directionally from 5’ to 3’, at a rate much
slower than the RNA folds up (few microseconds).

The polymerase reads the DNA gene, and becomes an RNA origami production
factory, synthesizing a new RNA origami roughly every 1 second.

Slide by Cody Geary Westhof and Leontis (Science, 2074)



AFM imaging of 4H-AE
co-transcriptional assembly
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RNA Folding

(Real time: ~1 second)
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Oritatami:

A computational model
for
co-transcriptional
folding

Geary, Meunier, Schabanel, Seki MFCS 2016



RNA Folding

(Real time: ~1 second)

Part already
folded

Part been

Encoding of the
transcript

N

Video: Geary
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Oritatami:
A model for co-transcriptional folding

The program:

-+ a sequence of bead types

(the transcript)

The Instructions:

- the rule a¥b if bead types a

and b attract each other

The input configuration:
- Some beads placed
beforehand (the seed)

Seed
Beads \
already
folded 2
& placed\ p AN e

produced

Geary, Meunier, Schabanel, Seki MFCS 2016



Oritatami:
A model for co-transcriptional folding

: Seed
The dynamics. Beads \
» Starting from the seed, the already
sequence is produced one bead folded _
at a time & placed X f :V?,E
* Only the 6 last produced beads @ placed
are free to move and explore the /
accessible positions to settle in O'O
the ones maximizing the /

number of bonds

« All other beads remain in their
last locations

14 Geary, Meunier, Schabanel, Seki MFCS 2016



Oritatami:
A model for co-transcriptional folding
Seed

The dynamics.

| new bead
» Starting frc?m the seed, the oroduced
sequence Is produced one bead

at a time \
N

» Only the 6 last produced beads
are free to move and explore the
accessible positions to settle in O'
the ones maximizing the
number of bonds

« All other beads remain in their
last locations

15 Geary, Meunier, Schabanel, Seki MFCS 2016



Oritatami:
A model for co-transcriptional folding
Seed

The dynamics.

- Starting from the seed, the
sequence Is produced one bead
at a time

» Only the 6 last produced beads
are free to move and explore the
accessible positions to settle in
the ones maximizing the
number of bonds

« All other beads remain in their
last locations

16 Geary, Meunier, Schabanel, Seki MFCS 2016



Oritatami:
A model for co-transcriptional folding
Seed

The dynamics.

- Starting from the seed, the
sequence Is produced one bea
at a time

dJ New bead
placed

» Only the 6 last produced beads
are free to move and explore the
accessible positions to settle in O'
the ones maximizing the
number of bonds

« All other beads remain in their
last locations
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Oritatami:
A model for co-transcriptional folding

The dynamics.

- Starting from the seed, the
sequence Is produced one bead
at a time

» Only the 6 last produced beads
are free to move and explore the
accessible positions to settle in
the ones maximizing the
number of bonds

« All other beads remain in
last locations

18 Geary, Meunier, Schabanel, Seki MFCS 2016



Oritatami:
A model for co-transcriptional folding

The dynamics. The bead has same
position In all
maximal extension
= deterministic

- Starting from the seed, the
sequence Is produced one bead
at a time

* Only the 0 last produced beads \ o
are free to move and explore the ]
accessible positions to settle in %

the ones maximizing the )
number of bonds

« All other beads remain in
last locations

19 Geary, Meunier, Schabanel, Seki MFCS 2016



Oritatami:
a first construction
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Oritatami vs aTAM

Some self-assembly seminal work (mostly aTAM)

* Tile assembly systems are Turing universal [Winfree, 1998]
* Arbitrary shape assembly with optimal tile set size [Soloveichik, Winfree, 2007]
 Uncomputable limit configurations [Lathrop, Lutz, Pattiz, Summers, 2011]

* Intrinsic universality [Doty et al, 2012]

Oritatami

* A binary counter [Geary, Meunier, S., Seki, 2010]

* Heighdragon fractal [Masuda, Seki, Ubukata, 2018]
* Folding arbitrary shapes [Demaine et al, 2018]

e NP-hardness for oritatami design [Geary et al, 2016; Ota, Seki, 2017; Han, Kim,
2017] and for non-determinisitic oritatami equivalence [Han et al, 20106]

» Efficient Turing Machine simulation through tag-systems [Geary et al, 2018§]
* [ntrinsic simulation of 1D cellular automata [Pchelina et al, 2020]

* |ntrinsic simulation of Turedo: uncomputable and arbitrary dense limit

configurations, building arbitrary object from asymptotically minimal seed
[Pchelina et al, 2022]
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Oritatami. A binary counter

Information is encoded in the geometry
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Oritatami. A binary counter

Information is encoded in the geometry
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Oritatami. A binary counter

Information is encoded in the geometry
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How does computation work”

3) Beads 38-41 <«  2) Beads 34-37 <« 1) Beads 30-33
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Oritatami is
Turing complete



Trimmed space-time

diagram
Consider the following productions:
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Initial word tape:
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The first challenge:
Designing the desired shapes

Design shapes for which a common rule € exists

4 11 59 0 9 1000 11 1200177001
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The first challenge:
Designing the desired paths

. DeS|gn paths for which a common rule @ exists
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The first challenge:

Designing the paths
* Design aths for which a common

rule @ exists

G - Read Copy Line Feed: Read O

G - Read Copy Line Feed: Copy 0 (Zig)
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Oritatami design is NP-haro

INPUT: a delay time o, a list of n > 0 seeds 01,09, ...,0,, and a list of n confor-
mations ci, ca, ..., c, of the same length [
OUuTPUT: | an attraction rule © such that for all i € {1,2,...,n}, Oritatami system

O; = (s,04,V,6) deterministically folds into conformation c¢;, where s is
the sequence of length [ such that for all ¢ € {1,2,...,1}, s; = 1.

The reduction (length=1, 6 arbitrary)

Ensures it binds to at least Ensures it binds to at
one litteral in l;v I;v Ik most one of z; and —x;

ooOoo oo@@oo
N OBORE @ - OO0 -
o ) © - o o o () - @ -
oo@oo ooQQoo

O
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I'he second challenge:
Designing the rule @

Theorem. There is a FPT algorithm with respect to L
that designs in linear time in L (but exponential in k and )
a rule @ that folds the sequence 1,...,L of length L into k

prescribed conformations when folded in k prescribed
environments.

Proof. ® Locality: each bead only sees a bounded number (exponential in 0)
of other beads when folded.

e [hen, compute all valid local rules for each of these neighbborhoods

e And use dynamic programming to decide whether there is a global
rule compatible with at least one of the local rule for each environment.

32



Building shapes



Goal: Given a shape S,
Find an oritatami system, i.e. a
sequence of bead types,
that folds into S

Bead type sequence
CP@8OOOCOOBO P
Seed QOO0 OG -0 -

RO OO DO
L0 OB OO@ S2ash

Qb€
0000000000 CERh
000BOV0OOO Réatesete
00®000® e




An Oritatami system folds
a shape If:

Starting from the seed configuration,

it folds deterministically to occupy all the positions of
the shape and only them

Bead type sequence

OB OCOCOOCOB®O P o
Seed OO0 -0 -

@8O0 O0OOBOOOO
00O O0OB®OO@® S2ash

Qb€
0000000000 CEh
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Seek an Universal
construction

Fixed finite size seed
Fixed finite set of bead types
(independent of the shape)

Bead type sequence

OCP@O0O0O00O0@O P D
Seed QOO0 O @m0 R

RO OO DO
L0 OB OO@ S2ash

Qb€
0000000000 CERh
000BOV0OOO Réatesete
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Example of such molecule
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Trivial fact:
Foldable shapes are Hamiltonian




Fact: Finitely cutable infinite
shapes cannot be folded

A finite set of points cutting the shape
iInto several infinite pieces



Fact: Finitely cutable infinite
shapes cannot be folded

A finite set of points cutting the shape
into several infinite pieces

Oritatami systems are thus essentially different from
tile assembly systems (aTam)



Consider
upscaling schemes
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Finite shapes are
Hamiltonian at scale o4

Theorem. There is a quadratic algorithm that computes
an Hamiltonian path for any finite shape at scale &%
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Upscaling does not help with

te shapes
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scale &5,

Use a unique pattern

[/

docking edges



scale &%
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scale &%,

Use a unique pattern
@

Theorem. All finite shapes can
be folded at scale &, for n > 3

Proof. By induction:
For all red edges, the

corresponding three purple
positions are filled before. /

docking edges



How many bead
types are needed?
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Affine coloring of
hexagons

@ @ @ @ Theorem. Let H, be the hexagon of radius n,
@@@®@@‘ c(1,j) = ni+(n+1)j mod | H,|

@ @ @ @ @ IS a proper coloring of H,
‘@@@®@@@ Corolary 1. As it is affine, it is a proper
@ @ @ @ @ @ coloring of any translation of H,

(8)(1) 1) @ 1

Corolary 2. Furthermore, the colors of the

@@®@@@@ neighbors of a given node are fixed
@ @ @ @ translations modulo | H,| of its own color
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Affine coloring of
hexagons

@@@@@@@@ Theorem. Let H, be the hexagon of radius n,
(6) 1)@ c(ij) = ni + (n+1)j mod |H,)|
@ @ @ @ @ IS a proper coloring of H,
‘@@@@@@@ Corolary 1. As it is affine, it is a proper
@ @ @ @ @ @ coloring of any translation of H,
(810 1) @ ©
Corolary 2. Furthermore, the colors of the
@@®@@@@ neighbors of a given node are fixed
translations modulo | H,| of its own color
©OOW®



Tight oritatami Systems

An oritatami system is tight if:
-+ delay 6 =1

-+ every bead destination has a
tight neighbor, i.e. such that
there is only one available
position next to it

For tight oritatami system, each bead’s position
Is uniquely determined by whom it is attracted to



Tight oritatami Systems

An oritatami system is tight if:
-+ delay 6 =1

-+ every bead destination has a
tight neighbor, i.e. such that
there is only one available
position next to it

For tight oritatami system, each bead’s position
Is uniquely determined by whom it is attracted to



19 bead types are enough
for tight oritatami systems

® ® @ (Eare, oiding 7
B®OC) Liightgsrtgh; | Each bead located at (i,j)
@@@@@ T e === regceives bead type:
c(2,)
and c¥ ¢’ iff

¢’ = c+ Ac(d) mod 19

For tight oritatami system, each bead’s position
is fully determined by whom it is attracted to



19 bead types are enough
for tight oritatami systems

| Example, folding 2: }

Bl the tight { Each bead located at (i,)
n|gb of2 |

~~ receives bead type:

@@@@@@ <(43)
1000000 )] LR LA
VOIIIE@E = ¢+ Ac(d) mod 19

Theorem. 19 beads types are enough



19 bead types are enough
for tight oritatami systems

Each bead located at (i,7)
receives bead type:

c(%J)
and c¥ ¢’ iff
¢’ = c + Ac(d) mod 19

Q@B OCOOVOOOB®O
QOO0 LOO@

Theorem. 19 beads types are enough



19 bead types are enough
for tight oritatami systems

Each bead located at (i,7)
receives bead type:

c(%J)
and c¥ ¢’ iff
¢’ = c + Ac(d) mod 19

Q@B OCOOVOOOB®O
QOO0 LOO@

Theorem. There is a constant-time incremental algorithm that
outputs a tight oritatami system using 19 bead types that folds
any finite shape at scale &, > 3 from a seed of size 3




Would increasing the delay
iInstead of upscaling help?

Theorem. For any delay 0, there is an infinite shape
that cannot be folded by no oritatami system with
delay 0
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Turedo: building
nanobots with oritatami

[Pchelina, S., Seki and Theyssier, STACS 2022]



Turedo

A finite automata follows a self-avoiding path, moving
and writing a state according to a uniform local rule

A clockwise walker
The rule:

i’



Radius-1 Turedos
lement cellular automata
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Theorem 1.
Radius-1 turedos doodle uncomputably

]\4]. halts Mk halts MZ. halts

Parallel TM simulation

30



Delay-3 Oritatami systems simulate
radius-1 Turedos intrinsically



INtrinsic simulation

* Linear time & scape rescaling

i =g - . ] ] |
The Game of Life self-simulating itself intrinsically:
Smaller cells simulate macro-cells

32



Oritatami systems simulate
1D CA instrinsically

Time
> 0,

* Previous work. [PSSU, 2020]
1D Cellular automata intrinsic simulation

N\ 5. Absorb the offset 2(Qz + y)

6. Special beads in the of
lookup table flip «

> matching magnets to
write z’,y’

2 Problems. Macrocells must be isot-ropic A\,
We need to exit from an arbitrary side... R

83
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A,

~the Macrocell

84



Bit-weighted encoding for
Turedos =

Lo

Turedo
Q = 27— 1 states and the empty state L

Transition function:

F (QU{ })6 - QX% {‘_7\9 /9_’9\‘7 ‘/}
(Toyeees x5) — (Y, d)

L1
L2

Bit-weight encoding
Wij = welght of the ]-th bit Lij of €L;
F(CL‘) — <I>('w(m)) where w(m) — Zij Wij Ty

w;; = 2%+3 works for all F

85



the Macrocell

36



the Macrocell

86



Reading. Reading pockets

Shift read layer

A0 oY Wit 4 0
Y 7Ty
W; 2 W; 1 W;,o0

If 5-th bit = 1, then Shift += w;;
= Shift on i-th side = 3; w;; =;; = w(x;)

= Total Shift on all side = w(x)

38



Uturn pocket. Read to write

Write layer
shifted by w(x)

-
Read layer
shifted by w(x)

89



the Macrocell

90



Writing. Shift pushes the
transition table to the right

bits 0 and 1 fold differently

Shift w(w) Entry w(z) Entry w(a:) Entry ’w(fL')

A

s—xg\»w R ﬂ\%ﬁkk\é&' By

|14 |14

The pockets hide the W = 2., w;;
unused entries in the transition table




Writing. Shift pushes the
transition table to the right

bits 0 and 1 fold differently
= the exit layer shows or hide the special beads

igv \R% \R\g} v €= Exit

) |

|—L

\&&3}"“ Ly

The pockets hide the W = 2., w;;
unused entries in the transition table




the Macrocell

1 hx‘A, 3- erte Iayer :

esynch ronize

.'/
s
(4 N

93



Resynchronizing.

Speedbumps

"ooUZ2020

Can absorb
any offset < W

(in Zig-Zags! @)




the Macrocell

95



=xIting... or not

_\__v_i

exit pocket

By default, cxit layer follows the
border of the exit box

<= Exit

96



=xIting... or not
<= Exit

Write layer shifted by w(x)
—>

i(’\ Entry w(x)

exit pocket

With the proper signal (offset!), exit
layer folds upon itself and... exit!

97



Foldi

Key new tool
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it folds upon itself into pockets
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Suspiciously
simple fact

All layers stay
synchronized

Y23 20 - A . . . . . . . . 3 -{53)
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Almost there

17 3 n — 20 17 3 n— 20
@

n(2y+1) : n(2y+1)
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Almost there

103
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Almost there




Almost there
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Almost there
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Almost there
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Theorem 2. Delay-3 oritatami
simulates intrinsically radius-1 turedos

/ =
I\ \ 7
—h — ’.‘,-_\Z_\_wv /

& =5 N 4,

L 2 h
i\ 7
£ 3

% 7% =

Example: A bouncy right hand turedo
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Some examples

A Sierpinsky turedo

108






Theorem 3. The densities of radius-1
Turedos limit configuration are all I1>

limsup,, q,, — qe< Il

slowly growing
computation

Next annulus erases previous
one by computing R, such
that:

(Rn+1)2Qn+1 > (Rn)ZQn

Fact. The densities of limit configurations for directed aTAM and
freezing cellular automata belong to IT» also.

110



Corollary. The densities of oritatami

tion are all I1»
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Turedo world
The simulated balls

Oritatami world
The target balls
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Corollary. The densities of oritatami
limit configuration are all I1>

Fill a hardcoded hexagon in the center of an extended macrocell




No need for parallelism

No need for 3D
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Lines just don't cross!

We have a running implementation: AVAVAV ST

Yal

New tools for Oritatami: Folding meter, pockets
& crazy-curvy speedbump, and... Turedo!

https://hub.darcs.net/turedo2oritatami/t

Some interesting turedos implemented in oritatami and... RNA ?
e.g.. simple plane filling oritatami

What about turedos ? — S. Nalin & G. Theyssier (coming soon)
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https://hub.darcs.net/turedo2oritatami/turedo2oritatami/

