
The anatomy of innocence revisited

Russ Harmer & Olivier Laurent

PPS, CNRS & Université Paris 7

Abstract. We refine previous analyses of Hyland-Ong game semantics
and its relation to λ- and λµ-calculi and present improved factorization
results for bracketing and rigidity that can be combined in any order.

1 Introduction

Innocent strategies [2,4,7] provide models of (idealized programming languages
based on) the λ- and λµ-calculi, the difference between these two calculi being
expressed by the bracketing condition: whenever a strategy plays an answer, this
must respond to the “pending” question, i.e. the most recent, as yet untreated,
request. In [5], Laird analysed this situation and showed that an arbitrary inno-
cent strategy σ can be decomposed as a well-bracketed innocent strategy B(σ)
with access to an innocent but non-well-bracketed oracle call/cc. This seman-
tic factorization mirrors the well-known result from proof theory that classical
deductions can be rewritten as intuitionistic deductions with a few copies of
Peirce’s law as additional hypotheses. In [1], Danos & Harmer introduced a new
constraint of rigidity, in a certain sense dual to bracketing, which restricts the
use of case much as bracketing restricts the use of call/cc and showed that σ

can be decomposed as a rigid innocent strategy
−→
R(σ) with access to a non-rigid

oracle case.
So we have a decomposition of the CCC I of innocent strategies into a “diamond”
of subCCCs:

I

B

{{{{{ −→
R

DDDDD

B
−→
R

AAAA ||||

In B, we can model case but not call/cc whereas in
−→
R we can model call/cc

but not case. However, neither factorization preserves the other constraint,
i.e. eliminating call/cc reintroduces case and eliminating case reintroduces
call/cc:

I

}}{{
{{

{ I
""DD

DD
D

B −→
Roo B // −→R

B
−→
R B

−→
R

In this paper, we continue this analysis of innocent strategies with the aim
of better understanding the role of answers in game semantics. To this end, we
introduce an additional constraint, backward rigidity or B-rigidity, which extends
the above decomposition to a “cube” of subCCCs (§3.3):

←−
R

��
I

��
�

B
←−
R B

R
���

−→
R

��
BR B

−→
R

This constraint can be seen as a dual to rigidity—which, henceforth, we rename
as forward rigidity, reserving the term rigidity (R) for the conjunction of the
two—in that forward rigidity restricts the elimination (in the sense of natural
deduction) of base type constants whereas backward rigidity restricts their in-
troduction. The cube provides us with a taxonomy of logics and programming
languages based on λ- and λµ-calculi: each node corresponds, via definability
and full completeness theorems, to a fragment of µPCF (§3.4).

We then present (§4) a factorization for B-rigidity and modified factorizations
for F-rigidity and bracketing, each of which preserves the other two constraints:

←−
R Ioo ←−

R

��

I

��

←−
R

����
I

�����

B
←−
R Boo B

←−
R

��

B

��

B
←−
R B

R −→
Roo R −→

R R
�����

−→
R

����
BR B

−→
Roo BR B

−→
R BR B

−→
R

This allows us to “navigate” (from I) in the cube, applying factorizations in
whichever order we like, and still being sure to end up in BR. From a syntactic
point of view, this explains how we can move from one language of the cube
to another: a “smaller” language plus an appropriate oracle equals a “larger”
language (e.g. λ-calculus plus call/cc equals λµ-calculus).

We conclude (§4.4) by examining the unary case where the factorizations can be
simplified and the connection to logic becomes especially clear: BR = λ-calculus
and R = λµ-calculus.

2 Innocent game semantics

This section briefly presents the definitions necessary to construct the category
I of innocent strategies. A more detailed development can be found in [2].

2.1 Arenas and plays

An arena A is a tuple 〈MA, λA, IA,`A〉 where

– MA is a countable set of tokens.
– λA : MA→{O,P} × {Q,A} labels each m ∈MA as belonging to Opponent

or to Player and as a Question or an Answer.
– IA is a subset of λ−1

A (OQ) known as the initial moves of A.
– `A is a binary enabling relation on MA satisfying
(e1) if m `A n then λOP

A (m) 6= λOP
A (n) and n 6∈ IA;

(e2) if m `A n where λQA
A (n) = A then λQA

A (m) = Q.

An arena where answers never enable other moves is called an A-terminal arena.
A flat arena has a single OQ-move and a set of PA-moves, all enabled by the
O-move. For example, bool has an OQ, q, and two PAs, tt and ff, where q `bool tt
and q `bool ff. We similarly define ⊥⊥⊥, com and nat as the flat arenas over ∅,
{t} and {0, 1, 2, . . .} respectively. Note that a flat arena is always A-terminal.

A play in arena A is a string s over alphabet MA with pointers between its
occurrences such that, if si (the ith symbol of s) points to sj then j < i, if sj

points to si then si `A sj and if si has no pointer then si ∈ IA. We write |s|
for the length of s. A legal play in arena A is a play in A that also satisfies
OP-alternation: λOP

A (si) 6= λOP
A (si+1) for 1 ≤ i < |s|. Each occurrence in a legal

play s is an element m of MA together with its pointer (unless m ∈ IA); we call
m plus its pointer a move of s. If m points to n in s, we say that n justifies m
in s. We write LA for the set of all legal plays in A.

The prefix ordering on strings extends to LA with least element ε, the empty
play. For s, t ∈ LA, we write s v t (resp. s vO t, resp. s vP t) when s is a (resp.
O-ending, resp. P-ending) prefix of t. We fix the convention that ε vP s for any
s ∈ LA. We write s ∧ t for the longest common prefix of s and t, ip(s) or s−

for the immediate prefix of non-empty s and, provided the last move of s,
written sω, has a pointer, jp(s) for the justifying prefix of s, i.e. that prefix of
s ending with the move that justifies sω. We define ie(s) = {t ∈ LA | ip(t) = s},
the set of immediate extensions of s and, if s ∈ LA and m ∈ MA such that
sω enables m in A, we write s ·m for the legal play obtained by adding m to the
end of s, pointing to the last move.

We have the standard [6] constructors on arenas: the product A × B (and its
infinite version Aω), the par A O B and the lift ↓A from which we recover the
familiar arrow A ⇒ B as (↓A) O B. If A and B are pointed arenas [only one
initial move] then AOB is also pointed and, in this special case, is written A⊕B.
All constructors preserve the property of being A-terminal.

2.2 The ambient SMCC

A strategy σ for an arena A, written σ : A, is a non-empty set of P-ending
legal plays of A which satisfies

– prefix-closure: if s ∈ σ and s′ vP s then s′ ∈ σ;
– determinism: if s ∈ σ and t ∈ σ then s ∧ t ∈ σ.

The second condition amounts to asking for s∧ t to end with a P-move; so only
Opponent can branch nondeterministically. We write dom(σ) for the domain of
σ defined as

⋃
s∈σ ie(s), all the O-ending plays of A accessible to σ.

We compose strategies σ : A⇒ B and τ : B⇒ C by parallel composition plus
hiding, i.e. σ and τ synchronize on B and hide this from “the outside world”,
yielding σ ; τ : A⇒ C. It can be shown that, by taking arenas as objects and
strategies for A ⇒ B as arrows between A and B, this notion of composition
gives rise to an SMCC G [2].

2.3 The CCC of innocent strategies

We define the P-view , noted psq, of a non-empty legal play s ∈ LA in two stages.
First we extract a subsequence of s with pointers defined only for O-moves:

– psq = sω, if sω is an initial move;
– psq = pjp(s)q · sω, if sω is a non-initial O-move;
– psq = pip(s)q sω, if sω is a P-move.

In words, we trace back from the end of s, following pointers from O-moves,
excising all moves under such pointers, and “stepping over” P-moves, until we
reach an initial move. In general, a P-move can “lose its pointer” (if it points to
a move that gets erased in this way). The second stage of the definition specifies
that, in such a case, the P-move has no justifier in the P-view (and so psq 6∈ LA);
otherwise it keeps the same justifier as in s.
We say that a legal play s ∈ LA satisfies P-visibility iff psq ∈ LA. In words,
no P-move of psq loses its pointer. Note that this doesn’t prevent a P-move of
ptq losing its pointer, for t some proper prefix of s. We lift the definition of P-
visibility to strategies in the obvious way: σ satisfies P-visibility iff all s ∈ σ
do. Note that, for s in P-vis σ as opposed to arbitrary P-vis s, all t vP s do in
fact satisfy P-visibility—since σ is closed under P-ending prefixes—so ptq ∈ LA

for all the P-prefixes t of s.
If s, t ∈ LA where s ends with a P-move, satisfies P-vis and pip(s)q = ptq then
we denote by match(s, t) the unique extension of t satisfying psq = pmatch(s, t)q,
i.e. add the last move of s to t using the “same” pointer as in s. We can do this
since, by assumption, the last move of s points in pip(s)q = ptq.
We now say that a deterministic P-vis strategy σ is innocent iff

s ∈ σ ∧ t ∈ dom(σ) ∧ pip(s)q = ptq⇒ match(s, t) ∈ σ.

So an innocent strategy is completely determined by its view function pσq
defined to be {psq | s ∈ σ}. It can be shown that innocent strategies are closed
under composition and form a subcategory I of G where the monoidal structure
becomes Cartesian, i.e. I is a CCC. In the rest of this paper, we restrict to the
full subCCC of I consisting of A-terminal arenas only.

3 Bracketing and rigidity

3.1 Backward rigidity

An innocent strategy satisfies backward (or B-)rigidity iff every time it plays
an answer, the preceding O-move was also an answer. This rules out strategies
like skip = {ε, q · t} : com where Player produces an answer “from thin air”.

3.2 Forward rigidity

An obvious “dual” to B-rigidity applies the same condition to questions: every
time the strategy plays a question, the preceding move must itself have been
a question. We call such strategies forward (or F-)rigid. In the setting of A-
terminal arenas, this is equivalent to the notion of rigid strategy defined in [1].
This condition typically rules out case:

nat ⇒ (natω ⇒ nat)

q1

q2

n2

q3
n

m3

m1

3.3 The bracketing condition

The P-view of an O-ending legal play s has generic form

OQ((PQ x OQ)∗(PQ x OA)∗)∗

(where we’ve omitted Player’s pointers for clarity). The rightmost OQ of psq is
called the pending question of s. An innocent strategy satisfies the bracketing
condition iff, every time the strategy plays an answer, that answer is justified by
the pending question.
This rules out strategies like call/cc à la Peirce:

((com ⇒ com) ⇒ com) ⇒ com

q1

q2

q3

q4

t4

t1

3.4 The cube of subcategories

Each of the above constraints is preserved by composition, independently of
the others. For this reason, we say that the constraints are orthogonal. As an
immediate consequence of this, we can “unfold” the CCC of innocent strategies
I into a cube of subcategories:

←−
R

��
I

��
�

B
←−
R B

R
���

−→
R

��

BR B
−→
R

As shown in [1,3], any innocent strategy with finite view function for (the arena
interpreting) a simple type over a collection of flat arenas is denoted by a term
in the following “Böhm tree” syntax (with appropriate typing rules) where Ω is a
divergent term (or constant) of base type and k ranges over the (other) constants
of base type:

E ::= Ω | [α]k | (case (x)~F
−−−−→
k 7→ E)

F ::= λ~xµα(E)

We can “unfold” this rather compact syntax into the following grammar:

V ::= Ω | [α]k

C ::= Ω | (case (x)~F ~M)
E ::= V | C
M ::= k 7→ E

F ::= λ~xµα(E)

This more accurately reflects the game semantics in that each syntactic class
corresponds to a certain kind of move—V for Player answers, C for Player ques-
tions, M for Opponent answers and F for Opponent questions—and allows us
to easily identify the fragments corresponding to our three semantic constraints:
to impose the bracketing condition, we simply erase all µαs and [α]s; to impose
F-rigidity, we restrict M by M ′ ::= k 7→ V and to impose B-rigidity, we restrict
F by F ′ ::= λ~xµα(C).

4 Factorizations

We now present factorizations, one for each of our constraints, each of which
forces an innocent strategy to satisfy its constraint whilst preserving the other
two. We fix, once and for all, an encoding of the answers (in a given arena) as
natural numbers A 7→ ‘A’ and a second encoding of answer-natural number pairs
as natural numbers A, i 7→ ‘Ai’.

4.1 Backward rigidity

To eliminate a violation of B-rigidity—a Player answer preceded by an Opponent
question—we transform all OQ PA-ending P-views of σ into two new P-views:

...
...

OQ OQ

q q

q ‘PA’
q‘PA’ PA

t

‘PA’

All other P-views remain unchanged. This determines a B-rigid innocent strategy←−
R(σ) : ((comω ⇒ nat)⇒ nat)⇒ A—which is well-bracketed and/or F-rigid if
σ is—where we can recover σ by composing with const : (comω ⇒ nat)⇒ nat,
our oracle strategy, defined by the following view function:

q q

q q

qn n

t n

4.2 Forward rigidity

A violation of F-rigidity consists of an Opponent answer followed by a Player
question. We would therefore like to transform the view function of σ : A by
“disguising” OAs as OQs so that σ can play all of its questions in an F-rigid
manner. We can do this using case⊕, our oracle for F-rigidity, with view function:

(nat ⊕ nat) ⇒ (natω ⇒ nat)

q1

q2

n2
r

n1

q1

q2

n2
`

q3
n

m3

m1

This strategy is deterministic, total, well-bracketed and B-rigid and we have an
evident finite version casek,l

⊕ : (Fk ⊕F`)⇒ (Fk
` ⇒ F`) where Fk denotes a base

type with k distinct values.

The factorization transforms PQ x OA arches of PQ-ending P-views of σ into
PQ x OQ arches on ((nat⊕ nat)⇒ (natω ⇒ nat))⇒ A:

q1

q2

PQ

OA

‘OA’2`
q3
‘OA’

For well-bracketed PA-ending P-views of σ, we must pop all the q‘OA’s introduced
by the factorization, up to the pending question, so as to preserve bracketing:

OQ

q1

q3
‘OA’

...
q1

q3
‘OA’

q1

q2

PQ

OA

‘PA’2r

‘PA’1

‘PA’3

‘PA’1

...

‘PA’3

‘PA’1

PA

The factorized strategy initiates popping by playing ‘PA’2r. The oracle propagates
this directly to q1. If the new pending question still belongs to the oracle, the
strategy plays ‘PA’3r and the oracle again propagates. This continues until we
reach the pending question in A, whence PA is played. Note that this doesn’t
depend on σ at all: all factorized strategies will share the following essentially
history free component, where Player always points to the pending question:

‘PA’1 7→ PA, if the pending question is in A

‘PA’1 7→ ‘PA’3, otherwise

To formally describe the σ-dependent component, we define, for s ∈ pσq, its
(empty or singleton) principal P-view s and its set of auxiliary P-views As:

ε 7→ (ε, ∅)
s · OQ PQ 7→ (s · OQ q1 · q2 PQ,As)
s · OA PQ 7→ (s−− · q‘OA’ q

1 · q2 PQ,As ∪ {s · OA ‘OA’2`})
s · OQ PA 7→ (∅,As ∪ {s · OQ PA})
s · OA PA 7→ (∅,As ∪ {s · OA PA}), if s · OA PA violates bracketing

7→ (∅,As ∪ {s · OA ‘PA’2r}), otherwise

Lemma 1. If σ is an innocent strategy for A then

σ =
⋃

s∈pσq

s ∪ As

is a view function for ((nat⊕ nat)⇒ (natω ⇒ nat))⇒ A.

We can now formally define
−→
R(σ) as the innocent strategy determined by σ and

the history free component. This meshes perfectly with case⊕ to implement our
factorization:

Theorem 1. If σ is an innocent strategy for A then
−→
R(σ) is an F-rigid innocent

strategy for ((nat⊕ nat)⇒ (natω ⇒ nat))⇒ A satisfying

case⊕ ;
−→
R(σ) = σ.

If σ is well-bracketed and/or B-rigid then so is
−→
R(σ).

4.3 Bracketing

A violation of bracketing consists of a Player answer pointing beyond the pending
question. We thus need to transform P-views in such a way that each P x O arch
can, if necessary, be “popped” at a later point so as to recover a well-bracketed
strategy. To do this, we use call/cc⊕, a variant of call/cc, as oracle:

(((nat ⊕ nat) ⇒ nat) ⇒ nat) ⇒ (nat ⊕ nat)

q1

q2

q3

q4

n4
`

n1
`

q1

q2

q3

q4

n4
r

n3

q1

q2

n2

n1
r

This strategy is deterministic, total and (B- and F-)rigid. If we restrict to finite
enumerated types, we have call/cck,`

⊕ : (((Fk ⊕F`)⇒ F`)⇒ Fm)⇒ (Fk ⊕Fm).

Our factorization sandwiches each PQ x OQ arch of a P-view with q1 q2 and
q3 q4. So, if we subsequently play ‘PAj ’4` , call/cc⊕ replies with ‘PAj ’1` , “popping”
the arch.

...
q1

q2

PQ

OQ

q3

q4

...

The factorization also transforms PQ x OA arches:

...
q1

q2

PQ

OA

‘OA’2

‘OA’1r
...

As for F-rigidity, the popping phase is mainly implemented by a history free
component: the factorized strategy has only to initiate this process by providing
an offset j—the number of OQs of σ between the answer we wish to play and its
justifier. Formally, we map each P-view of pσq on A to a principal P-view and set
of auxiliary P-views on ((((nat⊕ nat)⇒ nat)⇒ nat)⇒ (nat⊕ nat))⇒ A:

ε 7→ (ε, ∅)
OQ PQ 7→ (OQ q1 · q2 PQ, ∅)

s · OQ PQ 7→ (s · OQ q3 · q4 q1 · q2 PQ,As)
s · OA PQ 7→ (s−− · ‘OA’1r q1 · q2 PQ,As ∪ {s · OA ‘OA’2})

OQ PA 7→ (OQ PA, ∅)
s · OA PA 7→ (s · OA PA,As), if s contains no non-initial OQs
s · OQ PA 7→ (∅,As ∪ {s · OQ q3 · q4 ‘PA’4r}), if j = 0

7→ (∅,As ∪ {s · OQ q3 · q4 ‘PAj−1’4`}), otherwise

s · OA PA 7→ (∅,As ∪ {s · OA ‘OA’2, s−− · ‘OA’1r ‘PA’4r}), if j = 0
7→ (∅,As ∪ {s · OA ‘OA’2, s−− · ‘OA’1r ‘PAj−1’4`}), otherwise

Lemma 2. If σ is an innocent strategy for A then

σ =
⋃

s∈pσq

s ∪ As

is a view function for ((((nat⊕ nat)⇒ nat)⇒ nat)⇒ (nat⊕ nat))⇒ A.

We write B(σ) for the innocent strategy determined by σ and the (almost) history
free component:

‘PAj+1’1` 7→ ‘PAj ’4`
‘PA0’1` 7→ PA, if the pending question is initial

7→ ‘PA’4r, otherwise
‘PA’3 7→ PA

Theorem 2. If σ is an innocent strategy for A then B(σ) is a well-bracketed
innocent strategy for ((((nat ⊕ nat) ⇒ nat) ⇒ nat) ⇒ (nat ⊕ nat)) ⇒ A
satisfying

call/cc⊕ ; B(σ) = σ.

If σ is F-rigid and/or B-rigid then so is B(σ).

4.4 The unary case

If we restrict ourselves to a single base type com with constants Ω, t : com, we
can simplify our factorizations and oracles. For B-rigidity, skip : com suffices
as oracle; the factorization simply inserts q · t just before all violating PAs. For
F-rigidity, we use seq : com ⇒ com ⇒ com, the unary case, as oracle; the
factorization simply transforms all PQ x OA arches into q1 x q3, popping (if
necessary) as usual.
For bracketing, Peirce’s law cc : ((com⇒ com)⇒ com)⇒ com acts as oracle.
The factorization transforms every OQ PQ-ending P-view s ∈ pσq by inserting
q1 · q2 q3 · q4 between the OQ and the PQ, where q3 points to the q2 occurring
after the “answering justifier” of s: consider the unique, maximal P-view t ∈ pσq
extending s where all O-moves (after s) are answers; if t ends with an answer,
the answering justifier is the question answered by the last move; otherwise
(including the case where no such maximal P-view exists), the answering justifier
is just the pending question of s. Syntactically, this corresponds to the translation
µα(t) 7→ (cc λα(t)) and [α]t 7→ (α)t. Instead of popping arches one-by-one, this
pops everything between a PA and its justifying question “in one go”. This
exploits the property (of the unary case) that we can statically determine the
answering justifier of a P-view. In the general case, the answering justifier can
only be known at runtime and so we have to pop arches dynamically.

References

1. V. Danos and R. Harmer. The anatomy of innocence. In Proceedings, Tenth An-
nual Conference of the European Association for Computer Science Logic. Springer
Verlag, 2001.

2. R. Harmer. Innocent game semantics. Lecture notes, 2004–2006.
3. H. Herbelin. Games and weak-head reduction for classical PCF. In Proceedings,

Third International Conference on Typed Lambda Calculi and Applications, Lecture
Notes in Computer Science. Springer, 1997.

4. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II and III.
Information and Computation, 163:285–408, 2000.

5. J. Laird. Full abstraction for functional languages with control. In Proceedings,
Twelfth Annual IEEE Symposium on Logic in Computer Science. IEEE Computer
Society Press, 1997.

6. O. Laurent. Polarized games. Annals of Pure and Applied Logic, 130(1–3):79–123,
December 2004.

7. H. Nickau. Hereditarily sequential functionals. In Proceedings, Logical Foundations
of Computer Science, Lecture Notes in Computer Science. Springer-Verlag, 1994.

