Categories for Me

(memorandum)

Olivier. Laurent @ens-lyon.fr
December 20, 2023

Contents

1 Categories 1
1.1 Constructions 3
1.2 Morphisms 3
1.3 Functors 5
1.4 Objects 9
2 Monoidal Categories 11
2.1 Monoids 15
3 Monads 17
4 Adjunctions 20
5 Closed Categories 23
6 2-Categories 25

1 Categories

Definition 1 (Category)
A category \mathbb{C} is given by a class of objects obj (\mathbb{C}) and, for each pair of objects A and B in obj (\mathbb{C}), a class of morphisms (or arrows) $\mathbb{C}(A, B)$ from A to B together with:

- identities: $i d_{A} \in \mathbb{C}(A, A)$ for each object A :

$$
A \xrightarrow{i d_{A}} A
$$

- composition: $\mathbb{C}(A, B) \times \mathbb{C}(B, C) \rightarrow \mathbb{C}(A, C)$, denoted by $(f, g) \mapsto f ; g$:

such that the following diagrams commute:

We can "summarize" these four diagrams into:

Example 1 (Category Set)
The category of sets $\mathbb{S e t}$ is given by:

- objects are sets
- morphisms are functions
- identities are identity functions
- composition is composition of functions

Definition 2 (Sub-Category)
A category \mathbb{D} is a sub-category of the category \mathbb{C} if its objects are objects of $\mathbb{C}(o b j(\mathbb{D}) \subseteq o b j(\mathbb{C}))$, its morphisms are morphisms of $\mathbb{C}(\mathbb{D}(A, B) \subseteq \mathbb{C}(A, B))$, its identities are the identities of \mathbb{C} $\left(i d_{A}^{\mathbb{D}}=i d_{A}^{\mathbb{C}}\right)$ and its composition is the composition of $\mathbb{C}\left(f ; \mathbb{D} g=f ; \mathbb{C}^{\mathbb{C}} g\right)$.
\mathbb{D} is a full sub-category of \mathbb{C} if, whenever A and B are objects of $\mathbb{D}, \mathbb{D}(A, B)=\mathbb{C}(A, B)$.
\mathbb{D} is a wide sub-category of \mathbb{C} if $o b j(\mathbb{D})=o b j(\mathbb{C})$.
A full sub-category is characterized by its class of objects.
Example 2 (Full Wide Sub-Category)
The unique full wide sub-category of a category is itself.

1.1 Constructions

Definition 3 (Dual Category)
The dual (or opposite) $\mathbb{C}^{o p}$ of a category \mathbb{C} is the category with:

- objects of $\mathbb{C}^{o p}$ are objects of \mathbb{C}
- morphisms of $\mathbb{C}^{o p}$ from A to B are morphisms of \mathbb{C} from B to A
- identities of $\mathbb{C}^{o p}$ are identities of \mathbb{C}
- composition of f and g in $\mathbb{C}^{o p}$ is $g ; f$ in \mathbb{C}

Definition 4 (Unit Category)
The unit category \mathbb{T} is given by:

- a unique object \star
- a unique morphism u from \star to \star
- $i d_{\star}=u$
- $u ; u=u$

Definition 5 (Product Category)
The product $\mathbb{C} \times \mathbb{D}$ of two categories \mathbb{C} and \mathbb{D} is the category with:

- objects are pairs of objects of \mathbb{C} and objects of \mathbb{D}
- morphisms from $\left(A, A^{\prime}\right)$ to (B, B^{\prime}) are pairs of morphisms of \mathbb{C} from A to B and morphisms of \mathbb{D} from A^{\prime} to B^{\prime}
- identity on $\left(A, A^{\prime}\right)$ is the pair $\left(i d_{A}, i d_{A^{\prime}}\right)$
- composition of $\left(f, f^{\prime}\right)$ and $\left(g, g^{\prime}\right)$ is $\left(f ; g, f^{\prime} ; g^{\prime}\right)$

1.2 Morphisms

Definition 6 (Monomorphism)
A monomorphism f from the object A to the object B (denoted $f: A \hookrightarrow B$) is a morphism from A to B such that for any two morphisms g and h from some object C to A, we have:

$$
g ; f=h ; f \Longrightarrow g=h
$$

Definition 7 (Epimorphism)

An epimorphism f from the object A to the object B (denoted $f: A \rightarrow B$) is a morphism from A to B such that for any two morphisms g and h from B to some object C, we have:

$$
f ; g=f ; h \Longrightarrow g=h
$$

It is thus a monomorphism in $\mathbb{C}^{o p}$.

Definition 8 (Idempotent)
A morphism f from the object A to itself is an idempotent if $f ; f=f$.
This can be written:

Definition 9 (Retract)
An object A is a retract of an object B (denoted $A \triangleleft B$) if there exist two morphisms $s \in \mathbb{C}(A, B)$ and $r \in \mathbb{C}(B, A)$ such that $s ; r=i d_{A}$.
This can be written:

s is then called a section of r, and r is called a retraction of $s .(s, r)$ is called a section-retraction pair.

If (s, r) is a section-retraction pair, s is a monomorphism and r is an epimorphism. Such monomorphisms and epimorphisms coming from a section-retraction pair are called split monomorphisms and split epimorphisms. $r ; s$ is an idempotent. Such idempotents coming from a section-retraction pair are called split idempotents.

Proof page 32
Definition 10 (Isomorphism)
An isomorphism f from the object A to the object B is a morphism from A to B such that there exists a morphism g from B to A (called the inverse of f) such that the following diagrams commute:

We can "summarize" these two diagrams into:

Property 1 (Retracts and Isomorphisms)
We have:

- If there exists an isomorphism between A and B (denoted $A \simeq B$) then both $A \triangleleft B$ and $B \triangleleft A$.
- If $f \in \mathbb{C}(A, B)$ is both a section and a retraction then it is an isomorphism.

Proof Page 32
In particular an isomorphism is both a monomorphism and an epimorphism (the converse does not hold in general).

Definition 11 (Essentially Wide Sub-Category)
\mathbb{D} is an essentially wide sub-category of \mathbb{C} if it is a sub-category such that, for each object A of \mathbb{C}, there is an object A^{\prime} of \mathbb{D} such that $A^{\prime} \simeq A$.

1.3 Functors

Definition 12 (Functor)
A functor F between two categories \mathbb{C} and \mathbb{D} is:

- a function from the objects of \mathbb{C} to the objects of \mathbb{D}
- for each A and B, a function from $\mathbb{C}(A, B)$ to $\mathbb{D}(F A, F B)$
such that the following diagrams in \mathbb{D} commute:

A functor from a category to itself is called an endofunctor.
Example 3 (Constant Functor)
If \mathbb{C} and \mathbb{D} are two categories and D is an object of \mathbb{D}, the constant functor C_{D} from \mathbb{C} to \mathbb{D} is defined by:

- for any $A \in \operatorname{obj}(\mathbb{C}), C_{D} A=D$
- for any $f \in \mathbb{C}(A, B), C_{D} f=i d_{D}$

The constant functor C_{\star} is the unique functor from any category \mathbb{C} to \mathbb{T}.
PROOF PAGE 32
Example 4 (Inclusion Functor)
If \mathbb{D} is a sub-category of \mathbb{C}, the inclusion functor I from \mathbb{D} to \mathbb{C} is defined by:

- for each $A \in o b j(\mathbb{D}), I A=A$
- if A and B are in $\operatorname{obj}(\mathbb{D})$ and $f \in \mathbb{D}(A, B), I f=f$

We denote by $I d_{\mathbb{C}}$ the identity endofunctor of \mathbb{C} which is the inclusion functor of \mathbb{C} into itself.
Proof page 32
Example 5 (Category Cat)
The category of categories \mathbb{C} at is given by:

- objects are (small) categories
- morphisms are functors
- identities are identity functors
- composition is composition of functors: if F is a functor from \mathbb{C} to \mathbb{D} and G is a functor from \mathbb{D} to \mathbb{E}, their composition $F ; G$ (or $G F)$ is the functor from \mathbb{C} to \mathbb{E} which maps the object A to $G(F A)$ and the morphism f to $G(F f)$.
If F is an endofunctor of a category \mathbb{C}, we use the notations F^{2} for $F ; F=F F, F^{3}$ for $F ; F ; F=$ FFF,...

Proof page 32
Property 2 (Preservation of Retracts)
Functors preserve retracts and isomorphisms: if F is a functor,

- $A \triangleleft B \Longrightarrow F A \triangleleft F B$
- $A \simeq B \Longrightarrow F A \simeq F B$

Definition 13 (Bi-Functor)
A bi-functor from two categories \mathbb{C} and \mathbb{D} to a category \mathbb{E} is a functor from $\mathbb{C} \times \mathbb{D}$ to \mathbb{E}.
More concretely, it is given by:

- a function from $o b j(\mathbb{C}) \times o b j(\mathbb{D})$ to $o b j(\mathbb{E})$
- for each A and B in $o b j(\mathbb{C})$ and A^{\prime} and B^{\prime} in $o b j(\mathbb{D})$, a function from $\mathbb{C}(A, B) \times \mathbb{D}\left(A^{\prime}, B^{\prime}\right)$ to $\mathbb{E}\left(F A A^{\prime}, F B B^{\prime}\right)$
such that the following diagrams in \mathbb{E} commute:

One often uses the notations $F A f$ for $F i d_{A} f$ and $F f A$ for $F f i d_{A}$, if A is an object.
Example 6 (Homset Functor)
The homset functor $\mathbb{C}\left({ }_{(},-\right)$of a category \mathbb{C} is the bi-functor from $\mathbb{C}^{o p}$ and \mathbb{C} to $\mathbb{S e t}$ given by:

- $\mathbb{C}(-,-)(A, B)=\mathbb{C}(A, B)$
- $\mathbb{C}(-,-)(f, g) h=f ; h ; g$ (for $f \in \mathbb{C}\left(A^{\prime}, A\right), g \in \mathbb{C}\left(B, B^{\prime}\right)$ and $\left.h \in \mathbb{C}(A, B)\right)$

Example 7 (Fixed Component Bi-Functor)

If F is a bi-functor from \mathbb{C} and \mathbb{D} to \mathbb{E} and if A is an object of C, we can define a functor F_{A} from \mathbb{D} to \mathbb{E} by:

- for any object B of $\mathbb{D}, F_{A} B=F A B$
- for any morphism $g \in \mathbb{D}\left(B, B^{\prime}\right), F_{A} g=F i d_{A}^{\mathbb{C}} g$

Definition 14 (Full and Faithful Functors)
A functor F between two categories \mathbb{C} and \mathbb{D} is full if, for any pair (A, B) of objects of \mathbb{C}, F is surjective from $\mathbb{C}(A, B)$ to $\mathbb{D}(F A, F B)$.
A functor F between two categories \mathbb{C} and \mathbb{D} is faithful if, for any pair (A, B) of objects of \mathbb{C}, F is injective from $\mathbb{C}(A, B)$ to $\mathbb{D}(F A, F B)$.

Definition 15 (Essentially Surjective Functor)
A functor F between two categories \mathbb{C} and \mathbb{D} is essentially surjective if, for each object A^{\prime} of \mathbb{D}, there exists an object A of \mathbb{C} such that A^{\prime} is isomorphic to $F A$.

Example 8 (Inclusion Functor (bis))
If \mathbb{D} is a sub-category of \mathbb{C}, the inclusion functor is faithful. It is full if and only if \mathbb{D} is a full sub-category of \mathbb{C}. It is essentially surjective if and only if \mathbb{D} is an essentially wide sub-category of \mathbb{C}.

Example 9 (Projection Functor)
Let \mathbb{C} and \mathbb{D} be two categories, the projection functor P from $\mathbb{C} \times \mathbb{D}$ to \mathbb{C} is defined by:

- for each $(A, B) \in \operatorname{obj}(\mathbb{C} \times \mathbb{D}), P(A, B)=A \in \operatorname{obj}(\mathbb{C})$
- if A and A^{\prime} are objects in \mathbb{C}, B and B^{\prime} are objects in \mathbb{D}, and $(f, g) \in \mathbb{C} \times \mathbb{D}\left((A, B),\left(A^{\prime}, B^{\prime}\right)\right)$, $P(f, g)=f \in \mathbb{C}\left(A, A^{\prime}\right)$

It is a full functor if \mathbb{D} has at least one morphism between any two objects.
PROOF PAGE 33
Definition 16 (Algebra)
An algebra for the endofunctor F is a pair $\left(A, h_{A}\right)$ where:

- A is an object
- h_{A} is a morphism from $F A$ to A

Definition 17 (Algebra Morphism)
An algebra morphism f from $\left(A, h_{A}\right)$ to $\left(B, h_{B}\right)$ is a morphism from A to B such that the following diagram commutes:

If F is a functor, its category of algebras $\mathbb{A} \lg (F)$ has objects the algebras of F and morphisms the algebra morphisms between them.

Definition 18 (Natural Transformation)
A transformation α between two functions F and G from the objects of a category \mathbb{C} to the objects of a category \mathbb{D} (in particular between two functors from \mathbb{C} to \mathbb{D}) is a family $\left(\alpha_{A}\right)_{A \in o b j(\mathbb{C})}$ of morphisms from $F A$ to $G A$.
A transformation α between two functors F and G is natural if the following diagram in \mathbb{D} commutes for all $f \in \mathbb{C}(A, B)$:

It is represented:

A natural isomorphism is a natural transformation such that each element is an isomorphism.
Example 10 (Identity Natural Transformation)
If F is a functor between the categories \mathbb{C} and $\mathbb{D},\left(i d_{F A}\right)_{A \in o b j(\mathbb{C})}$ is a natural isomorphism from F to itself.

Proof page 33
Definition 19 (Vertical Composition)
Let F, G and H be three functors between the same two categories \mathbb{C} and \mathbb{D}, if α is a natural transformation for F to G and β is a natural transformation from G to H, the vertical composition $\alpha ;^{1} \beta$ is the natural transformation from F to H defined by $\left(\alpha ;^{1} \beta\right)_{A}=\alpha_{A} ; \beta_{A}$.

Proof page 33
Definition 20 (Horizontal Composition)
Let \mathbb{C}, \mathbb{D} and \mathbb{E} be three categories, F and F^{\prime} be two functors from \mathbb{C} to \mathbb{D} and G and G^{\prime} be two functors from \mathbb{D} to \mathbb{E}, if α is a natural transformation for F to F^{\prime} and β is a natural transformation from G to G^{\prime}, the horizontal composition $\alpha{ }^{0} \beta$ is the natural transformation from $F ; G$ to $F^{\prime} ; G^{\prime}$ defined by $\left(\alpha ;^{0} \beta\right)_{A}=G \alpha_{A} ; \beta_{F^{\prime} A}=\beta_{F A} ; G^{\prime} \alpha_{A}$.

Proof page 33
Example 11 (Category of Functors)
Let \mathbb{C} and \mathbb{D} be two categories, the category of functors $\mathbb{F u n c}(\mathbb{C}, \mathbb{D})$ is given by:

- objects are functors between \mathbb{C} and \mathbb{D}
- morphisms are natural transformations
- identities are the identity natural transformations
- composition is the vertical composition of natural transformations

1.4 Objects

Definition 21 (Terminal Object)
A terminal object in a category \mathbb{C} is an object T such that, for any object A of \mathbb{C}, there exists a unique morphism t_{A} from A to T.

If \mathbb{C} is a category with a terminal object T, a point of an object A of \mathbb{C} is a morphism from T to A.

Definition 22 (Initial Object)
An initial object in a category \mathbb{C} is an object \perp such that, for any object A of \mathbb{C}, there exists a unique morphism i_{A} from \perp to A.
It is thus a terminal object in $\mathbb{C}^{o p}$.
A zero object is an object 0 which is both initial and terminal. If 0 is a zero object in the category \mathbb{C} and A and B are two objects of \mathbb{C}, the zero morphism $z_{A, B}$ is:

$$
A \xrightarrow{t_{A}} 0 \xrightarrow{i_{A}} B
$$

Definition 23 (Product)
A product of two objects A and B in a category \mathbb{C} is a triple $\left(A \times B, \pi_{A}, \pi_{B}\right)$ where:

- $A \times B$ is an object of \mathbb{C}
- π_{A} is a morphism from $A \times B$ to A
- π_{B} is a morphism from $A \times B$ to B
such that, for any triple (C, f, g), where C is an object of \mathbb{C}, f is a morphism from C to A and g is a morphism from C to B, there exists a unique morphism $\langle f, g\rangle$ from C to $A \times B$ such that $\langle f, g\rangle ; \pi_{A}=f$ and $\langle f, g\rangle ; \pi_{B}=g$.
This can be written:

If $\left(A \times A, \pi_{A}^{l}, \pi_{A}^{r}\right)$ is a product of A and A in \mathbb{C}, the diagonal morphism Δ_{A} is $\left\langle i d_{A}, i d_{A}\right\rangle$ from A to $A \times A$. It a section of both projections π_{A}^{l} and π_{A}^{r}.
A category equipped with a product for each pair of objects and which has a terminal object is called a cartesian category. In such a category, one can form all products of finite families of objects. If \mathbb{C} is a cartesian category, \times defines a bi-functor from \mathbb{C} and \mathbb{C} to \mathbb{C}, and Δ is a natural transformation from $I d_{\mathbb{C}}$ to ${ }_{-} \times{ }_{-}$.

Proof page 33
Definition 24 (Co-Product)
A co-product of two objects A and B in a category \mathbb{C} is a triple $\left(A+B, \iota_{A}, \iota_{B}\right)$ where:

- $A+B$ is an object of \mathbb{C}
- ι_{A} is a morphism from A to $A+B$
- ι_{B} is a morphism from B to $A+B$
such that, for any triple (C, f, g), where C is an object of \mathbb{C}, f is a morphism from A to C and g is a morphism from B to C, there exists a unique morphism $[f, g]$ from $A+B$ to C such that $\iota_{A} ;[f, g]=f$ and $\iota_{B} ;[f, g]=g$.

It is thus a product in $\mathbb{C}^{o p}$.
If $\left(A+A, \iota_{A}^{l}, \iota_{A}^{r}\right)$ is a co-product of A and A in \mathbb{C}, the co-diagonal morphism ∇_{A} is $\left[i d_{A}, i d_{A}\right]$ from $A+A$ to A.

Example 12 (Products and Co-Products in Set)
If A and B are two sets, the cartesian product $A \times B$ (with the projection functions) defines a product of A and B in Set. The singleton set $\{\star\}$ is terminal in Set. With this structure, Set is a cartesian category.
The disjoint union $A \uplus B$ (with the injection functions) is a co-product in $\mathbb{S e t}$. The empty set \emptyset is an initial object in Set.

Proof page 33
Example 13 (Products in Cat)
If \mathbb{C} and \mathbb{D} are two categories, the product category $\mathbb{C} \times \mathbb{D}$ (with the projection functors) defines a product of \mathbb{C} and \mathbb{D} in \mathbb{C}. The unit category \mathbb{T} is terminal in \mathbb{C}. With this structure, \mathbb{C}. at is a cartesian category.

Proof page 34
Example 14 (Co-Products in Cat)
If \mathbb{C} and \mathbb{D} are two categories, the category $\mathbb{C}+\mathbb{D}$ is given by:

- objects are in the disjoint union $o b j(\mathbb{C}) \uplus o b j(\mathbb{D})$
- morphisms from $(0, A)$ to $(0, B)$ are $\mathbb{C}(A, B)$, morphisms from $\left(1, A^{\prime}\right)$ to $\left(1, B^{\prime}\right)$ are $\mathbb{D}\left(A^{\prime}, B^{\prime}\right)$ (and there is no morphism from (i, A) to $\left(j, B^{\prime}\right)$ if $i \neq j$)
- composition and identities come from those of \mathbb{C} and \mathbb{D}

Up to the identification of $o b j(\mathbb{C})$ and $o b j(\mathbb{D})$ with their disjoint copies in $o b j(\mathbb{C}) \uplus o b j(\mathbb{D})$, one can consider the inclusion functors as functors from \mathbb{C} to $\mathbb{C}+\mathbb{D}$ and from \mathbb{D} to $\mathbb{C}+\mathbb{D}$. The category $\mathbb{C}+\mathbb{D}$ with these two functors defines a co-product of \mathbb{C} and \mathbb{D} in \mathbb{C} at.
The empty category \Perp with no object and no morphism is initial in \mathbb{C} at.

Definition 25 (Bi-Product)
Let \mathbb{C} be a category with a zero object 0 and A and B two objects of \mathbb{C}, a bi-product of A and B is a 5 -tuple $\left(A \oplus B, \iota_{A}, \iota_{B}, \pi_{A}, \pi_{B}\right)$ where:

- $\left(A \oplus B, \pi_{A}, \pi_{B}\right)$ is a product of A and B in \mathbb{C}
- $\left(A \oplus B, \iota_{A}, \iota_{B}\right)$ is a co-product of A and B in \mathbb{C}
and such that:

$$
\begin{aligned}
\iota_{A} ; \pi_{A} & =i d_{A} \\
\iota_{B} ; \pi_{B} & =i d_{B} \\
\iota_{A} ; \pi_{B} & =z_{A, B} \\
\iota_{B} ; \pi_{A} & =z_{B, A}
\end{aligned}
$$

Definition 26 (Equalizer)
An equalizer of two morphisms f and g between the same two objects A and B in a category \mathbb{C} is a pair (E, e) where E is an object of \mathbb{C} and e is a morphism from E to A such that $e ; f=e ; g$ and, for any pair $\left(E^{\prime}, e^{\prime}\right)$, where E^{\prime} is an object of \mathbb{C} and e^{\prime} is a morphism from E^{\prime} to A such that $e^{\prime} ; f=e^{\prime} ; g$, there exists a unique morphism h from E^{\prime} to E such that $e^{\prime}=h ; e$.
This can be written:

If (E, e) is an equalizer, e is a monomorphism. Such monomorphisms coming from an equalizer are called regular monomorphisms. A split monomorphism is a regular monomorphism.

Proof page 34

2 Monoidal Categories

Definition 27 (Monoidal Category)
A monoidal category is a 6 -tuple $\left(\mathbb{C}, \otimes, 1, a, u^{l}, u^{r}\right)$ where:

- \otimes is a bi-functor from \mathbb{C} and \mathbb{C} to \mathbb{C}
- 1 is an object of \mathbb{C}
- a is a natural isomorphism from $\left(-\otimes_{-}\right) \otimes_{_^{\prime \prime}}$ to $\Theta_{-}\left(__{-}^{\prime} \otimes_{-}^{\prime \prime}\right)$
- u^{l} is a natural isomorphism from $I d_{\mathbb{C}}$ to $-\otimes 1$
- u^{r} is a natural isomorphism from $I d_{\mathbb{C}}$ to $1 \otimes{ }_{-}$
such that the following diagrams commute:

A monoidal category is strict if the natural isomorphisms a, u^{l} and u^{r} are the identity natural isomorphism.
A symmetric monoidal category is a 7 -tuple $\left(\mathbb{C}, \otimes, 1, a, u^{l}, u^{r}, s\right)$ where:

- $\left(\mathbb{C}, \otimes, 1, a, u^{l}, u^{r}\right)$ is a monoidal category
- s is a natural isomorphism from $\otimes_{_}$' to $__{-} \otimes_{-}$
such that the following diagrams commute:

From this definition, it is possible to deduce that, in any monoidal category, $u_{1}^{r}=u_{1}^{l}$.
Proof page 35
From this definition, it is possible to deduce that, in any symmetric monoidal category:

If $\left(\mathbb{C}, \otimes, 1, a, u^{l}, u^{r}\right)$ is a monoidal category (resp. a symmetric monoidal category) then $\left(\mathbb{C}^{o p}, \otimes, 1, a^{-1}, u^{l-1}, u^{r-1}\right)$ as well.

Example 15 (Cartesian Category)
A cartesian category \mathbb{C} is a symmetric monoidal category $(\mathbb{C}, \times, \top)$ with the natural isomorphisms:

- $a_{A, B, C}=\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle$
- $u_{A}^{l}=\left\langle i d_{A}, t_{A}\right\rangle$
- $u_{A}^{r}=\left\langle t_{A}, i d_{A}\right\rangle$
- $s_{A, B}=\left\langle\pi_{B}, \pi_{A}\right\rangle$

Definition 28 (Monoidal Functor)
A monoidal functor between two monoidal categories $(\mathbb{C}, \otimes, 1)$ and $(\mathbb{D}, \boxtimes, \mathrm{I})$ is a triple (F, m, n) where:

- F is a functor from \mathbb{C} to \mathbb{D}
- m is a natural transformation from $F_{-} \boxtimes F_{-}$to $\left.F\left({ }_{-} \otimes_{-}\right)^{\prime}\right)$
- n is a morphism from I to $F 1$
such that the following diagrams in \mathbb{D} commute:

If \mathbb{C} and \mathbb{D} are symmetric monoidal, a symmetric monoidal functor is a monoidal functor such that the following diagram in \mathbb{D} commutes:

Let (F, m, n) be a monoidal functor, F is strong if $m_{A, B}$ and n are isomorphisms and F is strict if they are equalities.

Definition 29 (Co-Monoidal Functor)
A co-monoidal functor between two monoidal categories $(\mathbb{C}, \otimes, 1)$ and $(\mathbb{D}, \boxtimes, \mathbb{I})$ is a triple (F, m, n) which is a monoidal functor between $\left(\mathbb{C}^{o p}, \otimes, 1\right)$ and $\left(\mathbb{D}^{o p}, \boxtimes, \mathrm{I}\right)$, thus: m natural transformation from $F\left(-\otimes_{-}^{\prime}\right)$ to $F_{-} \boxtimes F_{-}^{\prime}$ and n morphism from $F 1$ to I.
We thus have the following commutative diagrams:

$F A \boxtimes$ I

Definition 30 (Monoidal Natural Transformation)
A monoidal natural transformation α between two monoidal functors F and G between the same two monoidal categories $(\mathbb{C}, \otimes, 1)$ and $(\mathbb{D}, \boxtimes, I)$ is a natural transformation such that the following diagrams in \mathbb{D} commute:

2.1 Monoids

Definition 31 (Monoid)
A monoid in a monoidal category $(\mathbb{C}, \otimes, 1)$ is a triple $\left(A, c_{A}, w_{A}\right)$ where:

- A is an object
- c_{A} is a morphism from $A \otimes A$ to A
- w_{A} is a morphism from 1 to A
that is:

$$
A \otimes A \xrightarrow{c_{A}} A \stackrel{w_{A}}{\leftarrow} 1
$$

such that the following diagrams commute:

If \mathbb{C} is symmetric monoidal, a monoid is symmetric if the following diagram commutes:

Definition 32 (Monoidal Morphism)
A monoidal morphism f between two monoids $\left(A, c_{A}, w_{A}\right)$ and $\left(B, c_{B}, w_{B}\right)$ in a monoidal category is a morphism from A to B such that the following diagrams commute:

Monoids of a monoidal category $(\mathbb{C}, \otimes, 1)$ and monoidal morphisms between them define a category $\operatorname{Mon}(\mathbb{C})$ called the category of monoids of \mathbb{C}.

Definition 33 (Co-Monoid)
A co-monoid in \mathbb{C} is a monoid in $\mathbb{C}^{o p}$. It is thus a triple $\left(A, d_{A}, e_{A}\right)$ with d_{A} morphism from A to
$A \otimes A$ and e_{A} morphism from A to 1 such that:

Definition 34 (Co-Monoidal Morphism)
A co-monoidal morphism f between two co-monoids $\left(A, d_{A}, e_{A}\right)$ and $\left(B, d_{B}, e_{B}\right)$ in a monoidal category is a morphism from A to B such that the following diagrams commute:

Co-monoids of a monoidal category $(\mathbb{C}, \otimes, 1)$ and co-monoidal morphisms between them define a category coMon (\mathbb{C}) called the category of co-monoids of \mathbb{C}.

Example 16 (Co-Monoids and Cartesian Categories)
In a cartesian category \mathbb{C}, each object A comes with a canonical structure of symmetric co-monoid $\left(A, \Delta_{A}, t_{A}\right)$. Since any morphism of \mathbb{C} is co-monoidal for these co-monoid structures, one can see \mathbb{C} as a full sub-category of coMon(\mathbb{C}).
Conversely, let \mathbb{C} be a monoidal category and \mathbb{M} be a sub-category of coMon (\mathbb{C}) such that:

- the forgetful functor U from \mathbb{M} to \mathbb{C} which maps triples $\left(A, d_{A}, e_{A}\right)$ to A is full and injective on objects
- if A and B are in the image of U then $A \otimes B$ as well
- 1 is in the image of U
- the following diagram commutes:

- $e_{1}=i d_{1}$
then $U M$ is a cartesian category with \otimes as product and 1 as terminal object.

Property 3 (Preservation of Monoids)
If (F, m, n) is a monoidal functor from $(\mathbb{C}, \otimes, 1)$ to $(\mathbb{D}, \boxtimes, \mathbb{I})$ and $\left(A, c_{A}, w_{A}\right)$ is a monoid in $(\mathbb{C}, \otimes, 1)$, then $\left(F A, m_{A, A} ; F c_{A}, n ; F w_{A}\right)$ is a monoid in $(\mathbb{D}, \boxtimes, \mathbb{I})$. We say that monoidal functors preserve monoids.

$$
F A \boxtimes F A \xrightarrow{m_{A, A}} F(A \otimes A) \xrightarrow{F c_{A}} F A \stackrel{F w_{A}}{\leftarrow} F 1 \lessdot n_{\longleftarrow} \mathrm{I}
$$

Similarly, symmetric monoidal functors preserve symmetric monoids, and co-monoidal functors preserve co-monoids.

Proof page 40

3 Monads

Definition 35 (Monad)
A monad on a category \mathbb{C} is a triple (T, η, μ) where:

- T is an endofunctor of \mathbb{C}
- η is a natural transformation from $I d_{\mathbb{C}}$ to T
- μ is a natural transformation from T^{2} to T

$$
T^{2} \xrightarrow{\mu} T \ll^{\eta} I d_{\mathbb{C}}
$$

such that the following diagrams commute:

A co-monad on \mathbb{C} is a monad on $\mathbb{C}^{o p}$, that is a triple (T, ε, δ) (T endofunctor of \mathbb{C}, ε natural transformation from T to $I d_{\mathbb{C}}$ and δ natural transformation from T to T^{2}) such that:

Definition 36 (Kleisli Triple)
A Kleisli triple on a category \mathbb{C} is a triple $\left(T, \eta,(-)^{\dagger}\right)$ where:

- T is a function from $\operatorname{obj}(\mathbb{C})$ to $\operatorname{obj}(\mathbb{C})$
- η is a transformation from $I d_{\mathbb{C}}$ to T
- $(-)^{\dagger}$ is a function from $\mathbb{C}(A, T B)$ to $\mathbb{C}(T A, T B)$
such that the following diagrams commute:

The notions of monad and Kleisli triple are equivalent through:

$$
\begin{aligned}
(T, \eta, \mu) & \mapsto\left(T, \eta, T_{-} ; \mu\right) \\
\left(T, \eta,(-)^{\dagger}\right) & \mapsto\left(T, \eta, i d_{T_{-}}^{\dagger}\right)
\end{aligned}
$$

Definition 37 (Strong Monad)
A strong monad on a monoidal category \mathbb{C} is a monad equipped with τ where:

- τ is a natural transformation from ${ }_{-} \otimes_{-}{ }_{-}$to $T\left({ }_{-} \otimes_{-}{ }^{\prime}\right)$
such that the following diagrams commute:

Definition 38 (Commutative Monad)
A commutative monad on a symmetric monoidal category \mathbb{C} is a strong monad such that, if:

$$
\tau_{A, B}^{\prime}=T A \otimes B \xrightarrow{s_{T A, B}} B \otimes T A \xrightarrow{\tau_{B, A}} T(B \otimes A) \xrightarrow{T s_{B, A}} T(A \otimes B)
$$

then the following diagram commutes:

Definition 39 (Monoidal Monad)
A monad (T, η, μ) on a monoidal category \mathbb{C} is monoidal if T is a monoidal functor, and η and μ are monoidal natural transformations.
If \mathbb{C} is symmetric monoidal, the monad is symmetric monoidal if, moreover, T is a symmetric monoidal functor.

Property 4 (Monoidal and Commutative Monads)
Let \mathbb{C} be a symmetric monoidal category and T be a strong monad on \mathbb{C} :

- T equipped with either:

$$
T A \otimes T B \xrightarrow{\tau_{T A, B}} T(T A \otimes B) \xrightarrow{T \tau_{A, B}^{\prime}} T^{2}(A \otimes B) \xrightarrow{\mu_{A \otimes B}} T(A \otimes B)
$$

or

$$
T A \otimes T B \xrightarrow{\tau_{A, T B}^{\prime}} T(A \otimes T B) \xrightarrow{T \tau_{A, B}} T^{2}(A \otimes B) \xrightarrow{\mu_{A \otimes B}} T(A \otimes B)
$$

and $\eta_{1}: 1 \rightarrow T 1$ is a monoidal functor

- in both cases, η and μ are monoidal natural transformations
- T is a symmetric monoidal functor $\Longleftrightarrow T$ is a commutative monad

Definition 40 (Algebra)
An algebra for the monad T is a pair $\left(A, h_{A}\right)$ which is an algebra for the functor T such that the following diagrams commute:

Example 17 (Free Algebra)
For any object $A,\left(T A, \mu_{A}\right)$ is an algebra called the free algebra generated by A.
Definition 41 (Eilenberg-Moore Category)
If T is a monad on the category \mathbb{C}, its category of algebras is the full sub-category of the category of algebras of the functor T whose objects are the algebras of the monad T. It is also called the Eilenberg-Moore category of T and denoted \mathbb{C}^{T}.

Definition 42 (Kleisli Category)
If T is a monad on the category \mathbb{C}, the Kleisli category \mathbb{C}_{T} has objects the objects of \mathbb{C} and for morphisms: $\mathbb{C}_{\mathbb{T}}(A, B)=\mathbb{C}(A, T B)$. The identities are $\eta_{A} \in \mathbb{C}(A, T A)$, and the composition of $f \in \mathbb{C}(A, T B)$ and $g \in \mathbb{C}(B, T C)$ is $f ; T g ; \mu_{C} \in \mathbb{C}(A, T C)$.

Definition 43 (Distributive Law)
If $\left(T, \eta^{T}, \mu^{T}\right)$ and $\left(S, \eta^{S}, \mu^{S}\right)$ are two monads on the category \mathbb{C}, a distributive law of T over S is a natural transformation l from $S T$ to $T S$ such that the following diagrams commute:

Example 18 (Composition of Monads)
Let $\left(T, \eta^{T}, \mu^{T}\right)$ and $\left(S, \eta^{S}, \mu^{S}\right)$ be two monads on the category \mathbb{C}, and l be a distributive law of T over $S, T S$ equipped with

$$
A \xrightarrow{\eta_{A}^{S}} S A \xrightarrow{\eta_{S A}^{T}} T S A \quad \text { and } \quad T S T S A \xrightarrow{T l_{S A}} T T S S A \xrightarrow{\mu_{S S A}^{T}} T S S A \xrightarrow{T \mu_{A}^{S}} T S A
$$

is a monad on \mathbb{C}.

4 Adjunctions

Definition 44 (Adjunction)
An adjunction $F \dashv G$ between two categories \mathbb{C} and \mathbb{D} is a triple (F, G, φ) where:

- F is a functor from \mathbb{C} to \mathbb{D}
- G is a functor from \mathbb{D} to \mathbb{C}
- φ is a natural isomorphism from the functor $\mathbb{D}\left(F_{-},{ }_{-}^{\prime}\right)$ to the functor $\mathbb{C}\left(-, G_{-}\right)$(both from $\mathbb{C}^{o p} \times \mathbb{D}$ to $\left.\operatorname{Set}\right)$.

$$
\frac{F A \longrightarrow B^{\prime}}{A \longrightarrow G B^{\prime}} \varphi
$$

Equivalently, an adjunction $F \dashv G$ between two categories \mathbb{C} and \mathbb{D} is a quadruple $(F, G, \eta, \varepsilon)$ where:

- F is a functor from \mathbb{C} to \mathbb{D}
- G is a functor from \mathbb{D} to \mathbb{C}
- η is a natural transformation from $I d_{\mathbb{C}}$ to $G F$
- ε is a natural transformation from $F G$ to $I d_{\mathbb{D}}$
such that the following diagrams commute:

If $F \dashv G$ is an adjunction, F is called a left adjoint and G is called a right adjoint.
The diagram underlying the naturality of φ is, in \mathbb{C} :

The equivalence between the two definitions is given by:

$$
\begin{aligned}
\varphi_{A, A^{\prime}}(f) & =A \xrightarrow{\eta_{A}} G F A \xrightarrow{G f} G A^{\prime} \\
\eta_{A} & =A \xrightarrow{\varphi_{A, F A}\left(i d_{F A}\right)} G F A \\
\varepsilon_{A^{\prime}} & =F G A^{\prime} \xrightarrow{\varphi_{G A^{\prime}, A^{\prime}}^{-1}\left(i d_{G A^{\prime}}\right)} A^{\prime}
\end{aligned}
$$

Example 19 (Category of Adjunctions)
The category of adjunctions $\mathbb{A d j}$ is given by:

- objects are (small) categories
- morphisms in $\mathbb{A d j}(\mathbb{C}, \mathbb{D})$ are adjunctions between \mathbb{C} and \mathbb{D}
- identities are identity adjunctions ($I d, I d, i d$)
- composition is composition of adjunctions: if (F, G, φ) is an adjunction between \mathbb{C} and \mathbb{D} and $\left(F^{\prime}, G^{\prime}, \varphi^{\prime}\right)$ is an adjunction between \mathbb{D} and \mathbb{E} then $\left(F ; F^{\prime}, G^{\prime} ; G, \varphi_{F_{-,}, 2^{\prime}}^{\prime} ; \varphi_{-, G^{\prime}-}\right)$ is an adjunction between \mathbb{C} and \mathbb{E}.

Definition 45 (Monoidal Adjunction)
An adjunction $(F, G, \eta, \varepsilon)$ between two monoidal categories \mathbb{C} and \mathbb{D} is monoidal if F and G are monoidal functors and η and ε are monoidal natural transformations.
If \mathbb{C} and \mathbb{D} are symmetric monoidal, the adjunction is symmetric monoidal if, moreover, F and G are symmetric monoidal functors.

In a monoidal adjunction, F is strong.
Property 5 (Monad of an Adjunction)
If $(F, G, \eta, \varepsilon)$ is an adjunction, $\left(G F, \eta, G \varepsilon_{F_{-}}\right)$is a monad called the monad of the adjunction.
Similarly, $\left(F G, \varepsilon, F \eta_{G_{-}}\right)$is a co-monad.
If the adjunction is monoidal, the monad is monoidal. If the adjunction is symmetric monoidal, the monad is symmetric monoidal.

Example 20 (Eilenberg-Moore Adjunction)
Let T be a monad on \mathbb{C}, let F be the free-algebra functor from \mathbb{C} to \mathbb{C}^{T} associating $\left(T A, \mu_{A}\right)$ with A, and associating $T f \in \mathbb{C}^{\mathbb{T}}\left(\left(T A, \mu_{A}\right),\left(T B, \mu_{B}\right)\right)$ with $f \in \mathbb{C}(A, B)$.
Let U be the forgetful functor from \mathbb{C}^{T} to \mathbb{C} associating A with the algebra $\left(A, h_{A}\right)$ and such that $U f=f$.

F is a left adjoint to U and the monad associated with this adjunction is T.
Example 21 (Kleisli Adjunction)
Let T be a monad on \mathbb{C}, let E be the embedding functor from \mathbb{C} to \mathbb{C}_{T} associating A with A $(E A=A)$, and associating $f ; \eta_{A} \in \mathbb{C}_{\mathbb{T}}(A, B)$ with $f \in \mathbb{C}(A, B)$.
Let T^{\prime} be the functor from \mathbb{C}_{T} to \mathbb{C} defined by $T^{\prime} A=T A$ and $T^{\prime} f=T f ; \mu_{B}$ for $f \in \mathbb{C}_{\mathbb{T}}(A, B)$.

E is a left adjoint to T^{\prime} and the monad associated with this adjunction is T.
Example 22 (Category of Adjunctions of a Monad)
Let T be a monad on a category \mathbb{C}, the category T - $\mathbb{A} d j$ of adjunctions of the monad T is given by:

- objects are tuples $(\mathbb{D}, F, G, \eta, \varepsilon)$ where $(F, G, \eta, \varepsilon)$ is an adjunction between \mathbb{C} and \mathbb{D} which induces the monad T on \mathbb{C} (Property 5)
- morphisms between $(\mathbb{D}, F, G, \eta, \varepsilon)$ and $\left(\mathbb{D}^{\prime}, F^{\prime}, G^{\prime}, \eta^{\prime}, \varepsilon^{\prime}\right)$ are functors L from \mathbb{D} to \mathbb{D}^{\prime} such that the following diagram commutes:

and $L \varepsilon=\varepsilon_{L}^{\prime}$.
The Kleisli adjunction is the initial object of T-Adj.
The Eilenberg-Moore adjunction is the terminal object of T-Adj.
Definition 46 (Equivalence of Categories)
A functor F between two categories \mathbb{C} and \mathbb{D} is an equivalence of categories if one of the two following equivalent properties is true:
- There exists an adjunction $(G, F, \eta, \varepsilon)$ between \mathbb{D} and \mathbb{C} such that η and ε are natural isomorphisms.
- F is full, faithful and essentially surjective.

Property 6 (Strict Monoidal Categories)
Every monoidal category is equivalent to a strict monoidal category.
Property 7 (Kleisli Category and Free Algebras)
If T is a monad on the category \mathbb{C}, the category \mathbb{C}_{T} is equivalent to the full-subcategory of \mathbb{C}^{T} consisting of free algebras.

5 Closed Categories

Definition 47 (Symmetric Monoidal Closed Category)
A symmetric monoidal category $\left(\mathbb{C}, \otimes, 1, a, u^{l}, u^{r}, s\right)$ is closed if, for any object A of \mathbb{C}, the functor - $\otimes A$ has a right adjoint (noted $A \multimap$-).

$$
\frac{C \otimes A \longrightarrow B}{C \longrightarrow A \multimap B} \text { curry }
$$

In a symmetric monoidal closed category, if f is a morphism from $C \otimes A$ to B, we denote by $\operatorname{curry}(f)$ the induced morphism from C to $A \multimap B$. We define $e v_{A, B}$ as $\operatorname{curry}^{-1}\left(i d_{A \multimap B}\right) \in \mathbb{C}((A \multimap$ $B) \otimes A, B)$.

Definition 48 (Exponential Object)
If A and B are two objects of a symmetric monoidal category \mathbb{C}, an exponential object of A and B is a pair $\left(B^{A}, e v_{A, B}\right)$ where B^{A} is an object of \mathbb{C} and $e v_{A, B} \in \mathbb{C}\left(B^{A} \otimes A, B\right)$ such that, for any morphism $f \in \mathbb{C}(C \otimes A, B)$, there exists a unique morphism $\lambda f \in \mathbb{C}\left(C, B^{A}\right)$ such that $f=\left(\lambda f \otimes i d_{A}\right) ; e v_{A, B}$.

This can be written:

The notions of symmetric monoidal closed category and exponential object are related by the fact that a symmetric monoidal category is closed if and only if each pair of objects has an associated exponential object.

Definition 49 (Dual Object)
In a symmetric monoidal category $\left(\mathbb{C}, \otimes, 1, a, u^{l}, u^{r}, s\right)$, a dual of an object A is an object A^{\perp} with two morphisms $\eta \in \mathbb{C}\left(1, A \otimes A^{\perp}\right)$ and $\varepsilon \in \mathbb{C}\left(A^{\perp} \otimes A, 1\right)$ such that the following diagrams commute:

Definition 50 (Compact Closed Category)
A symmetric monoidal category is compact closed if each object has a dual object.
Example 23 (Closure of Compact Closed Categories)
A compact closed category is a symmetric monoidal closed category with $A \multimap_{-}=A^{\perp} \otimes_{{ }_{-}}$.
Remember (Example 15) that a cartesian category has a canonical symmetric monoidal structure.
Definition 51 (Cartesian Closed Category)
A cartesian category is cartesian closed if, as a symmetric monoidal category, it is closed.

Definition 52 (*-Autonomous Category)
A symmetric monoidal closed category \mathbb{C} is $*$-autonomous if it contains a dualizing object, that is an object \perp such that, for each object A of \mathbb{C}, the following morphism is an isomorphism between A and $(A \multimap \perp) \multimap \perp$:

$$
\operatorname{curry}\left(A \otimes(A \multimap \perp) \xrightarrow{s_{A, A \rightarrow \perp}}(A \multimap \perp) \otimes A \xrightarrow{e v_{A, \perp}} \perp\right)
$$

Example 24 (Compact Closed and $*$-Autonomous Categories)
Any compact closed category is $*$-autonomous with 1^{\perp} as dualizing object.
Any $*$-autonomous category such that $(A \otimes B) \multimap \perp \simeq(B \multimap \perp) \otimes(A \multimap \perp)$ is compact closed with $A \multimap \perp$ as dual of A.

6 2-Categories

Definition 53 (2-Category)
A 2-category \mathbb{C} is given by:

- a class of objects obj($\mathbb{C})$
- for any two objects A and B, a class of 1 -morphisms $\mathbb{C}(A, B)$
- for any two object A and B and any two morphisms f and g in $\mathbb{C}(A, B)$, a class of 2-morphisms (or 2-cells) $\mathbb{C}^{2}(f, g)$
- for any object A, a 1 -identity morphism $i d_{A}$ in $\mathbb{C}(A, A)$
- for any 1-morphism f, a 2-identity morphism $i d_{f}^{1}$ in $\mathbb{C}^{2}(f, f)$
- for any two morphisms $f \in \mathbb{C}(A, B)$ and $g \in \mathbb{C}(B, C)$, a composition $f ; g \in \mathbb{C}(A, C)$
- for any two 2-morphisms $\alpha \in \mathbb{C}^{2}(f, g)$ and $\beta \in \mathbb{C}^{2}(g, h)$, a vertical composition $\alpha ;{ }^{1} \beta \in \mathbb{C}^{2}(f, h)$
- for any two 2-morphisms $\alpha \in \mathbb{C}^{2}(f, g)$ and $\beta \in \mathbb{C}^{2}\left(f^{\prime}, g^{\prime}\right)$ with f and g in $\mathbb{C}(A, B)$ and f^{\prime} and g^{\prime} in $\mathbb{C}(B, C)$, an horizontal composition $\alpha ;{ }^{0} \beta \in \mathbb{C}^{2}\left(f ; f^{\prime}, g ; g^{\prime}\right)$
such that:
- $\operatorname{obj}(\mathbb{C})$ with 1-morphisms, 1-identities, and composition is a category
- for any two objects A and $B, \mathbb{C}(A, B)$ with $\mathbb{C}^{2}(A, B)\left(=\bigcup_{f, g \in \mathbb{C}(A, B)} \mathbb{C}^{2}(f, g)\right)$ for morphisms, 2-identities between morphisms of $\mathbb{C}(A, B)$ for identities, and vertical composition for composition is a category
- $\operatorname{obj}(\mathbb{C})$ with 2 -morphisms for morphisms, 2-identities between 1-identities as identities, and horizontal composition for composition is a category
and given any four 2-morphisms of the following shape:

we have:

and we also have:

Example 25 (2-Category Cat)
(Small) Categories with functors for 1-morphisms, natural transformations for 2-morphisms, identity functors for 1 -identities, identity natural transformations for 2 -identities, composition of functors for composition, vertical composition of natural transformations for vertical composition, and horizontal composition of natural transformations for horizontal composition is a 2 -category.

Example 26 (Monoidal Categories)
A 2-category with one object is the same thing as a strict monoidal category.
Property 8 (Monoidal Structures in 2-Categories)
Each object A of a 2-category \mathbb{C} defines a strict monoidal category:

- objects are 1-morphisms in $\mathbb{C}(A, A)$
- morphisms are 2-morphisms between them
- identities are id ${ }^{1}$
- composition is vertical composition
- tensor product on objects is composition of 1-morphisms
- tensor product on morphisms is horizontal composition of 2-morphisms
- unit of the tensor is $i d_{A}$

Example 27 (Monads as Monoids)
Let \mathbb{C} be a category, since it is an object in the 2-category \mathbb{C} at, $\mathbb{F u n c}(\mathbb{C}, \mathbb{C})$ has a strict monoidal category structure given by Property 8. A monad is exactly a monoid in this monoidal category.

Index

*-autonomous category, 25
$+, 9$
0, 9
$\Perp, 10$
$\perp, 9$
-, 20
$\iota, 9$
$\mathbb{C}^{T}, 19$
$\mathbb{C}_{T}, 19$
$\mathbb{T}, \mathbf{3}$
;, 2
$\multimap, 23$
$\oplus, 11$
$\otimes, 11$
$\pi, 9$
$\simeq 4$
$e v, 23$
$\times, 3, \mathbf{9}$
†, 9
ব, 4
$\mathbb{C}^{o p}, 3$
curry, 23
1-identity, 25
1-morphism, 25
2-category, 25
2-identity, 25
2-morphism, 25
1, 11
Adj, 21
adjunction, 20, 21
Alg, 7
algebra morphism, 7
algebra of a functor, 7, 19
algebra of a monad, 19
bi-functor, 6
bi-product, 11
cartesian category, 9, 13, 16
cartesian closed category, 24
Cat, 5, 10, 26
category, 1
category of adjunctions, $\mathbf{2 1}$
category of algebras of a functor, $\mathbf{7}$
category of algebras of a monad, 19
category of categories, 5
category of co-monoids, 16
category of functors, 8
category of monoids, 15
category of sets, $\mathbf{2}$
co-diagonal, 10
co-monad, 17, 22
co-monoid, 15
co-monoidal functor, 14
co-monoidal morphism, 16
co-product, 9
commutative monad, 18
coMon, 16
compact closed category, 24
composition, 2
constant functor, 5
diagonal, 9
distributive law, 20
dual category, 3
dual object, 24, 24
dualizing object, 25
Eilenberg-Moore category, 19, 22
empty category, 10
endofunctor, 5
epimorphism, 3
equalizer, 11
equivalence of categories, $\mathbf{2 3}$
essentially surjective functor, 7, 23
essentially wide sub-category, 5, 7
exponential object, 23
faithful functor, 6, 23
free algebra, 19, 23
full functor, 6, 23
full sub-category, 2, 7
Func, 8, 27
functor, 5, 26
homset functor, 6
horizontal composition, 8, 25, 26
Id, 5
id, 1
idempotent, 4
identity, 1
identity endofunctor, 5
identity functor, 26
inclusion functor, 5, 7
initial object, 9
inverse, 4
isomorphism, 4, 6, 7
Kleisli category, 19, 22, 23
Kleisli triple, 17
left adjoint, 21
Mon, 15
monad, 17, 22
monad of an adjunction, 22
monoid, 15, 27
monoidal adjunction, 22
monoidal category, 11, 23
monoidal functor, 13, 17
monoidal monad, 19, 22
monoidal morphism, 15
monoidal natural transformation, 14
monomorphism, 3
morphism, 1
natural isomorphism, 8
natural transformation, 7, 26
obj, 1
object, 1
opposite, 3
point, 9
product, 9
product category, 3, 10
projection functor, 7, 10
regular monomorphism, 11
retract, 4, 6
retraction, 4
right adjoint, 21
section, 4
section-retraction pair, 4
Set, 2, 10
split epimorphism, 4
split idempotent, 4
split monomorphism, 4, 11
strict monoidal category, 12, 26
strict monoidal functor, 14
strong monad, 18
strong monoidal functor, 14
sub-category, 2, 5, 7
symmetric monoid, 15
symmetric monoidal adjunction, 22
symmetric monoidal category, 12, 23, 24
symmetric monoidal closed category, 23
symmetric monoidal functor, 14
symmetric monoidal monad, 19
terminal object, 9
transformation, 7
unit category, 3, 10
vertical composition, 8, 8, 25, 26
wide sub-category, 2
zero morphism, 9
zero object, 9, 11

Additional Properties

Cartesian Product

We consider a category \mathbb{C}, two objects A and B of \mathbb{C} and a product $\left(A \times B, \pi_{A}, \pi_{B}\right)$ of A and B in \mathbb{C}.

Fact 1 (Pair of Projections)
$\left\langle\pi_{A}, \pi_{B}\right\rangle=i d_{A \times B}$.
Proof: $\left\langle\pi_{A}, \pi_{B}\right\rangle ; \pi_{A}=\pi_{A}=i d_{A \times B} ; \pi_{A}$ and $\left\langle\pi_{A}, \pi_{B}\right\rangle ; \pi_{B}=\pi_{B}=i d_{A \times B} ; \pi_{B}$ thus, by uniqueness of the pair, we have $\left\langle\pi_{A}, \pi_{B}\right\rangle=i d_{A \times B}$.

Fact 2 (Composition with Pair)
Let C and D be two objects of \mathbb{C}, if $f \in \mathbb{C}(C, A), g \in \mathbb{C}(C, B)$ and $h \in \mathbb{C}(D, C)$ then $h ;\langle f, g\rangle=$ $\langle h ; f, h ; g\rangle$.

Proof: We have $h ;\langle f, g\rangle ; \pi_{A}=h ; f=\langle h ; f, h ; g\rangle ; \pi_{A}$ and $h ;\langle f, g\rangle ; \pi_{B}=h ; g=\langle h ; f, h ; g\rangle ; \pi_{B}$, thus $h ;\langle f, g\rangle=\langle h ; f, h ; g\rangle$ by uniqueness of the pair.

Monoidal Categories

We consider a monoidal category $\left(\mathbb{C}, \otimes, 1, a, u^{l}, u^{r}\right)$.
Fact 3 (Equality up to $\otimes_{-} 1$ and $1 \otimes_{-}$)
Let A and B be two objects of \mathbb{C} and f and g be two morphisms of \mathbb{C} from A to $B, f \otimes 1=$ $g \otimes 1 \Longleftrightarrow f=g \Longleftrightarrow 1 \otimes f=1 \otimes g$.

Proof: We have $f=g$ implies both $f \otimes 1=g \otimes 1$ and $1 \otimes f=1 \otimes g$.
Now assume $f \otimes 1=g \otimes 1$, the following diagram commutes:

since the two squares commute by naturality of u^{l}. We conclude $f=g$ because u_{B}^{l} is an isomorphism.
Similarly, we obtain the implication $1 \otimes f=1 \otimes g \Longrightarrow f=g$ by naturality of u^{r}.
Fact 4 (Unit of Unit)
Let A be an object of $\mathbb{C}, u_{1 \otimes A}^{r}=1 \otimes u_{A}^{r}: 1 \otimes A \rightarrow 1 \otimes(1 \otimes A)$.

Proof: By naturality of u^{r}, we have:

thus, since u_{A}^{r} is an isomorphism, $u_{1 \otimes A}^{r}=1 \otimes u_{A}^{r}$.
Fact 5 (Associativity of Unit)
Let A and B be two objects of \mathbb{C}, the following diagram commutes:

Proof: Thanks to Fact 3, it is sufficient to prove the commutation of the following diagram (since a is an isomorphism):

which commutes by:
(a) naturality of a
(b) triangle of monoidal categories
(c) triangle of monoidal categories
(d) naturality of a
(e) pentagon of monoidal categories

Proofs

Definition 9

- If $g ; s=h ; s$ then $g=g ; i d_{A}=g ; s ; r=h ; s ; r=h ; i d_{A}=h$.
- If $r ; g=r ; h$ then $g=i d_{A} ; g=s ; r ; g=s ; r ; h=i d_{A} ; h=h$.
- $r ; s ; r ; s=r ; i d_{A} ; s=r ; s$

Property 1

- Let f from A to B be an isomorphism and f^{-1} be its inverse, we have $f ; f^{-1}=i d_{A}$ and $f^{-1} ; f=i d_{B}$.
- There exist $g \in \mathbb{C}(B, A)$ such that $f ; g=i d_{A}$ and $h \in \mathbb{C}(B, A)$ such that $h ; f=i d_{B}$ thus $h=h ; i d_{A}=h ; f ; g=i d_{B} ; g=g$ and we conclude that $g=h$ is an inverse of f.

Comment Page 4

We give a direct proof: let f be an isomorphism from A to B, f^{-1} be its inverse, if g and g^{\prime} are morphisms from A^{\prime} to A then $g ; f=g^{\prime} ; f$ implies $g=g ; i d_{A}=g ; f ; f^{-1}=g^{\prime} ; f ; f^{-1}=g^{\prime} ; i d_{A}=g^{\prime}$. If h and h^{\prime} are morphisms from B to B^{\prime} then $f ; h=f ; h^{\prime}$ implies $h=f^{-1} ; f ; h=f^{-1} ; f ; h^{\prime}=h^{\prime}$. In the following category:

$$
i d_{A} \subset A \xrightarrow{f} B \supseteq i d_{B}
$$

with $i d_{A} ; f=f$ and $f ; i d_{B}=i d_{B}, f$ is both a monomorphism and an epimorphism but it is not an isomorphism since there is no morphism from B to A.

Example 3

Let A be an object of $\mathbb{C}, C_{D} i d_{A}=i d_{D}=i d_{C_{D} A}$, and if $f \in \mathbb{C}(A, B)$ and $g \in \mathbb{C}(B, C)$ then $C_{D}(f ; g)=i d_{D}=i d_{D} ; i d_{D}=C_{D} f ; C_{D} g$.
A functor F from \mathbb{C} to \mathbb{T} must satisfy $F A=\star$ for any object A of \mathbb{C} since \star is the unique object of \mathbb{T}. We must then have $F f \in \mathbb{T}(\star, \star)=\left\{i d_{\star}\right\}$, so $F=C_{\star}$.

Example 4

We have $I i d_{A}=i d_{A}=i d_{I A}$ and $I(f ; g)=f ; g=I f ; I g$.

Example 5

If \mathbb{C} and \mathbb{D} are two (small) categories and F is a functor from \mathbb{C} to \mathbb{D}, let A be an object of \mathbb{C}, we have $\left(I d_{\mathbb{C}} ; F\right) A=F I d_{\mathbb{C}} A=F A=I d_{\mathbb{D}} F A=\left(F ; I d_{\mathbb{D}}\right) A$ and if $f \in \mathbb{C}(A, B)$ then $\left(I d_{\mathbb{C}} ; F\right) f=$ $F I d_{\mathbb{C}} f=F f=I d_{\mathbb{D}} F f=\left(F ; I d_{\mathbb{D}}\right) f$.
If \mathbb{C}, \mathbb{D} and \mathbb{E} are three (small) categories, F is a functor from \mathbb{C} to \mathbb{D} and G is a functor from \mathbb{D} to \mathbb{E}, let A be an object of \mathbb{C}, we have $((F ; G) ; H) A=H(F ; G) A=H G F A=(G ; H) F A=(F ;(G ; H)) A$ and if $f \in \mathbb{C}(A, B)$ then $((F ; G) ; H) f=H(F ; G) f=H G F f=(G ; H) F f=(F ;(G ; H)) f$.

Example 9

If $(A, B) \in o b j(\mathbb{C} \times \mathbb{D}), \operatorname{Pid}_{(A, B)}=P\left(i d_{A}, i d_{B}\right)=i d_{A}=i d_{P(A, B)}$.
If $(f, g) \in \mathbb{C} \times \mathbb{D}\left((A, B),\left(A^{\prime}, B^{\prime}\right)\right)$ and $\left(f^{\prime}, g^{\prime}\right) \in \mathbb{C} \times \mathbb{D}\left(\left(A^{\prime}, B^{\prime}\right),\left(A^{\prime \prime}, B^{\prime \prime}\right)\right), P\left((f, g) ;\left(f^{\prime}, g^{\prime}\right)\right)=$ $P\left(f ; f^{\prime}, g ; g^{\prime}\right)=f ; f^{\prime}=(P(f, g)) ;\left(P\left(f^{\prime}, g^{\prime}\right)\right)$.
If \mathbb{D} has at least one morphism between any two objects, let B and B^{\prime} be two objects of \mathbb{D} and $g \in \mathbb{D}\left(B, B^{\prime}\right)$, for any $f \in \mathbb{C}\left(A, A^{\prime}\right)=\mathbb{C}\left(P(A, B), P\left(A^{\prime}, B^{\prime}\right)\right)$, we have $P(f, g)=f$.

Example 10

If A is an object of $\mathbb{C}, i d_{F A} \in \mathbb{D}(F A, F A)$ is an isomorphism (it is its own inverse).
If $f \in \mathbb{C}(A, B), F f ; i d_{F A}=F f=i d_{F A} ; F f$.

Definition 19

If $f \in \mathbb{C}(A, B), F f ;\left(\alpha ;^{1} \beta\right)_{B}=F f ; \alpha_{B} ; \beta_{B}=\alpha_{A} ; G f ; \beta_{B}=\alpha_{A} ; \beta_{A} ; H f=\left(\alpha ;{ }^{1} \beta\right)_{A} ; H f$.

Definition 20

Since β is a natural transformation from G to G^{\prime}, we have $G \alpha_{A} ; \beta_{F^{\prime} A}=\beta_{F A} ; G^{\prime} \alpha_{A}$. If $f \in \mathbb{C}(A, B),(F ; G) f ;\left(\alpha ;{ }^{0} \beta\right)_{B}=G F f ; G \alpha_{B} ; \beta_{F^{\prime} B}=G\left(F f ; \alpha_{B}\right) ; \beta_{F^{\prime} B}=G\left(\alpha_{A} ; F^{\prime} f\right) ; \beta_{F^{\prime} B}=$ $G \alpha_{A} ; G F^{\prime} f ; \beta_{F^{\prime} B}=G \alpha_{A} ; \beta_{F^{\prime} A} ; G^{\prime} F^{\prime} f=\left(\alpha ;{ }^{0} \beta\right)_{A} ;\left(F^{\prime} ; G^{\prime}\right) f$.

Comment Page 9

For any two objects A and B, we have a product $A \times B$. If $f \in \mathbb{C}(A, B)$ and $f^{\prime} \in \mathbb{C}\left(A^{\prime}, B^{\prime}\right)$, we define $f \times f^{\prime}=\left\langle\pi_{A} ; f, \pi_{A^{\prime}} ; f^{\prime}\right\rangle \in \mathbb{C}\left(A \times A^{\prime}, B \times B^{\prime}\right)$.
We have $i d_{A} \times i d_{A^{\prime}}=\left\langle\pi_{A} ; i d_{A}, \pi_{A^{\prime}} ; i d_{A^{\prime}}\right\rangle=\left\langle\pi_{A}, \pi_{A^{\prime}}\right\rangle=i d_{A \times A^{\prime}}$ (using Fact 1).
If $f \in \mathbb{C}(A, B), g \in \mathbb{C}(B, C), f^{\prime} \in \mathbb{C}\left(A^{\prime}, B^{\prime}\right)$ and $g^{\prime} \in \mathbb{C}\left(B^{\prime}, C^{\prime}\right)$, we have, using Fact $2,\left(f \times f^{\prime}\right)$; $\left(g \times g^{\prime}\right)=\left\langle\pi_{A} ; f, \pi_{A^{\prime}} ; f^{\prime}\right\rangle ;\left\langle\pi_{B} ; g, \pi_{B^{\prime}} ; g^{\prime}\right\rangle=\left\langle\left\langle\pi_{A} ; f, \pi_{A^{\prime}} ; f^{\prime}\right\rangle ; \pi_{B} ; g,\left\langle\pi_{A} ; f, \pi_{A^{\prime}} ; f^{\prime}\right\rangle ; \pi_{B^{\prime}} ; g^{\prime}\right\rangle=$ $\left\langle\pi_{A} ; f ; g, \pi_{A^{\prime}} ; f^{\prime} ; g^{\prime}\right\rangle=(f ; g) \times\left(f^{\prime} ; g^{\prime}\right)$
If $f \in \mathbb{C}(A, B)$, using Fact $2, f ; \Delta_{B}=f ;\left\langle i d_{B}, i d_{B}\right\rangle=\left\langle f ; i d_{B}, f ; i d_{B}\right\rangle=\langle f, f\rangle=\left\langle i d_{A} ; f, i d_{A} ; f\right\rangle=$ $\left\langle\left\langle i d_{A}, i d_{A}\right\rangle ; \pi_{A}^{l} ; f,\left\langle i d_{A}, i d_{A}\right\rangle ; \pi_{A}^{r} ; f\right\rangle=\left\langle i d_{A}, i d_{A}\right\rangle ;\left\langle\pi_{A}^{l} ; f, \pi_{A}^{r} ; f\right\rangle=\Delta_{A} ;(f \times f)$.

Example 12

If $f: C \rightarrow A$ and $g: C \rightarrow B$, we define:

$$
\begin{aligned}
\langle f, g\rangle: C & \rightarrow A \times B \\
x & \mapsto(f(x), g(x))
\end{aligned}
$$

For all $x \in C$, we have $\pi_{1} \circ\langle f, g\rangle(x)=f(x)$ and $\pi_{2} \circ\langle f, g\rangle(x)=g(x)$. Let $h: C \rightarrow A \times B$ be such that any $x \in C, \pi_{1} \circ h(x)=f(x)$ and $\pi_{2} \circ h(x)=g(x)$ then $h(x)=(f(x), g(x))=\langle f, g\rangle(x)$ that is $h=\langle f, g\rangle$.
For any set C, there is a unique function from C to $\{\star\}$ defined by:

$$
\begin{aligned}
t_{C}: C & \rightarrow\{\star\} \\
x & \mapsto \star
\end{aligned}
$$

If $f: A \rightarrow C$ and $g: B \rightarrow C$, we define:

$$
\begin{aligned}
{[f, g]: A \uplus B } & \rightarrow C & & \\
(0, a) & \mapsto f(a) & & \text { if } a \in A \\
(1, b) & \mapsto g(b) & & \text { if } b \in B
\end{aligned}
$$

For any $a \in A,[f, g] \circ \iota_{1}(a)=f(a)$ and for any $b \in B,[f, g] \circ \iota_{2}(b)=g(b)$. Let $h: A \uplus B \rightarrow C$ be such that for any $a \in A, h \circ \iota_{1}(a)=f(a)$ and for any $b \in B, h \circ \iota_{2}(b)=g(b)$, we have for any $z \in A \uplus B, h(z)=[f, g](z)$ that is $h=[f, g]$.
For any set C, there is a unique function from \emptyset to C which is the empty function.

Example 13

If $F: \mathbb{E} \rightarrow \mathbb{C}$ and $G: \mathbb{E} \rightarrow \mathbb{D}$ are two functors, we define:

$$
\begin{array}{rlrl}
\langle F, G\rangle: & \mathbb{E} & \rightarrow \mathbb{C} \times \mathbb{D} & \\
& E & \mapsto(F E, G E) & \\
\text { for objects of } \mathbb{E} \\
& f \mapsto(F f, G f) & & \text { for morphisms of } \mathbb{E}
\end{array}
$$

For any object E of \mathbb{E}, we have $P_{\mathbb{C}}\langle F, G\rangle E=F E$ and $P_{\mathbb{D}}\langle F, G\rangle E=G E$. For any morphism f of \mathbb{E}, we have $P_{\mathbb{C}}\langle F, G\rangle f=F f$ and $P_{\mathbb{D}}\langle F, G\rangle f=G f$. Let H be a functor from \mathbb{E} to $\mathbb{C} \times \mathbb{D}$ such that $P_{\mathbb{C}} H E=F E, P_{\mathbb{D}} H E=G E, P_{\mathbb{C}} H f=F f$ and $P_{\mathbb{D}} H f=G f$ for any object E and any morphism f of \mathbb{E}, then $H E=(F E, G E)=\langle F, G\rangle E$ and $H f=(F f, G f)=\langle F, G\rangle f$ that is $H=\langle F, G\rangle$.
Let \mathbb{E} be a category, the unique functor $T_{\mathbb{E}}$ from \mathbb{E} to \mathbb{T} is defined by $T_{\mathbb{E}} E=\star$ for any object E of \mathbb{E} and $T_{\mathbb{E}} f=i d_{\star}$ for any morphism f of \mathbb{E}.

Example 14

If $F: \mathbb{C} \rightarrow \mathbb{E}$ and $G: \mathbb{D} \rightarrow \mathbb{E}$ are two functors, we define:

$$
\begin{aligned}
{[F, G]: \mathbb{C}+\mathbb{D} } & \rightarrow \mathbb{E} & & \\
(0, C) & \mapsto F C & & \text { if } C \in \operatorname{obj}(\mathbb{C}) \\
(1, D) & \mapsto G D & & \text { if } D \in \operatorname{obj}(\mathbb{D}) \\
f & \mapsto F f & & \text { if } f \text { morphism for } \mathbb{C} \\
g & \mapsto G g & & \text { if } g \text { morphism for } \mathbb{D}
\end{aligned}
$$

For any $C \in \operatorname{obj}(\mathbb{C}),[F, G] I_{\mathbb{C}} C=F C$ and for any $B \in o b j(\mathbb{D}),[F, G] I_{\mathbb{D}} D=G D$. For any f morphism in $\mathbb{C},[F, G] I_{\mathbb{C}} f=F f$ and for any g morphism in $\mathbb{D},[F, G] I_{\mathbb{D}} g=G g$. Let $H: \mathbb{C}+\mathbb{D} \rightarrow \mathbb{E}$ be a functor such that for any $C \in o b j(\mathbb{C}), H I_{\mathbb{C}} C=F C$, for any $B \in o b j(\mathbb{D}), H I_{\mathbb{D}} D=G D$, for any f morphism in $\mathbb{C}, H I_{\mathbb{C}} f=F f$ and for any g morphism in $\mathbb{D}, H I_{\mathbb{D}} g=G g$, we have for any object A and for any morphism h of $\mathbb{C}+\mathbb{D}, H A=[F, G] A$ and $H h=[F, G] h$, that is $H=[F, G]$.
Let \mathbb{E} be a category, the empty functor is the unique functor from \Perp to \mathbb{E}.

Definition 26

Let (E, e) be an equalizer of $f \in \mathbb{C}(A, B)$ and $g \in \mathbb{C}(A, B)$, if f^{\prime} and g^{\prime} are in $\mathbb{C}(D, E)$ such that $f^{\prime} ; e=g^{\prime} ; e$ then $f^{\prime} ; e ; f=g^{\prime} ; e ; f=g^{\prime} ; e ; g$ thus there exists a unique $h \in \mathbb{C}(D, E)$ such that $f^{\prime} ; e=g^{\prime} ; e=h ; e$ so that $f^{\prime}=h=g^{\prime}$.

Given a split monomorphism s from A to B coming with its retraction $r\left(s ; r=i d_{A}\right)$, we can prove it is the equalizer of $r ; s$ and $i d_{B}$:

Indeed, we have $s ; r ; s=s=s ; i d_{B}$, and if $e^{\prime} ; r ; s=e^{\prime} ; i d_{B}=e^{\prime}$ then e^{\prime} factors through s by means of $h=e^{\prime} ; r$. Moreover this h is unique since $h^{\prime} ; s=e^{\prime}$ implies $h^{\prime}=h^{\prime} ; s ; r=e^{\prime} ; r$.

Comment Page 12

The following diagram commutes:

by:
(a) triangle of monoidal categories
(b) Fact 4
(c) Fact 5

We thus have $u_{1}^{l} \otimes 1=u_{1}^{r} \otimes 1$ since $a_{1,1,1}$ is an isomorphism, and finally $u_{1}^{l}=u_{1}^{r}$ by Fact 3 .

Comment Page 13

Thanks to Fact 3, it is sufficient to prove the commutation of the following diagram (since s and a are isomorphisms):

which commutes by:
(a) triangle of monoidal categories
(b) naturality of s
(c) naturality of u^{r}
(d) Fact 5
(e) Fact 5
(f) hexagon of symmetric monoidal categories

Example 15

\times is a bi-functor from \mathbb{C} and \mathbb{C} to \mathbb{C} (see page 9).
We consider three morphisms $f \in \mathbb{C}\left(A, A^{\prime}\right), g \in \mathbb{C}\left(B, B^{\prime}\right)$ and $h \in \mathbb{C}\left(C, C^{\prime}\right)$. We have:

- using Fact 2 and the definition of the bi-functor \times :

$$
\begin{aligned}
(f \times g) & \times h ;\left\langle\pi_{A^{\prime} \times B^{\prime}} ; \pi_{A^{\prime}},\left\langle\pi_{A^{\prime} \times B^{\prime}} ; \pi_{B^{\prime}}, \pi_{C^{\prime}}\right\rangle\right\rangle \\
& =\left\langle(f \times g) \times h ; \pi_{A^{\prime} \times B^{\prime}} ; \pi_{A^{\prime}},(f \times g) \times h ;\left\langle\pi_{A^{\prime} \times B^{\prime}} ; \pi_{B^{\prime}}, \pi_{C^{\prime}}\right\rangle\right\rangle \\
& =\left\langle\pi_{A \times B} ; \pi_{A} ; f,(f \times g) \times h ;\left\langle\pi_{A^{\prime} \times B^{\prime}} ; \pi_{B^{\prime}}, \pi_{C^{\prime}}\right\rangle\right\rangle \\
& =\left\langle\pi_{A \times B} ; \pi_{A} ; f,\left\langle(f \times g) \times h ; \pi_{A^{\prime} \times B^{\prime}} ; \pi_{B^{\prime}},(f \times g) \times h ; \pi_{C^{\prime}}\right\rangle\right\rangle \\
& =\left\langle\pi_{A \times B} ; \pi_{A} ; f,\left\langle\pi_{A \times B} ; \pi_{B} ; g, \pi_{C} ; h\right\rangle\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle\pi_{A \times B}\right. & \left.; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle ; f \times(g \times h) \\
& =\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle ;\left\langle\pi_{A} ; f, \pi_{B \times C} ; g \times h\right\rangle \\
& =\left\langle\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle ; \pi_{A} ; f,\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle ; \pi_{B \times C} ; g \times h\right\rangle \\
& =\left\langle\pi_{A \times B} ; \pi_{A} ; f,\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle ; g \times h\right\rangle \\
& =\left\langle\pi_{A \times B} ; \pi_{A} ; f,\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle ;\left\langle\pi_{B} ; g, \pi_{C} ; h\right\rangle\right\rangle \\
& =\left\langle\pi_{A \times B} ; \pi_{A} ; f,\left\langle\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle ; \pi_{B} ; g,\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle ; \pi_{C} ; h\right\rangle\right\rangle \\
& =\left\langle\pi_{A \times B} ; \pi_{A} ; f,\left\langle\pi_{A \times B} ; \pi_{B} ; g, \pi_{C} ; h\right\rangle\right\rangle
\end{aligned}
$$

Moreover, with Fact 1 and Fact 2:

$$
\begin{aligned}
\left\langle\pi_{A \times B}\right. & \left.; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle ;\left\langle\left\langle\pi_{A}, \pi_{B \times C} ; \pi_{B}\right\rangle, \pi_{B \times C} ; \pi_{C}\right\rangle \\
& =\left\langle\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle ;\left\langle\pi_{A}, \pi_{B \times C} ; \pi_{B}\right\rangle,\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle ; \pi_{B \times C} ; \pi_{C}\right\rangle \\
& =\left\langle\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle ;\left\langle\pi_{A}, \pi_{B \times C} ; \pi_{B}\right\rangle, \pi_{C}\right\rangle \\
& =\left\langle\left\langle\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle ; \pi_{B \times C} ; \pi_{B}\right\rangle, \pi_{C}\right\rangle \\
& =\left\langle\left\langle\pi_{A \times B} ; \pi_{A}, \pi_{A \times B} ; \pi_{B}\right\rangle, \pi_{C}\right\rangle \\
& =\left\langle\pi_{A \times B} ;\left\langle\pi_{A}, \pi_{B}\right\rangle, \pi_{C}\right\rangle \\
& =\left\langle\pi_{A \times B}, \pi_{C}\right\rangle \\
& =i d_{(A \times B) \times C}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle\left\langle\pi_{A},\right.\right. & \left.\left.\pi_{B \times C} ; \pi_{B}\right\rangle, \pi_{B \times C} ; \pi_{C}\right\rangle ;\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle \\
& =\left\langle\left\langle\left\langle\pi_{A}, \pi_{B \times C} ; \pi_{B}\right\rangle, \pi_{B \times C} ; \pi_{C}\right\rangle ; \pi_{A \times B} ; \pi_{A},\left\langle\left\langle\pi_{A}, \pi_{B \times C} ; \pi_{B}\right\rangle, \pi_{B \times C} ; \pi_{C}\right\rangle ;\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle \\
\quad & =\left\langle\pi_{A},\left\langle\left\langle\pi_{A}, \pi_{B \times C} ; \pi_{B}\right\rangle, \pi_{B \times C} ; \pi_{C}\right\rangle ;\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle \\
& =\left\langle\pi_{A},\left\langle\left\langle\left\langle\pi_{A}, \pi_{B \times C} ; \pi_{B}\right\rangle, \pi_{B \times C} ; \pi_{C}\right\rangle ; \pi_{A \times B} ; \pi_{B},\left\langle\left\langle\pi_{A}, \pi_{B \times C} ; \pi_{B}\right\rangle, \pi_{B \times C} ; \pi_{C}\right\rangle ; \pi_{C}\right\rangle\right\rangle \\
\quad & =\left\langle\pi_{A},\left\langle\pi_{B \times C} ; \pi_{B}, \pi_{B \times C} ; \pi_{C}\right\rangle\right\rangle \\
\quad & =\left\langle\pi_{A}, \pi_{B \times C} ;\left\langle\pi_{B}, \pi_{C}\right\rangle\right\rangle \\
& =\left\langle\pi_{A}, \pi_{B \times C}\right\rangle \\
& =i d_{A \times(B \times C)}
\end{aligned}
$$

- We first prove that $\pi_{A} \in \mathbb{C}(A \times \top, A)$ is the inverse of $\left\langle i d_{A}, t_{A}\right\rangle \in \mathbb{C}(A, A \times \top)$ using Fact 1 and Fact 2:

$$
\left\langle i d_{A}, t_{A}\right\rangle ; \pi_{A}=i d_{A}
$$

and

$$
\begin{aligned}
\pi_{A} ;\left\langle i d_{A}, t_{A}\right\rangle & =\left\langle\pi_{A} ; i d_{A}, \pi_{A} ; t_{A}\right\rangle \\
& =\left\langle\pi_{A}, \pi_{\top}\right\rangle \\
& =i d_{A \times \top}
\end{aligned}
$$

We also have:

$$
\begin{aligned}
\left\langle i d_{A}, t_{A}\right\rangle ; f \times i d_{\top} & =\left\langle i d_{A}, t_{A}\right\rangle ;\left\langle\pi_{A} ; f, \pi_{\top} ; i d_{\top}\right\rangle \\
& =\left\langle\left\langle i d_{A}, t_{A}\right\rangle ; \pi_{A} ; f,\left\langle i d_{A}, t_{A}\right\rangle ; \pi_{\top} ; i d_{\top}\right\rangle \\
& =\left\langle f, t_{A}\right\rangle \\
& =\left\langle f ; i d_{A^{\prime}}, f ; t_{A^{\prime}}\right\rangle \\
& =f ;\left\langle i d_{A^{\prime}}, t_{A^{\prime}}\right\rangle
\end{aligned}
$$

- The results for $\left\langle t_{A}, i d_{A}\right\rangle$ are very similar.
- Using Fact 2 :

$$
\begin{aligned}
f \times g ;\left\langle\pi_{B^{\prime}}, \pi_{A^{\prime}}\right\rangle & =\left\langle f \times g ; \pi_{B^{\prime}}, f \times g ; \pi_{A^{\prime}}\right\rangle \\
& =\left\langle\pi_{B} ; g, \pi_{A} ; f\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle\pi_{B}, \pi_{A}\right\rangle ; g \times f & =\left\langle\pi_{B}, \pi_{A}\right\rangle ;\left\langle\pi_{B} ; g, \pi_{A} ; f\right\rangle \\
& =\left\langle\left\langle\pi_{B}, \pi_{A}\right\rangle ; \pi_{B} ; g,\left\langle\pi_{B}, \pi_{A}\right\rangle ; \pi_{A} ; f\right\rangle \\
& =\left\langle\pi_{B} ; g, \pi_{A} ; f\right\rangle
\end{aligned}
$$

Moreover, with Fact 1 and Fact 2:

$$
\begin{aligned}
\left\langle\pi_{B}, \pi_{A}\right\rangle ;\left\langle\pi_{A}, \pi_{B}\right\rangle & =\left\langle\left\langle\pi_{B}, \pi_{A}\right\rangle ; \pi_{A},\left\langle\pi_{B}, \pi_{A}\right\rangle ; \pi_{B}\right\rangle \\
& =\left\langle\pi_{A}, \pi_{B}\right\rangle \\
& =i d_{A \times B}
\end{aligned}
$$

We now have to prove to the three additional commutative diagrams of symmetric monoidal categories.

- Pentagon of monoidal categories:
$\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B},\left\langle\pi_{(A \times B) \times C} ; \pi_{C}, \pi_{D}\right\rangle\right\rangle ;\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C \times D}\right\rangle\right\rangle$
$=\left\langle\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B},\left\langle\pi_{(A \times B) \times C} ; \pi_{C}, \pi_{D}\right\rangle\right\rangle ; \pi_{A \times B} ; \pi_{A},\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B},\left\langle\pi_{(A \times B) \times C} ; \pi_{C}, \pi_{D}\right\rangle\right\rangle ;\left\langle\pi_{A \times B} ; \pi_{I}\right.\right.$ $=\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B} ; \pi_{A},\left\langle\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B},\left\langle\pi_{(A \times B) \times C} ; \pi_{C}, \pi_{D}\right\rangle\right\rangle ; \pi_{A \times B} ; \pi_{B},\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B},\left\langle\pi_{(A \times B) \times}\right.\right.\right.\right.$ $=\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B} ; \pi_{A},\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B} ; \pi_{B},\left\langle\pi_{(A \times B) \times C} ; \pi_{C}, \pi_{D}\right\rangle\right\rangle\right\rangle$
and

$$
\begin{aligned}
\left\langle\pi_{A \times B}\right. & \left.; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle \times i d_{D} ;\left\langle\pi_{A \times(B \times C)} ; \pi_{A},\left\langle\pi_{A \times(B \times C)} ; \pi_{B \times C}, \pi_{D}\right\rangle\right\rangle ; i d_{A} \times\left\langle\pi_{B \times C} ; \pi_{B},\left\langle\pi_{B \times C} ; \pi_{C}, \pi_{D}\right\rangle\right\rangle \\
& =\left\langle\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle \times i d_{D} ; \pi_{A \times(B \times C)} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle \times i d_{D} ;\left\langle\pi_{A \times(B \times C)} ; \pi_{B \times}\right.\right. \\
& =\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B} ; \pi_{A},\left\langle\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle \times i d_{D} ; \pi_{A \times(B \times C)} ; \pi_{B \times C},\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right.\right.\right.\right. \\
& =\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B} ; \pi_{A},\left\langle\pi_{(A \times B) \times C} ;\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle, \pi_{D}\right\rangle\right\rangle ;\left\langle\pi_{A}, \pi_{(B \times C) \times D} ;\left\langle\pi_{B \times C} ; \pi_{B},\left\langle\pi_{B \times C} ; \pi_{C}, \pi_{D}\right\rangle\right\rangle\right\rangle \\
& =\left\langle\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B} ; \pi_{A},\left\langle\pi_{(A \times B) \times C} ;\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle, \pi_{D}\right\rangle\right\rangle ; \pi_{A},\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B} ; \pi_{A},\left\langle\pi_{(A \times B) \times C} ;\left\langle\pi_{A \times B}\right.\right.\right.\right. \\
& =\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B} ; \pi_{A},\left\langle\pi_{(A \times B) \times C} ;\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle, \pi_{D}\right\rangle ;\left\langle\pi_{B \times C} ; \pi_{B},\left\langle\pi_{B \times C} ; \pi_{C}, \pi_{D}\right\rangle\right\rangle\right\rangle \\
& =\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B} ; \pi_{A},\left\langle\left\langle\pi_{(A \times B) \times C} ;\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle, \pi_{D}\right\rangle ; \pi_{B \times C} ; \pi_{B},\left\langle\pi_{(A \times B) \times C} ;\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle, \pi_{D}\right\rangle ;\right.\right. \\
& =\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B} ; \pi_{A},\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B} ; \pi_{B},\left\langle\left\langle\pi_{(A \times B) \times C} ;\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle, \pi_{D}\right\rangle ; \pi_{B \times C} ; \pi_{C},\left\langle\pi_{(A \times B) \times C} ;\right.\right.\right.\right. \\
& =\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B} ; \pi_{A},\left\langle\pi_{(A \times B) \times C} ; \pi_{A \times B} ; \pi_{B},\left\langle\pi_{(A \times B) \times C} ; \pi_{C}, \pi_{D}\right\rangle\right\rangle\right\rangle
\end{aligned}
$$

- Triangle of monoidal categories:

$$
\begin{aligned}
& \left\langle i d_{A}, t_{A}\right\rangle \times i d_{B} ;\left\langle\pi_{A \times \top} ; \pi_{A},\left\langle\pi_{A \times \top} ; \pi_{\top}, \pi_{B}\right\rangle\right\rangle \\
& =\left\langle\left\langle i d_{A}, t_{A}\right\rangle \times i d_{B} ; \pi_{A \times \top} ; \pi_{A},\left\langle i d_{A}, t_{A}\right\rangle \times i d_{B} ;\left\langle\pi_{A \times \top} ; \pi_{\top}, \pi_{B}\right\rangle\right\rangle \\
& =\left\langle\pi_{A},\left\langle\left\langle i d_{A}, t_{A}\right\rangle \times i d_{B} ; \pi_{A \times \top} ; \pi_{\top},\left\langle i d_{A}, t_{A}\right\rangle \times i d_{B} ; \pi_{B}\right\rangle\right\rangle \\
& =\left\langle\pi_{A},\left\langle\pi_{A} ; t_{A}, \pi_{B}\right\rangle\right\rangle \\
& =\left\langle\pi_{A},\left\langle t_{A \times B}, \pi_{B}\right\rangle\right\rangle \\
& =\left\langle\pi_{A},\left\langle\pi_{B} ; t_{B}, \pi_{B}\right\rangle\right\rangle \\
& =\left\langle\pi_{A}, \pi_{B} ;\left\langle t_{B}, i d_{B}\right\rangle\right\rangle \\
& =i d_{A} \times\left\langle t_{B}, i d_{B}\right\rangle
\end{aligned}
$$

- Hexagon of symmetric monoidal categories:

$$
\begin{aligned}
\left\langle\pi_{A \times B}\right. & \left.; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle ;\left\langle\pi_{B \times C}, \pi_{A}\right\rangle ;\left\langle\pi_{B \times C} ; \pi_{B},\left\langle\pi_{B \times C} ; \pi_{C}, \pi_{A}\right\rangle\right\rangle \\
& =\left\langle\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle ; \pi_{B \times C},\left\langle\pi_{A \times B} ; \pi_{A},\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle\right\rangle ; \pi_{A}\right\rangle ;\left\langle\pi_{B \times C} ; \pi_{B},\left\langle\pi_{B \times C} ; \pi_{C}, \pi_{A}\right\rangle\right\rangle \\
& =\left\langle\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle, \pi_{A \times B} ; \pi_{A}\right\rangle ;\left\langle\pi_{B \times C} ; \pi_{B},\left\langle\pi_{B \times C} ; \pi_{C}, \pi_{A}\right\rangle\right\rangle \\
& =\left\langle\pi_{A \times B} ; \pi_{B},\left\langle\left\langle\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle, \pi_{A \times B} ; \pi_{A}\right\rangle ; \pi_{B \times C} ; \pi_{C},\left\langle\left\langle\pi_{A \times B} ; \pi_{B}, \pi_{C}\right\rangle, \pi_{A \times B} ; \pi_{A}\right\rangle ; \pi_{A}\right\rangle\right\rangle \\
& =\left\langle\pi_{A \times B} ; \pi_{B},\left\langle\pi_{C}, \pi_{A \times B} ; \pi_{A}\right\rangle\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\langle\pi_{B}, \pi_{A}\right\rangle \times i d_{C} ;\left\langle\pi_{B \times A} ; \pi_{B},\left\langle\pi_{B \times A} ; \pi_{A}, \pi_{C}\right\rangle\right\rangle ; i d_{B} \times\left\langle\pi_{C}, \pi_{A}\right\rangle \\
& \quad=\left\langle\left\langle\pi_{B}, \pi_{A}\right\rangle \times i d_{C} ; \pi_{B \times A} ; \pi_{B},\left\langle\pi_{B}, \pi_{A}\right\rangle \times i d_{C} ;\left\langle\pi_{B \times A} ; \pi_{A}, \pi_{C}\right\rangle\right\rangle ; i d_{B} \times\left\langle\pi_{C}, \pi_{A}\right\rangle \\
& \quad=\left\langle\pi_{A \times B} ; \pi_{B},\left\langle\left\langle\pi_{B}, \pi_{A}\right\rangle \times i d_{C} ; \pi_{B \times A} ; \pi_{A},\left\langle\pi_{B}, \pi_{A}\right\rangle \times i d_{C} ; \pi_{C}\right\rangle\right\rangle ; i d_{B} \times\left\langle\pi_{C}, \pi_{A}\right\rangle \\
& \quad=\left\langle\pi_{A \times B} ; \pi_{B},\left\langle\pi_{A \times B} ; \pi_{A}, \pi_{C}\right\rangle\right\rangle ;\left\langle\pi_{B}, \pi_{A \times C} ;\left\langle\pi_{C}, \pi_{A}\right\rangle\right\rangle \\
& \quad=\left\langle\left\langle\pi_{A \times B} ; \pi_{B},\left\langle\pi_{A \times B} ; \pi_{A}, \pi_{C}\right\rangle\right\rangle ; \pi_{B},\left\langle\pi_{A \times B} ; \pi_{B},\left\langle\pi_{A \times B} ; \pi_{A}, \pi_{C}\right\rangle\right\rangle ; \pi_{A \times C} ;\left\langle\pi_{C}, \pi_{A}\right\rangle\right\rangle \\
& \quad=\left\langle\pi_{A \times B} ; \pi_{B},\left\langle\pi_{A \times B} ; \pi_{A}, \pi_{C}\right\rangle ;\left\langle\pi_{C}, \pi_{A}\right\rangle\right\rangle \\
& \quad=\left\langle\pi_{A \times B} ; \pi_{B},\left\langle\left\langle\pi_{A \times B} ; \pi_{A}, \pi_{C}\right\rangle ; \pi_{C},\left\langle\pi_{A \times B} ; \pi_{A}, \pi_{C}\right\rangle ; \pi_{A}\right\rangle\right\rangle \\
& \quad=\left\langle\pi_{A \times B} ; \pi_{B},\left\langle\pi_{C}, \pi_{A \times B} ; \pi_{A}\right\rangle\right\rangle
\end{aligned}
$$

Property 3

The diagram:

commutes by:
(a) functoriality of \boxtimes
(b) hexagon of monoidal functors
(c) functoriality of \boxtimes
(d) naturality of m
(e) pentagon of monoids
(f) naturality of m

The diagram:

commutes by:
(a) square of monoidal functors
(b) naturality of m
(c) triangle of monoids

The diagram:

commutes by:
(a) square of monoidal functors
(b) naturality of m
(c) triangle of monoids

In the case of a symmetric monoidal functor and a symmetric monoid, the diagram:

commutes by:
(a) square of symmetric monoidal functors
(b) triangle of symmetric monoids

