Proofs and Categories

CR15 CTCS — Homework 6 — return date: January 16, 2024

Olivier. Laurent @ens-lyon.fr

Exercise 1: The Logic of a Category

In the whole exercise, we fix a category \mathscr{C} .

The sequent calculus $\mathscr{L}(\mathscr{C})$ is defined by:

- formulas are objects of \mathscr{C}
- *sequents* are of the shape $A \vdash B$ where A and B are formulas
- *rules* are:

 $\frac{A \vdash B}{A \vdash C} mph(f) \qquad \text{for each } f \in \mathscr{C}(A, B)$ $\frac{A \vdash B}{A \vdash C} cut$

It is important here to see the difference between $\mathscr{L}(\mathscr{C})$ and $L(ob(\mathscr{C}))$. The second one, used in the course, does not depend on morphisms of \mathscr{C} . One can see $\mathscr{L}(\mathscr{C})$ as an extension of $L(ob(\mathscr{C}))$ by:

$$\overline{A \vdash A} \ ax \qquad \mapsto \qquad \overline{A \vdash A} \ mph(id_A)$$

- Since ℒ(𝔅) extends L(*ob*(𝔅)), describe how to extend L to ℒ(𝔅) (we use here A for formulas since they are already objects of 𝔅).
- 2. As we want to try to eliminate cuts in $\mathscr{L}(\mathscr{C})$, give a cut-free right-hand side for reducing the following pattern containing a (*cut*) rule:

in such a way that both sides have the same image under [_].

3. We extend ↔ to contexts, by allowing it to be applied anywhere inside a proof. From now on, we use the notation ↔ for this extension.

Prove that \rightsquigarrow is terminating.

- Prove cut-elimination for L(C), *i.e.* for any proof π of A ⊢ B, there exists a cut-free proof π' of A ⊢ B such that [[π]] = [[π']].
- 5. Given a proof π , provide a direct way of computing a normal form π_0 of π for \rightsquigarrow (*i.e.* a reduct of π , after possibly many steps, which cannot be reduced anymore: $\pi \rightsquigarrow^* \pi_0 \not\rightsquigarrow$).
- 6. Conclude that the normal form is unique.

Exercise 2: Preorder Semantics of Logic

Given a category \mathscr{C} , we want to build a category $th(\mathscr{C})$ such that:

- $ob(th(\mathscr{C})) = ob(\mathscr{C})$
- Given two objects A and B of \mathcal{C} ,

 $\mathsf{th}(\mathscr{C})(A,B) = \begin{cases} \emptyset & \text{if } \mathscr{C}(A,B) = \emptyset \\ \{\star\} & \text{otherwise} \end{cases}$

(note that $th(\mathcal{C})(A, B)$ has at most one element).

- 1. Define identities and composition so that $\mathsf{th}(\mathscr{C})$ becomes a category.
- 2. We consider W(A) = A on objects of \mathcal{C} , and $W(f) = \star$ on morphisms of \mathcal{C} .
 - (a) Prove that *W* defines a functor from \mathscr{C} to th(\mathscr{C}).
 - (b) Is it a full functor? if not, under which hypotheses on $\mathscr C$ would it be a full functor?
 - (c) Is it a faithful functor? if not, under which hypotheses on ${\mathscr C}$ would it be a faithful functor?
- 3. Given a proof π of $A \vdash B$ in L($ob(th(\mathcal{C}))$), compute $[\pi]$ in th(\mathcal{C}).
- Let (𝔅, ≤) be a preorder, we know that it can be seen as a category whose objects are elements of 𝔅 and with at most one morphism between two objects.

By taking inspiration from $W(\llbracket_\rrbracket)$, explain how to interpret proofs of $L(\mathscr{X})$ in a preorder (\mathscr{X}, \leq) over \mathscr{X} .

5. Explain why this kind of semantic interpretation in a preorder is called "semantics of provability" while interpretations in more general categories are called "semantics of proofs".