Subject 3: Multiplicative Proof-Nets

to be returned on Friday, October 16th

Formulas are given by:

$$A ::= X \mid X^{\perp} \mid A \otimes A \mid A \ \mathfrak{P} A$$

where X ranges over the elements of a given countable set \mathcal{V} of variables. We consider the following rules for the one-sided multiplicative linear sequent calculus MLL:

$$\begin{array}{c|c} \hline & & & \\ \hline & \vdash A, A^{\perp} \end{array} ax \qquad & \frac{\vdash \Gamma, A \qquad \vdash \Delta, A^{\perp}}{\vdash \Gamma, \Delta} cut \qquad & \frac{\vdash \Gamma}{\vdash \sigma(\Gamma)} ex \\ \\ \hline & & \frac{\vdash \Gamma, A \qquad \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B} \otimes \qquad & \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \ \Re B} \ \Re \end{array}$$

We only use the terminology *proof-net* for a proof-structure which satisfies the Danos-Regnier correctness criterion. A proof-net is *atomic* if the conclusions of all its axiom nodes are labelled with atomic formulas (that is of the shape X or X^{\perp}).

Proof Nets

Question 1. For each sequent below, give a proof in MLL and the associated proof-net.

a. $\vdash X^{\perp}, X \otimes (X^{\perp} \mathfrak{N} X)$ **b.** $\vdash X^{\perp} \mathfrak{N} (Y^{\perp} \otimes Z^{\perp}), (X \otimes Y) \mathfrak{N} Z$ **c.** $\vdash X^{\perp} \otimes X, (X \mathfrak{N} X^{\perp}) \otimes (X \mathfrak{N} X^{\perp})$ **d.** $\vdash X \mathfrak{N} X^{\perp}, (X^{\perp} \otimes X) \mathfrak{N} (X^{\perp} \otimes X)$

Question 2. For each formula below, give all possible cut-free proof-structures with this formula as unique conclusion. For all the obtained proof-structures, check whether they satisfy the Danos-Regnier criterion or not. For each obtained proof-structure which satisfies the criterion, give a sequentialization in MLL.

a.
$$X \ {}^{\mathcal{R}} X^{\perp}$$

b.
$$(X \otimes X^{\perp})$$
 $\Re (X$ $\Re X^{\perp})$

c.
$$(X \otimes X^{\perp}) \otimes (X \ \mathfrak{P} X^{\perp})$$

- **d.** $(X \otimes X^{\perp})$ $\Re (X \otimes X^{\perp})$
- e. $(X \ \mathfrak{P} X^{\perp}) \ \mathfrak{P} (X \ \mathfrak{P} X^{\perp})$
- f. $(X \ \mathfrak{Y} X^{\perp}) \otimes (X \ \mathfrak{Y} X^{\perp})$
- g. $((X \otimes X^{\perp}) \, \mathfrak{P} \, (X \otimes X^{\perp})) \, \mathfrak{P} \, (X \, \mathfrak{P} \, X^{\perp})$
- **h.** $(X \otimes (Z \ \mathfrak{P} Y)) \ \mathfrak{P} (((Y^{\perp} \ \mathfrak{P} X^{\perp}) \otimes (U^{\perp} \ \mathfrak{P} V^{\perp})) \ \mathfrak{P} ((V \ \mathfrak{P} Z^{\perp}) \otimes U))$

Boolean Computation

We consider the formula $\mathbf{B} = (X^{\perp} \mathfrak{P} X^{\perp}) \mathfrak{P} (X \otimes X).$

Question 3. Give all the cut-free proof-nets with a unique conclusion labelled B.

Among the two atomic proof-nets of Question 3, only one can be obtained by axiom expansion. We call it TRUE. The other atomic one is called FALSE. The set of Booleans is $\mathbb{B} = \{\text{true}, \text{false}\}$ and we define $\overline{\text{true}} = \text{TRUE}$ and $\overline{\text{false}} = \text{FALSE}$.

A function f from \mathbb{B} to \mathbb{B} is said to be *represented* by the proof-net \mathcal{R} with two conclusions \mathbf{B}^{\perp} and \mathbf{B} if the normal form of the proof-net \mathcal{R}_b (obtained by putting a cut node between the conclusion \mathbf{B} of \overline{b} and the conclusion \mathbf{B}^{\perp} of \mathcal{R}) is $\overline{f(b)}$, for any $b \in \mathbb{B}$.

Question 4. Give a proof-net representing the negation function $\mathbb{B} \to \mathbb{B}$:

```
\begin{array}{l} \mathsf{true} \mapsto \mathsf{false} \\ \mathsf{false} \mapsto \mathsf{true} \end{array}
```

Question 5. Give all the atomic cut-free proof-nets with two conclusions: \mathbf{B}^{\perp} and \mathbf{B} .

Question 6. Give a function from \mathbb{B} to \mathbb{B} which cannot be represented by a proof-net.