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Abstract

We refine HO/N game semantics with an additional notion of pointer (mu-pointers) and
extend it to first-order classical logic with completeness results. We use a Church style extension
of Parigot’s lambda-mu-calculus to represent proofs of first-order classical logic.

We present some relations with Krivine’s classical realizability and applications to type
isomorphisms.
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Game interpretations of logic and programming languages have been initially developed on the
logic side (for example [Lor60] for intuitionistic logic). From the beginning of the 90s, most of
the attention has been turned to programming languages with the introduction of game seman-
tics [AJM00, HO00, Nic94, McC96, Har99].

Our goal is to develop a game model of first-order classical logic based on the HO/N model
(more precisely its “classical” version presented in [Lai97] which relaxes the bracketing condition).
We have to work between the model of the λ-calculus presented in [DHR96] (which is fully complete
for the λ-calculus and thus not general enough to allow for the interpretation of classical features)
and the model of [Lai97] where the use of answers might allow for too general behaviours (from
the logical point of view). The difference between these two models can be figured out by looking
at the interpretation of atoms: [DHR96] uses a one-move game, while [Lai97] uses a two-moves
game. The key ingredient will be the introduction of additional µ-pointers in the model of [DHR96]
(together with the usual justification pointers, or λ-pointers). The extension of the one-move model
allows for the interpretation of classical logic (and not only the λ-calculus).

Game models provide accurate interpretations of logical systems and programming languages
as given by full completeness results (any element of the model acting on the interpretation of
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a formula/type is the interpretation of a proof/term). A natural companion property is faithful
completeness (two different syntactic objects have different interpretations). When both are sat-
isfied, the distinction between syntax and semantics becomes almost irrelevant as suggested by
Girard [Gir99].

To be slightly more precise, we say that a denotational model is equivalence complete if it is
fully and faithfully complete, and if each object of the model is isomorphic to the interpretation
of a formula/type. That is, if the interpretation functor into the model defines an equivalence of
categories between the syntactic category and the model.

We will show how the appropriate notion of canonical form for a Church style first-order exten-
sion of Parigot’s λµ-calculus [Par92] together with our first-order game model give an equivalence
completeness result. This is the main theorem of this paper.

Starting from the first-order case, we derive a few (known and new) models for different sub-
systems. We also study the relation between our one-move model with µ-pointers and the two-moves
model (in the setting of propositional logic). Here is a summary of the main game models considered
in the paper:

atomic simply typed/propositional propositional propositional first-order
games λ-calculus (1 atom) NJ/λ-calculus NK/λµ-calculus logic

1 move [DHR96] Section 3.2 Section 3.3 Section 2
2 moves [HO00, Nic94] Section 3.3 [Lai97] end of Section 3.3

structures λ-pointers atomic labels µ-pointers first-order labels
used here instantiations

There are equivalence completeness results underlying all these models.
Following the method developed in [Lau05a], we apply our game model to the purely syntactic

problem of characterizing the type isomorphisms of call-by-name first-order classical logic. This is
a new result in the topic of type isomorphisms.

We end the paper with the presentation of a close relation between game semantics and Krivine’s
classical realizability [Kri06]. This is important for two reasons. First, the idea of introducing µ-
pointers in the one-move game models came from an analysis of the interpretation of proofs through
Krivine’s realizability. Second, game semantics and realizability are two of the most important
tools developed along the Curry-Howard correspondence to relate logic and computer science and
to derive computational interpretations of proofs. Being able to conciliate these two approaches is
a very pleasant thing.

In this paper we focus on the logical aspects of game semantics. However games are also a
crucial tool in the study of the semantics of programming languages. The λµ-calculus appears as
a natural bridge since it is known to provide both a term syntax for proofs in classical logic and a
foundation for functional programming languages with control operators. The link between games
and realizability, which is presented here, offers another bridge between games and the theory of
programming languages.

Related works. The game setting developed in [Lor60, Fel85] is quite similar to our proposal
concerning the notion of play (and view). However it is done in an intuitionistic setting and without
any particular interest for the composition of strategies which is at the core of HO/N games. In
this line of work, Coquand [Coq95] has explicitly worked on composition and in a classical setting
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but in relation with a quite different syntactic system: Novikoff’s calculus. Finally Herbelin [Her97]
(following Coquand) and Laird [Lai97] (following HO/N) arrived to a meeting point by giving a
fully complete game model for a classical extension (à la λµ-calculus) of PCF, that is without
propositional variables or quantification.

A key ingredient which is new with respect to those works is the notion of µ-pointer. It happens
that they appear to be a particular case of the contingency pointers introduced by Laird for local
exceptions [Lai01].

A more algebraic approach (by means of generators and relations) to game semantics for first-
order quantification is developed in [Mim09]. The underlying logic is very basic: linear and without
propositional connectives.
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1 Notations and used languages

1.1 First-order logic

In the whole paper, we consider a fixed first-order language L, that is a countable set of function
symbols (with given arities), denoted by f , g, ... and a countable set of relation symbols (with
given arities), denoted by X, Y , ... (arities are natural numbers). We assume given a countable
set of first-order variables V, denoted x, y, ...

To clarify the different uses we will have of first-order variables and of first-order terms, we
consider the set of variables V as the disjoint union of three countable sets of variables: A-variables,
O-variables and P-variables. And we assume given an enumeration (oi)i∈N of O-variables.

First-order terms are defined as:

t ::= x | f~t

where function application respects the arity of symbols.
As sub-classes, we will use AP-terms (first-order terms built from A-variables and P-variables

only) and OP-terms (first-order terms built from O-variables and P-variables only). This will be
done in the spirit of Barendregt’s convention [Bar84, 2.1.13 page 26]: different names are used for
different purposes (see in particular Section 2). A-variables will be used for bound occurrences
in types/formulas and arenas, O-variables for bound occurrences in λµ-terms and strategies and
P-variables for free occurrences.

Formulas are defined as:

A ::= ⊤ | ⊥ | X~t | A→ A | A ∧A | ∀xA

where relation application respects the arity of symbols, x is an A-variable and ~t are AP-terms.
An atomic formula is Xt1 . . . tk, ⊤ or ⊥, denoted R, S, ... If it is neither ⊤ nor ⊥ it is a

non-constant atomic formula.
The (now quite popular [Kri01, Sel01, Lau04]) restriction of the set of connectives to the so-

called “negative” ones is what makes the framework much easier to manage. Note that the other
connectives are easy to define from their negative dual by means of negation (for example ∃xA ≡
(∀x(A→ ⊥))→ ⊥).

1.2 Church style λµ-calculus for first-order logic

In order to describe proofs in first-order classical logic, we use (according to the Curry-Howard
correspondence) a Church style extension of Parigot’s λµ-calculus [Par92] with abstraction and
application for first-order universal quantification. First-order formulas are used as types.

Given two disjoint countable sets of variables (λ-variables, denoted a, b, ... and µ-variables,
denoted α, β, ...), the corresponding λµ-terms are:

M ::= a | λa.M | (M)M | 〈M,M〉 | π1M | π2M | ⋆ | [α]M | µα.M | Λx.M |M{t}

where x is an O-variable and t is an OP-term. We use the simplified notation µα[β]M instead of
µα.[β]M when these two constructions come together.

λµ-terms are considered up to α-equivalence for λ-variables bound by λ, µ-variables bound by
µ and O-variables bound by Λ. We consider only λµ-terms without free O-variables (Barendregt’s
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Γ, a : A ⊢ a : A | ∆
Γ, a : A ⊢M : B | ∆

Γ ⊢ λa.M : A→ B | ∆

Γ ⊢M : A→ B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ (M)N : B | ∆

Γ ⊢ ⋆ : ⊤ | ∆
Γ ⊢M : A | ∆ Γ ⊢ N : B | ∆

Γ ⊢ 〈M,N〉 : A ∧B | ∆

Γ ⊢M : A1 ∧A2 | ∆

Γ ⊢ πiM : Ai | ∆

Γ ⊢M : A | ∆, α : A

Γ ⊢ [α]M : ⊥ | ∆, α : A

Γ ⊢M : ⊥ | ∆, α : A

Γ ⊢ µα.M : A | ∆

Γ ⊢M [y/z ] : A[y/x] | ∆
y /∈ Γ,M,A,∆

Γ ⊢ Λz.M : ∀xA | ∆

Γ ⊢M : ∀xA | ∆

Γ ⊢M{t} : A[t/x] | ∆

x is an A-variable, y is a P-variable and z is an O-variable.

Table 1: Typing rules for the first-order λµ-calculus

convention). A λµ-term is closed if it contains neither free λ-variables nor free µ-variables (it may
contain free P-variables).

Typing judgments are of the shape Γ ⊢ M : A | ∆ where Γ is a set of typing declarations for
distinct λ-variables (i.e. pairs a : A) and ∆ is a set of typing declarations for distinct µ-variables
(i.e. pairs α : A). The derivation rules for this system are given in Table 1.

Through the Curry-Howard correspondence, type inhabitance corresponds to provability.

Proposition 1 (Provability)
The formula A is provable in first-order classical logic if and only if there exists a closed λµ-term
M such that ⊢M : A | is derivable.

The equality between proofs is the congruence generated by the equational theory βηµρθ on
typed λµ-terms given in Table 2.

1.3 The syntactic category

The syntactic category S has objects given by types and morphisms from A to B obtained by
quotienting the set of closed λµ-terms of type A→ B by the congruence generated by βηµρθ. The
identity morphism is the equivalence class of the λµ-term λa.a of type A→ A. The composition of
two equivalence classes containing M : A→ B and N : B → C is the class of λa.(M)(N)a : A→ C
(a /∈M , a /∈ N).

In order to simplify our work in the rest of the paper, we are going to move from the syntactic
category to an equivalent one.

Concerning formulas, we first define →-canonical forms (non-terminal Q in Table 4):

∀~x(Q1 → · · · → Qk → R)

with R atomic but different from⊤ (called the final atom of the formula) and theQjs in→-canonical
form. Then canonical forms are:

∧

1≤i≤n

∀~x(Qi1 → · · · → Qiki
→ Ri)
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(λa.M)N =β M [N/a] : A
λa.(M)a =η M : A→ B a /∈M
π1〈M,N〉 =β M : A
π2〈M,N〉 =β N : A

〈π1M,π2M〉 =η M : A ∧B
⋆ =η M : ⊤

(Λx.M){t} =β M [t/x] : A
Λx.M{x} =η M : ∀xA x /∈M

(µα.M)N =µ µα.M [[α](L)N/[α]L] : A

π1µα.M =µ µα.M [[α]π1L/[α]L] : A

π2µα.M =µ µα.M [[α]π2L/[α]L] : A

(µα.M){t} =µ µα.M [[α]L{t}/[α]L] : A

[β]µα.M =ρ M [β/α] : ⊥
µα[α]M =θ M : A α /∈M

[α]M =ρ M : ⊥

where M [C[L]/[α]L] is obtained by substituting any sub-term of M of the shape [α]L by C[L].

Table 2: Equalities between λµ-terms

with n ≥ 0 (where
∧

1≤i≤0Qi = ⊤,
∧

1≤i≤1Qi = Q1 and
∧

1≤i≤n+1Qi = (
∧

1≤i≤nQi)∧Qn+1), with

the ∀~x(Qi1 → · · · → Qiki
→ Ri)s in →-canonical form. This corresponds to the non-terminal C in

the grammar of Table 4.

Proposition 2 (Canonical forms for formulas)
If we consider formulas up to the equations of Table 31 (except the last two), any formula can be
written in canonical form.

Proof: We consider the equations of Table 3 (except the last two) as rewriting rules from left to
right.

We define the two functions φ and ψ from formulas to integers greater or equal to 2:

φ(⊤) = φ(⊥) = φ(R) = ψ(⊤) = ψ(⊥) = ψ(R) = 2

φ(A ∧B) = 2(φ(A) + 1)φ(B)

ψ(A ∧B) = 2(ψ(A) + 1)ψ(B)

φ(A→ B) = φ(B)φ(A)

ψ(A→ B) = ψ(B)ψ(A)

φ(∀xA) = φ(A)2

ψ(∀xA) = 2ψ(A)

We can easily check that for each rewriting rule A 7→ B, (φ(A), ψ(A)) > (φ(B), ψ(B)) (with
respect to the lexicographic order). Finally, if A is a formula such that no rewriting rule
applies to it, then A is in canonical form. 2

1These equations are validated by syntactic isomorphisms, see Proposition 11 page 46.
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A ∧ (B ∧ C) = (A ∧B) ∧ C

A ∧ ⊤ = A

⊤ ∧A = A

(A ∧B)→ C = A→ (B → C)

⊤ → A = A

A→ (B ∧ C) = (A→ B) ∧ (A→ C)

A→ ⊤ = ⊤

∀x(A ∧B) = ∀xA ∧ ∀xB

∀x⊤ = ⊤

A→ ∀xB = ∀x(A→ B) x /∈ A

A ∧B = B ∧A

∀x∀yA = ∀y∀xA

Table 3: Type isomorphisms

R ::= X~t | ⊥

A ::= R | Q→ A

Q ::= A | ∀xQ

B ::= Q | B ∧ Q

C ::= B | ⊤

Table 4: Canonical forms for formulas
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Up to the βηµρθ equational theory, any closed λµ-term whose type is a canonical form can be
written as a canonical normal form which is either ⋆ or a tuple of terms of the shape:

Λ~x.λ~a.µ[ ]((b){~t}) ~M

where µ[ ] is of the shape µα[β] except that [β] disappears if ((b){~t}) ~M has type ⊥ and that µα

disappears if µ[ ]((b){~t}) ~M has type ⊥ (see Appendix A.1 for a proof of this result).
The syntactic category Sc is the category in which objects are types in canonical form and

morphisms are closed λµ-terms in canonical normal form quotiented by βηµρθ2. According to the
previous remarks, this is a category equivalent to S.

2 A game model of first-order logic

2.1 Arenas

The notions of forest and tree will occur at different places in this work. Sometimes enriched with
some additional structure (such as labels or pointers) and sometimes not. Here we consider forests
and trees as finite objects defined by mutual induction:

• a finite list of trees is a forest,

• a node together with a forest is a tree, the node is called a root and the roots of the trees of
the forest are the sons of this root and the trees of the forest are the immediate sons of this
tree.

This definition is well founded by using the case of an empty list of trees as a forest. Notice that a
tree is never empty while a forest could perfectly be empty.

The root of a tree is considered as the top element of the tree, so that we can speak about a
node above or below another in a tree/forest. The polarity of a node is the parity of the length of
the path from a root to this node (in particular the polarity of roots is even).

If F is a forest and T is a tree, the graft of F on T is the tree which has the same root as T
and with immediate sons obtained by concatenating F (on the left) to the list of the immediate
sons of T . If F ′ is a forest, the graft of F on F ′ is obtained by grafting F on each tree of F ′ (this
may entail duplications of F , and if F comes with some additional structure, this structure is also
duplicated).

If T1 and T2 are two trees, the merging of T1 and T2 is the tree obtained by grafting the list of
immediate sons of T1 (which is a forest) on T2. This means that the two roots are identified and
the two lists of immediate sons are concatenated. If F1 = [T1, . . . ,Tp] and F2 = [T ′

1 , . . . ,T
′
q ] are

two forests, the merging of F1 and F2 is the forest [T 1
1 , . . . ,T

q
1 ,T

1
2 , . . . ,T

q
2 , . . . ,T

1
p , . . . ,T

q
p ] where

the tree T ji is the merging of Ti and T ′
j .

Example 1

If we consider the forest F and the two trees T1 and T2:

2We will see in fact in Corollary 2.1 that there is no quotient involved here since two different canonical normal

forms cannot be equalized through βηµρθ.
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F = T1 = T2 =

The graft of F on T2 is the following tree:

The merging of T1 and T2 is:

We define a notion of arena adapted to the presence of first-order quantification (in the spirit
of polymorphic arenas [Hug97] developed for second-order quantification).

Definition 1 (Arena)
An arena is a forest with nodes labelled with:

• a list of first-order A-variables, called the first-order label of the node;

• a list of non-constant atomic formulas (using only AP-terms), called the atomic label of
the node (in such a way that A-variables appearing in an AP-term already appear in the
first-order label of the node or of a node above it).

The nodes of the forest are called moves. Concerning the polarity, we also use O for even and
P for odd.

If the move m is the son of the move n in the arena A, we say that n enables m (denoted by
n ⊢A m). Roots are also called initial moves denoted by ⊢A m.

In this paper, we have to deal with a bunch of binding structures. For each of them we can use
binding through names and α-renaming, de Bruijn indexes, pointers, ... We decide to use explicit
names for first-order variables in arenas. If an A-variable x appears in an AP-term of the atomic
label of a move m and also in the first-order label of a move n above m (or of m itself), x has to be
considered as bound in the arena. We will not explicitly deal with arenas up to α-conversion of
these bound A-variables. However we will assume all the elements of the first-order labels of an
arena to be different. This could require implicit renaming in the arena constructions.

Example 2

If we represent first-order labels on the left-hand side and atomic labels on the right-hand side of
each move, here is an arena:

x, y Y

Y

z X(fyz)
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where X has arity 1, Y has arity 0, and f has arity 2.
Remember that, in the general case, the atomic label of a move may contain more than one

element.
For the following examples, we name the root as a0, its sons as a1 and a2 and the son of a2 is

named a3.

Definition 2 (Arrow arena)
Let A and B be two arenas, the arrow arena A→ B is the graft of A on B.

2.2 Sequences of moves

Game semantics usually deals with sequences of moves equipped with some additional structure.
Due to the presence of first-order quantification, we will use some even richer structure.

We first introduce pointers on sequences of moves. Two kinds of pointers are required in our
setting.

Definition 3 (Justified sequence)
A justified sequence s on the arena A is a sequence of moves of A together with:

• for each occurrence of a non-initial move m, we give a justification pointer (or λ-pointer) to
an earlier occurrence of move in s (that corresponds to giving an integer smaller than the
index of m in s) which enables m in A;

• for each occurrence of a move m with atomic label l in A, we give, for each element of l, at
most one µ-pointer to an element of the atomic label of an earlier occurrence of move n of
opposite polarity (this can be represented as, for each element of l, an integer corresponding
to the index of n and then an integer giving the chosen element in the atomic label l′ of n).

Example 3

Here is a justified sequence on the arena A of Example 2:

a0 a2 a0 a1 a3 a0 a2 a2

1 1 2 3 6
(1, 1) (4, 1)

λ-pointers are represented as plain lines and µ-pointers as dashed lines.
The second line gives λ-pointers as integers. The third line gives µ-pointers as pairs of integers

(the second index is always 1 since the length of the atomic labels of A is at most 1, and there is
at most one pair for each move for the same reason).

We now introduce first-order instantiations on sequences of moves (independently of the pointer
structure). An O-instantiation of a move m of an arena A, which has a first-order label of length
n, is a list of n O-variables. A P-instantiation (which is not dual to O-instantiation) of a move m

of an arena A, which has a first-order label of length n, is a list of n OP-terms.

Definition 4 (Instantiated sequence)
An instantiated sequence s on the arena A is a sequence of moves of A together with:

10



• an O-instantiation for each O-move

• a P-instantiation for each P -move

such that all the O-variables appearing in the O-instantiations are different.

We consider the possibility of modifying the O-variables: an O-renaming is an injection from
the set of O-variables to itself. If s is an instantiated sequence and if ς is an O-renaming, sς is the
instantiated sequence obtained by substituting o by ς(o) in any instantiation of s.

More generally, an O-substitution is a function from O-variables to OP-terms. If s is an
instantiated sequence and if ϑ is an O-substitution, sϑ is obtained by substituting o by ϑ(o) in any
P-instantiation of s.

The combination of pointers and instantiations is required for interaction sequences and plays.

Definition 5 (Interaction sequence)
Let A, B and C be three arenas, an interaction sequence u on A, B and C is a justified sequence
on (A→ B)→ C (without any µ-pointer between a move of A and a move of C) together with:

• for each O-move played in C and for each P -move played in A, an O-instantiation;

• for each P -move played in C and for each O-move played in A, a P-instantiation;

• for each move played in B, a pair of an O-instantiation and of a P-instantiation;

such that all the O-variables appearing in the O-instantiations are different. This turns u into
an instantiated sequence on A → (B → C) by forgetting: pointers, O-instantiations for O-moves
played in B and P-instantiations for P -moves played in B.

The set of all interaction sequences on A, B and C is noted int(A,B,C).

An instantiated justified sequence s on an arena A generates substitutions of the A-variables
appearing in the first-order labels of A by the OP-terms appearing in the instantiations. Let m

be an occurrence of move in s with instantiation [t1, . . . , tk] and let [x1, . . . , xk] be the first-order
label of m in A, we define the substitution θm as {x1 7→ t1, . . . , xk 7→ tk} if m is an initial move, and
θn ∪ {x1 7→ t1, . . . , xk 7→ tk} where n is the occurrence of move justifying m in s otherwise.

Definition 6 (Play)
A play on the arena A is an instantiated justified sequence on A such that:

• polarities of moves are alternating;

• there are no µ-pointers from Opponent moves;

• there is exactly one µ-pointer for each element of the atomic label of each Player move;

• for each µ-pointer going from a formula Xt1 . . . tk labelling (in A) an occurrence of move m

to a formula Y u1 . . . up labelling (in A) an occurrence of move n, we have X = Y , k = p,
t1θm = u1θn, ..., tkθm = ukθn;

• all theO-variables appearing in a P-instantiation have appeared in a previousO-instantiation.

The set of all plays on A is noted PA. The set of even length plays on A is noted PPA . The prefix
order on plays is noted ≤ and we use the notation s ≤P t (s is P -prefix of t) for s ≤ t ∧ s ∈ PPA .

11



We can summarize the structure put on moves of a play:

• an Opponent move is equipped with a justification pointer and with an O-instantiation;

• a Player move is equipped with a justification pointer, with a list of µ-pointers and with a
P-instantiation.

O-variables are introduced by Opponent and then used by Player.

Example 4

On the arena:

x

X(fx)

y, z Xy

X(fz)

if we name the root as b0, then we name the moves along the first branch b1 and b2 and along the
second branch b3, b4 and b5, we have the following play (above the line):

b0 b1 b2 b1 b0 b3 b4 b1 b2 b3 b4 b5

[o0] [o1] [fo0, t] [fo1, o0]

x 7→ o0

x 7→ o0
y 7→ fo0
z 7→ t

x 7→ o1

x 7→ o1
y 7→ fo1
z 7→ o0

x 7→ o1
y 7→ fo1
z 7→ o0

X(fo0) X(fo0) X(fo1) X(fo1) X(fo0)

For each occurrence of move m with a non-empty atomic label [R] (there is no atomic label of greater
length in the considered arena), we have indicated (below the line) the corresponding substitution
θm and the associated formula Rθm.

It is thus easy to check that µ-pointers validate the condition on atomic labels given in the
definition of play. The formula Rθm gives some dynamic content of the move which depends on the
position in the play (thus in a proof on the syntactic side). A comment on the logical meaning of
this is given in the beginning of Section 6.

We define various notions of projections of sequences of moves.
If s is an instantiated justified sequence on A→ B, s ↾A (resp. s ↾B) is the subsequence (with

some pointers and some instantiations) of s containing the moves belonging to A (resp. B), with
their justification pointers (except for initial moves of A which do not have justification pointers
anymore), with their µ-pointers going to moves in A (resp. B) (the others disappear), and with
their instantiations. It is an instantiated justified sequence.

If u is an interaction sequence on A, B and C, we define the following sequences (with some
pointers and some instantiations):

12



• u ↾A→B is the subsequence of u containing moves in A and moves in B with their pointers
(if they arrive to a move in A or B and are not µ-pointers starting from a Player move of B
in u) and with their instantiation for moves in A, and their O-instantiation for P -moves in u

played in B and their P-instantiation for O-moves in u played in B.

• u ↾B→C is the subsequence of u containing moves in B and moves in C with their pointers (if
they arrive to a move in B or C and are not µ-pointers starting from an Opponent move of
B in u) and with their instantiation for moves in C, their O-instantiation for O-moves in u

played in B and their P-instantiation for P -moves in u played in B.

• u ↾A→C is the subsequence of u containing moves in A and moves in C with their justification
pointer if it arrives to a move in A or C.

For any initial move m in A, whose justifier must be an initial move m′ in B itself justified by
an initial move m′′ in C, we put m′′ as justifier of m.

The µ-pointers of this justified sequence are given by: we put a µ-pointer from the formula
R associated with the occurrence of move m to the formula S associated with the occurrence
of move n, if there exists a sequence of µ-pointers p1, . . . , pn (n > 0) in u such that:

– the source of p1 is R associated with the occurrence of move m

– the target of pn is S associated with the occurrence of move n

– the source of pi is the target of pi−1 (2 ≤ i ≤ n)

– the target of pi is in B (1 ≤ i ≤ n− 1)

This means that we find a path of µ-pointers from R to S going only through labels of moves
in B (if the path contains only one edge, it has not to go through B).

Since with any move of u in B are associated both an O-instantiation and a P-instantiation
(of the same length), we can define an O-substitution ϑ: the O-variable x is substituted by t
if x appears in kth position in the O-instantiation of an occurrence of move m of u in B and
t is the kth element of the P-instantiation of m. The instantiations in u ↾A→C are obtained
from the instantiations in u by applying ϑ.

The objective of these projections of interaction sequences is to extract candidate plays for A→ B,
B → C and A→ C, as given in the definition of the composition of strategies below.

Definition 7 (Strategy)
A strategy σ on the arena A, denoted σ : A, is a non-empty set of even length plays which is closed
under even length prefixes, and:

• deterministic: if sm ∈ σ and sn ∈ σ then sm = sn;

• uniform: if s ∈ σ and ς is an O-renaming then sς ∈ σ.

A particular kind of strategy playing µ-pointers and instantiations in a very constrained way is
useful. A play is µ-rigid if:

• the atomic label of a Player move always has the same length as the atomic label of the
previous move,

13



• a µ-pointer is always going to the corresponding element of the atomic label of the previous
move,

• the instantiation of a Player move is always the same as the instantiation of the previous
move.

A strategy is µ-rigid if all its plays are.
In order to define a category, we consider the following identities and composition.
If A is an arena, the identity idA on A→ A is given by:

idA = {s ∈ PPA1→A2
| ∀t ≤P s, t ↾A1

= t ↾A2

∧ µ-pointers are going to the corresponding element of the previous move}

It contains only µ-rigid plays.
If σ : A→ B and τ : B → C are two strategies, the composition of σ and τ is given on A→ C

by:
σ ; τ = {u ↾A→C ∈ P

P
A→C | u ∈ int(A,B,C) ∧ u ↾A→B ∈ σ ∧ u ↾B→C ∈ τ}

These two constructions give rise to strategies and we obtain a category of arenas and strategies
(see Appendix B).

2.3 Innocence

In order to restrict the set of strategies to those corresponding to proofs in first-order logic, we
introduce the notions of view and innocence.

Definition 8 (View)
A view on the arena A is a play s on A such that:

• Opponent moves in s are all λ-justified by the preceding move;

• the list of O-variables played by Opponent (obtained by concatenating the O-instantiations
in s according to the order in which they appear in s) is a prefix of the enumeration (oi)i∈N.

The condition on O-variables is related with the notion of skeleton in [Fel85].
If s is an instantiated justified sequence, the pre-view psq of s is defined by: pεq = ε, psmq =

psqm if m is a Player move, psmq = m if m is an initial Opponent move, psmtnq = psmqn if n is an
Opponent move justified by m.

The view psq of s is obtained from its pre-view by applying the O-renaming required to respect
the naming condition of views. If [x0, x1, . . . , xn] is the list of O-variables played by Opponent in
psq (obtained by concatenating the O-instantiations in psq according to the order in which they
appear), we consider an O-renaming ς satisfying ς(xi) = oi for 0 ≤ i ≤ n (we call it a canonical
renaming induced by psq) and we define psq = psqς (the value of ς outside {x0, . . . , xn} has no
impact).

If s is a play then psq is a view and if s is a view then psq = s.
We choose the presentation of innocent strategies based on their underlying view functions.

Definition 9 (View function)
A view function on the arena A is a non-empty set of even length views on A which is closed under
even length prefixes and deterministic: if sm ∈ σ and sn ∈ σ then sm = sn.
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Note that a view function is not a strategy since it violates the uniformity condition.
Let σ be a view function on A, its view closure VC(σ) is given by ε ∈ VC(σ), and if s ∈ VC(σ),

smn ∈ PA and psmnq ∈ σ then smn ∈ VC(σ).

Lemma 1 (View closure)
If σ is a view function then VC(σ) is a strategy.

Proof: By definition, VC(σ) is a non-empty P -prefix closed set of even-length plays. If sm ∈ VC(σ)
and sn ∈ VC(σ) then psmq = psqm0 ∈ σ and psnq = psqn0 ∈ σ (where m0 and n0 are obtained
from m and n by applying a canonical O-renaming induced by psq) thus psmq = psnq by
determinism of σ and finally sm = sn.

By induction on the length of s, we can show that s ∈ VC(σ) implies sς ∈ VC(σ) for any
O-renaming ς. This is an easy consequence of psq = psςq. 2

Composition of view functions is given by: σ ; τ = {psq | s ∈ VC(σ) ; VC(τ)}, and the identity
view function is pidq.

An innocent strategy is a strategy obtained as the view closure of a view function. We will now
consider only innocent strategies and just say “strategy”. Moreover we will mainly say “strategy”
for the underlying view function.

Proposition 3 (Category of innocent games)
Arenas and view functions give a category G.

Proof: All the technical results on strategies corresponding to the categorical structure are de-
veloped in Appendix B. 2

2.4 Constructions

The notion of arrow arena was already required to define morphisms between arenas. We now turn
to other constructions on arenas and strategies to describe the richer structure of the category of
games: a control category [Sel01]. We first start with the propositional constructions.

Arena constructions. Let A and B be two arenas:

Empty. The empty arena ⊤ is the empty forest.

Unit. The unit arena ⊥ is the forest with only one tree with only one node * (empty labels).

Atom. If R is a non-constant atomic formula, the corresponding atomic arena R is the unit arena
with [R] as atomic label for its unique node (empty first-order label).

Sum. The sum A+B of A and B is the concatenation of A and B.

Product. The product A × B of A and B is the merging of A and B. The labels of roots are
obtained by concatenation from the labels of the corresponding roots in A and B (the first-
order labels of A and B are supposed to be disjoint). A move in A × B is represented as a
pair of moves (m, n) of A and B such that at least one is initial.
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Example 5

Starting from the arena A of Example 2, the product A×A (where we put “primes” on the second
copy) is the arena:

x, y, x′, y′ Y, Y

Y

z X(fyz)

Y

z′ X(fy′z′)

with root named (a0, a
′
0), its sons named (a1, a

′
0), (a2, a

′
0), (a0, a

′
1) and (a0, a

′
2), the son of (a2, a

′
0)

is (a3, a
′
0) and the son of (a0, a

′
2) is (a0, a

′
3).

Strategy constructions.

Definition 10 (Linear strategy)
Let σ be a view function on A→ B, σ is linear if:

• for each initial move m in B, there is a play mn in σ with n in A

• for each view mns in σ, n is the unique move in A justified by m

Let σ : A→ C and τ : B → D be two view functions:

Sum. The view function σ + τ is obtained by the union of the view functions. Its view closure is
{s ∈ PPA+B→C+D | s ↾A→C ∈ VC(σ) ∧ s ↾B→D ∈ VC(τ)}. If both σ and τ are linear then σ+ τ
is linear.

Product. Assume σ : A → C is linear. For each initial move c0 in C, there is a unique move a0

in A such that c0a0 belongs to σ. A view s in A × B → C × D respects σ if, for (c0,d0)

its initial move, any move (a,b) in s with a initial satisfies a = a0 (with c0a0 ∈ σ and a0

justified by c0) and any move (c,d) in s with c initial satisfies c = c0. If s respects σ, s*τ is
obtained by replacing any move (a0,b) by b and any move (c0,d) by d (with the appropriate
pointers and instantiations) and by removing the other moves. If s respects σ, we consider
s0 obtained by replacing any move (a,b0) with a non initial in A and b0 initial in B by a

and any move (c,d0) with c non initial in C and d0 initial in D by c (with the appropriate
pointers and instantiations). We define ε*σ = ε and, if s is not empty, s*σ is c0a0s0 in which
a0 is justified by c0 and the moves of s0 enabled by a0 in A are justified by a0. We define
σ × τ = {s ∈ PPA×B→C×D | ∀t ≤

P s, t is a view respecting σ ∧ t*σ ∈ σ ∧ t*τ ∈ τ}.

If τ is linear (but σ is not) we can proceed in a symmetric way for defining σ × τ . If both σ
and τ are linear, the two definitions coincide and σ × τ is linear.

Projections. The linear view function pidAq : A→ A is also a linear view function on A+B → A
and on B +A→ A.

Diagonal. We can consider moves in A→ B as moves in A→ B+B by identifying the original B
with either the left one or the right one. In this way we can see pidAq as a set of plays id1

A

in A→ A+A by considering the left embedding and also as a set of plays id2
A in A→ A+A

by considering the right embedding. The linear view function ∆A on A→ A+A is the union
of id1

A and id2
A.
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Weakening. The linear view function wkA on ⊥ → A is {ε} ∪ {m* | m initial in A} (this means
that m comes with the unique possible O-instantiation leading to a view and that * is justified
by m).

Contraction. We consider a play s in A × A → A (we add indexes: A1 × A2 → A0 to make
things clearer). An occurrence of move in A0 is called a left move if the previous move
in A1 × A2 was in A1 (and the same with “right move” and A2). If only moves from A0

were played before, we consider it both as a left move and as a right move. We define sl
as the subsequence of s containing m: if (m, n) is an occurrence of move in A1 × A2 with n

initial in A2, or if m is a left move in A0. sr is given in a symmetric way. sl and sr can
be seen as sequences of moves in A → A. The linear view function ctrA on A × A → A is
{s ∈ PPA×A→A | s view ∧ sl ∈ idA ∧ sr ∈ idA}.

Example 6

The definition of product gives the following kind of view in σ × τ :

A×B → C ×D

(c0,d0)

(c0,d1)

(c0,d2)

(a0,b0)

(a0,b1)

(a0,b
′
0)

(a1,b
′
0)

(c1,d0)

where σ : A→ C is linear and contains the view:

A → C

c0

a0

a1

c1
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and τ : B → D contains the view:

B → D

d0

d1

d2

b0

b1

b′0

Example 7

The (quite complicated) definition of contraction gives the following (simple) views:

A×A → A

a0[o0, o1]

(a0,a
′
0)[o0, o1, o0, o1]

(a2,a
′
0)

a2

a3[o2]

(a3,a
′
0)[o2]

a0[o0, o1]

(a0,a
′
0)[o0, o1, o0, o1]

(a0,a
′
1)

a1

where A is the arena of Example 2 and A×A is described in Example 5.

Theorem 1 (Control category of games)
The category G of arenas and view functions is a control category.

In this control category, central morphisms are linear strategies.

Proof: All the technical results on strategies corresponding to the control category structure are
developed in Appendix B. 2

Definition 11 (Total strategy)
A strategy σ : A is total if whenever s ∈ σ and sm ∈ PA, there exists some smn in σ.

A total strategy is maximal for inclusion: if σ is total and σ ⊆ τ then σ = τ .
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Definition 12 (Finite strategy)
The size of a strategy is the sum of the lengths of its views. A strategy is finite if its size is finite.

The identity strategy is total and finite, and total and finite strategies compose (see Ap-
pendix B). This allows us to define the sub-category Gtf of G containing only total finite strategies,
which is also a control category (easy to check).

We now turn to the constructions corresponding to quantification.

First-order constructions. Concerning arenas, if A is an arena, x is a P-variable and y is a
fresh A-variable, the quantification ∀yA[y/x] is obtained by renaming x into y in A and then by
pushing y on the first-order label of each root. We will sometimes use the notation ∀xA for this
arena (since the particular choice of the name y is not important, see the discussion on bound
variables in Section 2.1).

Example 8

The arena of Example 2 is the interpretation of the formula ∀x∀y(Y → (∀zX(fyz)→ ⊥)→ Y ).

Let σ : A → B be a view function (with a P-variable x /∈ A), ∀x.σ is the view function on
A → ∀yB[y/x] given by: ∀x.σ = {ε} ∪ {(m[x]s)[oi+1/oi

][o0/x] | ms ∈ σ} where m[x] is obtained from
m by pushing x on its instantiation. If σ is linear then ∀x.σ is still linear.

Let A be an arena, the linear view function instt on ∀xA→ A[t/x] is given by: instt = {s ∈
PP∀xA→A[t/x] | s view ∧ ∀t ≤P s, t ↾∀xA[t] = t ↾A[t/x]} where t[t] is obtained from t by pushing t on
the instantiation of its initial move.

2.5 Interpretation of the λµ-calculus

A typing derivation ending with a judgment Γ ⊢ M : A | ∆ is interpreted as a strategy JMK on∑
Γ → A ×

∏
∆. Using Theorem 1, there is a canonical way of interpreting the usual proposi-

tional constructions of the λµ-calculus in our model (following [Sel01]). Moreover this ensures the
validation of those of the βηµρθ equalities which are not dealing with first-order constructs.

For the interpretation of the (∀-introduction) rule, we transform σ into ∀x.σ (since the arenas
∀x(A× B) and (∀xA)× B are isomorphic if x /∈ B). For the interpretation of the (∀-elimination)
rule, we transform σ into σ ; instt.

Lemma 2 (First-order correctness)
The following equalities are valid through the interpretation in games:

(Λx.M){t} =β M [t/x] : A
Λx.M{x} =η M : ∀xA x /∈M

(µα.M){t} =µ µα.M [[α]L{t}/[α]L] : A

Proof: • (Λx.M){t}: The view function interpreting this term is ∀x.σ ; (instt × id∆) which
is {s[t/x] | s ∈ σ}. One easily checks it is also the interpretation of M [t/x].

• Λx.M{x}: An immediate computation shows the interpretation of this term to be the
same as the interpretation of M .

• (µα.M){t}: this case is a consequence of the centrality of the morphism instt in the
control category of games (see [dL07, Chapter 7] for example). 2
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We denote by G1 (resp. Gtf1 ) the full sub-category of G (resp. Gtf) containing only arenas with
at most one element in the atomic labels of moves (called 1-arenas). According to the previous
interpretation of typing derivations, these categories are expressive enough to interpret the closed
terms of our λµ-calculus3 and we will mainly focus on them in the sequel.

Example 9

The interpretation of the closed term λa.a{t} of type ∀xXx→ Xt is the view function containing
the empty view and the view:

∀xXx → Xt

•

•
[t]

The interpretation of the closed term:

λf.(f{x})Λy.λd.µα.(f{y})Λz.λa.µδ[α]a

of type ∀x(∀y(Xx→ Xy)→ ⊥)→ ⊥ is the view function containing the following unique maximal
view:

∀x ( ∀y ( Xx → Xy ) → ⊥ ) → ⊥

•

•[x]

•[o0]

•[o0]

•[o1]

•

In order to prove the completeness of the model, instead of working by induction on the size of
strategies and of building incrementally the corresponding term, we will use a more geometric and
global approach through λµ-forests (an intermediate notion between terms and strategies in the
spirit of Böhm trees — a similar approach is used in [Her97]). Let us start with the simple case
of formulas and arenas. A formula in canonical form

∧
1≤i≤n ∀~x(A

i
1 → · · · → Aiki

→ Ri) can be

rewritten into
∧

1≤i≤n[R
i, ~x](Ai1, . . . , A

i
ki

). By considering [Ri, ~x] as an operator/constructor with

ki arguments and by looking at the forest given from the syntactic trees of the [Ri, ~x](Ai1, . . . , A
i
ki

),
we obtain nothing but the arena associated with the original formula. This shows in particular
that nodes in the arena are in bijection with occurrences of atomic formulas in a canonical form.

Example 10

The formula given in Example 8 and interpreted by the arena of Example 2 would be represented
as [Y, x, y]([Y ], [⊥]([X(fyz), z])).

3These two categories are not control categories, since the product of two 1-arenas is not a 1-arena in general. The

existence of surrounding control categories would allow us to extend the λµ-calculus with a disjunction connective in

types. We prefer not to do it since the calculus would become even more complex.
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We now develop the same kind of correspondence at the level of terms, λµ-forests and strategies.

Definition 13 (λµ-forest)
A λµ-forest is a forest with two additional disjoint finite sets of edges — λ-edges (labelled with a
natural number) and µ-edges — and with a list of OP-terms associated to each node and λ- or
µ-variables associated to some nodes, satisfying:

• The nodes of even polarity have exactly one son.

• The source of an edge is always a node of odd polarity and the target is always of even
polarity. Moreover the target is above the source.

• A node cannot be the source of two different λ-edges or of two different µ-edges.

• If a node of odd polarity is not the source of a λ-edge, it is labelled with a λ-variable. If a
node of odd polarity is not the source of a µ-edge, it may be labelled with a µ-variable.

• The list of terms associated with a node of even polarity is a list of O-variables.

• An O-variable appearing in an OP-term of the list associated with a node of odd polarity
must appear above in the list associated with a node of even polarity.

• The list of O-variables appearing along a branch (obtained by concatenating the lists asso-
ciated with the nodes of even polarity in the branch according to the order in which they
appear) is a prefix of the enumeration (oi)i∈N.

If there is no node labelled with a λ- or µ-variable, the λµ-forest is closed.

With any λµ-term in canonical normal form is naturally associated a λµ-forest:

• with ⋆ is associated the empty forest

• with a tuple of λµ-terms is associated the forest whose trees correspond to each λµ-term

• with a λµ-term Λ~x.λ~a.µα[β](b{~t}) ~M is associated the following tree: we first consider the

tree with a root r which has one son n whose sons are the trees corresponding to the ~Ms then

– we put the labels b and β on n

– we apply the substitution [oi+k/oi
| i ∈ N] (with ~x = x1 . . . xk)

– we associate the list [~x] with r and the list [~t] with n

– we apply the substitution [o0/x1
, . . . ,ok−1 /xk

]

– for each node labelled with the λ-variable ai (~a = a1 . . . ak), we remove the label and we
put a λ-edge with target r and label i

– for each node labelled with the µ-variable α, we remove the label and we put a µ-edge
with target r

If the λµ-term is closed then the associated λµ-forest is closed.
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Example 11

We represent λ-edges by plain edges and µ-edges by dashed edges in λµ-forests.

λa.µδ.a

1

λf.µα.(f)λd.[α]a

a

1

λf.λa.λb.µγ[γ]((f)µβ[β]b)µα[α]a

1

3 2

λa.λf.(f{t})µα[α]a{ht}

[t]

[ht]

2

1

λf.(f{x})Λy.λd.µα.(f{y})Λz.λa.µδ[α]a

[x]

[o0]

[o0]

[o1]

1

1

1

All these λµ-forests, except the second one, are closed.

By translating λµ-terms as λµ-forests, there is a loss of information. For example λa.a and
λa.λb.a are both translated as:

1

We have to use types to recover the missing information. A λµ-forest is typed if a formula in
→-canonical form (see page 5) is associated with each node in such a way that:

• if the node n (with formula A) is source of a λ-edge with label i and target r (with formula
B and list of terms ~o), then B = ∀~x(B1 → · · · → Bk → S) with A = Bi[

~o/~x];

• if the node n (with formula A and list of terms ~t) is source of a µ-edge with target r (with
formula B and list of terms ~o), then A = ∀~x(A1 → · · · → Ak → R) and B = ∀~z(B1 → · · · →

Bp → S) with R[~t/~x] = S[~o/~z];

• if the node n of odd polarity has formula A = ∀~x(A1 → · · · → Ak → R) then R = ⊥ if and
only if n is neither the source of a µ-edge nor labelled with a µ-variable;

• if the node r of even polarity (with formula A) is the ith son of the node n (with formula B

and list of terms ~t), then B = ∀~x(B1 → · · · → Bk → S) with A = Bi[
~t/~x].

The type of the λµ-forest is the conjunction of the types of its roots.
We can extend the translation from λµ-terms to λµ-forests with types: when translating

Λ~x.λ~a.µα[β](b{~t}) ~M of type A with b of type B, we associate A with r and B with n.

Example 12

The λµ-forests of Example 11 can be turned into typed λµ-forests with the following respective
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types:

⊥ → X

((X → ⊥)→ ⊥)→ X

(Y → X → Z)→ X → Y → Z

∀xXx→ (∀x(X(hx)→ ⊥))→ ⊥

∀x(∀y(Xx→ Xy)→ ⊥)→ ⊥

Starting from a typed λµ-forest, we can build a unique typed λµ-term. We decompose the
λµ-forest into λµ-trees, we compute the corresponding λµ-terms and the λµ-term associated with
the λµ-forest is the induced tuple. Concerning a λµ-tree T , if the root r has formula A = ∀~x(A1 →
· · · → Ak → R), we introduce k fresh λ-variables a1, . . . , ak, and a fresh µ-variable α. To any node
which is source of a λ-edge with index i and target r, we add the label ai. To any node which is
source of a µ-edge with target r, we add the label α. Let n be the son of r and let b and β be
the labels obtained for it. Let ~M be the λµ-terms inductively associated with the sub-trees under
n. The λµ-term associated with T is Λ~yλa1 . . . λakµα[β](b{~t}) ~M where ~y are the terms labelling r

and ~t are the terms labelling n.
With any total finite view function on the arena associated with a type A is associated a closed

λµ-forest: we consider views ordered with the prefix ordering (so that moves in the views give nodes
in the forest), we remove the λ-pointers of O-moves, the other pointers give the (λ and µ) edges
of the λµ-forest, the instantiations give the lists of terms. Concerning the labels of λ-edges, if the
node n corresponds to the move m corresponding itself to the occurrence R of an atomic formula in
A and if R appears in a sub-formula ∀~x(B1 → · · · → Bk → S) of A as the final atom of Bi then
the λ-edge with source n has label i.

With any node of a closed typed λµ-forest of type A, we can associate a move of the arena
associated with A:

• if r is the ith root of the λµ-forest, the corresponding move is the ith root of the arena;

• if the node n of even polarity has a λ-edge with label i to a node with associated move m, the
move associated with n is the ith son of m in the arena;

• if the node r of odd polarity is the ith son of the node n with associated move m, the move
associated with r is the ith son of m in the arena.

In this way, we can associate a view with any branch of a closed typed λµ-forest. Nodes of even
polarity become Opponent moves. Nodes of odd polarity become Player moves. λ-edges give the
justification pointers. µ-edges give the µ-pointers. Lists of OP-terms give instantiations. Finally
we add justification pointers going from each Opponent move to the preceding one.

Definition 14 (Arena isomorphism)
An arena isomorphism f from A to B is a bijection between the nodes of A and the nodes of B
which respects the order, but also the atomic labels up to the first-order labels: the move m and the
move f(m) must have first-order labels of the same length, this induces a mapping of the elements
of the first-order label of m to the elements of the first-order label of f(m); using this mapping, the
atomic label of any node n must be mapped to the atomic label of f(n).
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Lemma 3 (Isomorphic arenas)
If there exists an arena isomorphism between two arenas, they are isomorphic in the category G.

Proof: The arena isomorphism f induces a strategy {s ∈ PPA→B | s µ-rigid∧∀t ≤P s, f(t ↾A) =
t ↾B} which is an isomorphism in G (see [Lau05a, Proposition 6]). 2

Theorem 2 (Equivalence completeness)
The game model is equivalence complete: the categories S and Gtf1 are equivalent.

Proof: We have already seen in Section 1.3 that Sc is equivalent to S. We want to show that the
interpretation functor from Sc to Gtf1 defines an equivalence of categories. We have established
translations from typed λµ-terms in canonical normal form to typed λµ-forests (and back)
and from typed λµ-forests to view functions on the corresponding arena (and back). One can
check that all these correspondences are one-to-one. Moreover the view function associated
with a given typed λµ-term in canonical normal form by these correspondences is the same
as the one obtained through the interpretation given in the beginning of this section (and
coming from the control category structure of Gtf). This shows the interpretation functor to
be full and faithful.

Finally, any arena is isomorphic to the interpretation of a type in canonical form: by Lemma 3,
it is enough to prove that any arena is arena isomorphic to the interpretation of a type in
canonical form. This is done by induction on the number of nodes of the arena. 2

Corollary 2.1 (Canonical forms are canonical)
Two canonical normal forms equal up to βηµρθ are equal.

Proof: If M and N are two canonical forms such that M ≃βηµρθ N then JMK = JNK thus
M = N by faithful completeness. 2

The concrete meaning of Theorem 2 is mainly that any total finite strategy on a 1-arena is the
interpretation of a unique closed λµ-term in canonical normal form.

This ends the description of our game model.

3 Related models

From the game model of first-order classical logic (and the associated completeness result) described
in the previous section, we will define complete models for different systems. Some of these derived
models are strongly related with (or even equal to) already known ones.

3.1 Intuitionistic restriction

Inside the category G1, particular strategies (let us call them λ-strategies) are obtained by asking
µ-pointers to always have the preceding move as target (µ-rigid strategies are a particular kind of
λ-strategies). Through the completeness results above (Theorem 2), they correspond to λµ-terms
in which the µ and [ ] constructions are always used together in the shape µα[α]. By θ equivalence,
such a λµ-term is equal to a λ-term (all the µα[α] can be erased). As a consequence, λ-strategies
provide an equivalence complete model of the Church style first-order λ-calculus and, thus, of
first-order intuitionistic logic.
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3.2 λ-calculus over one/many atom(s)

We consider the simply typed λ-calculus over one atom. We interpret this atom exactly as ⊥. In
this case there are no labels on the arenas associated with types (neither atomic formulas, nor first-
order variables). Such arenas are called ground arenas and the full sub-category G00 of G is given by
the restriction to ground arenas. G00 is exactly the category of games presented in [DHR96] since
plays are using neither instantiations nor µ-pointers. As shown in [DHR96], it is a fully complete
(and even equivalence complete) game model of the simply typed λ-calculus over one atom.

To take into account multiple atoms, we go back to arenas with atomic labels on nodes. By
considering atoms as 0-ary relation symbols, types are interpreted as arenas with an atomic label
of length 1 associated with each node. Simply typed λ-terms are interpreted as λ-strategies (intro-
duced just above) and µ-pointers are replaced by the condition that the (unique element of the)
atomic label of a Player move is always the same as the atomic label of the previous move (exactly
in the spirit of token-reflecting strategies of [Mur01, page 122]). This extends the model of [DHR96]
to an equivalence complete model of the general simply typed λ-calculus.

Equivalently this gives a complete game model for Π1 formulas. Indeed we can distinguish three
levels in full completeness results for logics with propositional atomic formulas and second-order
quantification:

1. only constant atomic formulas (or just one atomic formula since it can be identified with ⊥)
thus no quantification;

2. many atomic formulas but no quantification (or equivalently Π1 formulas since outermost
universal quantification has no impact), this is the level corresponding to propositional logic;

3. general quantification over propositional variables (this is much more difficult and will not be
addressed here, see Section 6 for future work and references).

3.3 Well bracketed HO/N games (propositional logic)

In the original works on HO/N games [HO00, Nic94], nodes in arenas had an additional labelling
with Q/A labels corresponding to a notion of questions and answers. We are going to compare the
information encoded with questions and answers and the one given through µ-pointers.

In this section we consider games (arenas and strategies) without first-order information. In
order to avoid confusion with strategies as given in [HO00], (innocent) strategies as used in the
previous sections will be called µ-strategies here.

Definition 15 (QA-arena)
A QA-arena is an arena (without any first-order label) such that if a node has a non-empty atomic
label on it, then this label is a singleton and the node is a leaf and is not a root.

Labelled nodes are called answers and the others are called questions.

Definition 16 (Label-rigid strategy)
A play s on a QA-arena is rigid if for any P -prefix tmn of s, m is an answer if and only if n is. It is
label-rigid if moreover the labels of m and n are the same.

A strategy on a QA-arena is rigid (resp. label-rigid) if all its plays are rigid (resp. label-rigid).

The notion of rigidity corresponds to having both forward rigidity and backward rigidity as
defined in [HL06]. In the case (as here) where answers are leaves and are not roots, forward rigidity
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is then the same thing as the notion of rigidity introduced in [DH01]. Label-rigidity is strongly
related with token-reflection in [Mur01, page 122].

QA-arenas and label-rigid strategies define a control category [Lau05b] and thus a model of the
λµ-calculus (with or without totality). Let us call it the QA-game model.

A rigid view of even length contains either only questions or its only answers are its last two
moves (conversely a view satisfying one of these properties is rigid).

Definition 17 (Well bracketed strategy)
A view s on a QA-arena is well bracketed if any Player answer of s is justified by the last Opponent
question. A strategy on a QA-arena is well bracketed if all its views are well bracketed.

For a rigid view, being well bracketed means either containing only questions or being of the
shape sq1q2a1a2.

Definition 18 (Folding and unfolding of arenas)
Let A be an arena, the unfolding of A is the QA-arena Â obtained in the following way: to any node
m of A having atomic label [X1, . . . ,Xn], we add n new sons (denoted m̂Xi

and labelled with Xi,
1 ≤ i ≤ n) and we erase the atomic label of m.

Let A be a QA-arena, the folding of A is the arena A obtained in the following way: we remove
all the answers of A and for each of them we put its label in the atomic label of its father.

Example 13

The arena corresponding to the type X and its unfolding (a QA-arena with answers represented as
squares), which is the interpretation of X in the QA-model, are:

X

X

The interpretation of ⊥ is the same in the two models and is its own folding/unfolding.

Definition 19 (Folding and unfolding of strategies)
Let A be an arena and s be a view on A, the unfolding ŝ of s is the set of views given by ε̂ = {ε}
and ŝmn = {s0mn}∪{s0mnn̂X n̂′X | X in the atomic label of n} where s0 is s without its µ-pointers,
the µ-pointer of smn starting from the element X of the atomic label of n goes to the element X
of the atomic label of the occurrence of move n′, and n̂′X points to this occurrence of n′. The
unfolding σ̂ of a µ-strategy σ (in fact of its view function) on A is the union of the unfoldings of
its views.

Let A be a QA-arena, σ be a total label-rigid strategy on A and s be a view in σ ending with a
question (more precisely, not ending with an answer), the folding s of s is the view on A given by
ε = ε and smn = smn where the µ-pointers of n are obtained in the following way: for each atomic
label X of n in A, there is exactly one corresponding answer nX in A, we consider the only play
of the shape smnnXn

′
X (for some n′X which is an answer pointing to some n′) in σ and we put a

µ-pointer from the label X of n to the label X of n′. The folding of σ is the set of the foldings of
its question-ending views.

Example 14

The arena corresponding to the type (((X → Y )→ X)→ X) and its unfolding are:
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X

X

Y

X

X

Y

X

X

The following view with its prefixes of even length define a µ-strategy on the starting arena:

( ( X → Y ) → X ) → X

•

•

•

•

The maximal views of its unfolding are:

( ( X → Y ) → X ) → X

•

•

•

•

•

•

Lemma 4

If σ is a µ-strategy and s and t are two plays in σ which differ only on their µ-pointers then s = t.

Proof: By induction on the common length of s and t, or by Lemma 9. 2

Lemma 5

If s ∈ σ̂ does not end with an answer, there exists a unique play t in σ such that s ∈ t̂. Moreover
s is obtained from t by removing its µ-pointers.

Proof: The existence of t is given by definition of σ̂ and t is such that removing its µ-pointers
gives s. If there exist two plays satisfying the required constraints, they must differ only
on their µ-pointers (since forgetting them leads to s in both cases), thus they are equal by
Lemma 4. 2
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Theorem 3 (Completeness of unfolding)
Let A be an arena, σ 7→ σ̂ and τ 7→ τ define a bijection pair between total µ-strategies on A and
total label-rigid strategies on Â.

Proof: We are going to prove the following statements:

1. If σ is a µ-strategy on A then σ̂ is a label-rigid strategy on Â (and if σ is total then so
is σ̂).

2. If τ is a total label-rigid strategy on A then τ is a total µ-strategy on A.

3. (Â) = A and (̂A) = A.

4. If σ and τ are total, (σ̂) = σ and (̂τ ) = τ .

First statement:

• If smn ∈ σ̂, by construction, either m is a question and so is n or m is an answer and n is
also an answer and has the same label. As a consequence, smn is label-rigid.

• σ̂ contains ε, contains only views and is P -prefix closed by definition.

• If smn ∈ σ̂ and smn′ ∈ σ̂, we first consider the case where m is a question (then both n and
n′ are questions). By Lemma 5, there exist two plays tmn and t′mn′ in σ such that smn
(resp. smn′) is obtained from tmn (resp. t′mn′) by removing its µ-pointers. By Lemma 4,
we know that t = t′ so that, by determinism of σ, tmn = t′mn′ and thus smn = smn′.

In the case where m is an answer (then both n and n′ are answers and these three moves
have the same label), then smn and smn′ belongs to some t̂ and t̂′ that can only differ
on their µ-pointers thus, by Lemma 4, t = t′. As a consequence n and n′ are the same
move (the unique answer of Â corresponding to the label X of the µ-justifier of the label
X of the last move of s) and have the same justifier (this µ-justifier of the last move of
s).

• We now look at totality. If s ∈ σ̂ and sm is a view on Â then s contains only questions
and, by Lemma 5, we can find a play t in σ such that s is obtained from t by removing
its µ-pointers. First, if m is a question, by totality of σ, there exists tmn in σ and thus
smn (obtained from it by removing the µ-pointers) is in σ̂. Second, if m is an answer, by
definition of t̂, there exists some n such that smn ∈ t̂ ⊆ σ̂.

Second statement:

• We first check that s ∈ τ is a well defined play. There is exactly one µ-pointer for
each formula of each Player move: each such occurrence leads to an answer in Â thus
corresponds to an Opponent move which has been played in some play of τ by totality.

• Then, by definition, τ is a non-empty P -prefix closed set of even length views.

• If smn ∈ τ and smn′ ∈ τ , then n = n′ and they have the same justification pointer by
determinism of τ . Finally their µ-pointers are the same since they are computed in the
same way, thus smn = smn′.

• τ is total by immediate application of the totality of τ .

Third statement:
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• The moves of (Â) are the moves of A and their atomic labels are obtained by moving

them on a new leaf and then moving them back to their father so that (Â) = A.

• The questions of (̂A) are the moves of A which are the questions of A. The answers of

(̂A) corresponds to labels of moves of A which corresponds to answers of A thus (̂A) = A.

Fourth statement: for the two equalities, we consider total strategies and this allows us to
prove only one inclusion in each case since totality entails maximality.

• We consider a play in (σ̂), and we prove by induction on its length that it belongs to
σ. If it is ε then it belongs to σ. Otherwise it is of the shape smn with smn ∈ σ̂ and n

is a question in Â. By Lemma 5, this entails that we can find a play t ∈ σ such that
smn ∈ t̂, and smn is obtained from t by removing all the µ-pointers. s is a P -prefix
of smn thus s ∈ (σ̂) and, by induction hypothesis, s ∈ σ. The only possible difference
between t and smn is about the µ-pointers of n, but these µ-pointers are built from the
elements of t̂ so that they are exactly the same as the corresponding µ-pointers in t.
Finally smn = t ∈ σ.

• We prove, by induction on the length of t, that if t ∈ τ then t̂ ⊆ τ . First, ε̂ ⊆ τ .
Otherwise we have t = t′mn. Let t0n̂X n̂′X be an element of t̂, we easily see that t0 ∈ τ .
We look at the µ-pointer of n corresponding to the label X in t′mn: it goes to the label
X of the move n′, but since it is an element of τ , this means that t0n̂X n̂′X ∈ τ . 2

Proposition 4 (Comparing the two models)
Let M be a λµ-term (resp. A be a propositional formula) interpreted as σ (resp. A0) in our game
model and as τ (resp. A1) in the QA-game model, we have σ = τ (resp. A1 = A0).

Proof: The part concerning formulas and arenas is obtained by a simple induction.

Concerning terms and strategies, we prove it by induction on the term M with the interesting
cases given by the µα.M and [α]M constructions. Since σ and τ are total, it is enough to
prove τ ⊆ σ.

• The interpretation of µα.M is almost the same as the interpretation of M .

• For a term of the shape [α]M , by induction hypothesis, if σ0 (resp. τ0) is the interpre-
tation of M in our model (resp. in the QA-model), σ0 = τ0. We go by induction on the
length of a play of τ for proving τ ⊆ σ. Assume smn ∈ τ where n is a question, by
induction hypothesis, s ∈ σ. There is a unique smn1 in σ, we want to show n and n1 to
be the same move with the same pointers in smn1 and in smn. Since σ0 = τ0, it comes
from a look at the contraction strategies on A×A→ A (A1×A2 → A0 with meaningless
indexes) in both models. We directly have that n and n1 come from the same node in
the arena with the same justification pointer. Concerning the µ-pointers, in our model
each µ-pointer for a move in A0 coming from a move in A1 is given in a µ-rigid way
and goes to the move in A1 (and the same in the other direction). In the QA-model,
this corresponds to an answer n̂X played by Opponent in A0 and copied in A1 (with a
justification pointer going to the last Opponent move in A1 in a well-bracketed way).
After folding, one obtains the same µ-pointer. 2

29



We now consider Theorem 3 in the particular case where arenas are trees with at most one label
on each node and where QA-arenas never have two answers with the same father. This corresponds
to the interpretations of types built with propositional variables, ⊥ and →.

Proposition 5 (Full completeness of the QA-model)
Let A be a formula built with propositional variables, ⊥ and →, and let σ be a total finite label-rigid
strategy on the QA-arena interpreting A,

• σ is the interpretation of a λµ-term of type A

• σ is the interpretation of a λ-term if and only if σ is well bracketed

Proof: These two results are known and come with direct proofs by induction on the size of the
strategy. We give here an alternative proof using our games and the notion of folding.

By Theorem 3, σ is a total finite µ-strategy on A. By Theorem 2, σ is the interpretation of a
λµ-term M of type A. By Proposition 4, the interpretation of M in the QA-game model is σ.

Finally, σ is the interpretation of a λ-term if and only if the µ-pointers are always going to
the previous move. This corresponds in σ to the fact that any view is well bracketed. 2

There is a purely syntactic counterpart to these semantic results: starting from a λµ-term, it
is possible to compute the associated strategy, then to unfold it and by completeness (of our first
model as in Section 3.2, not of the QA-game model) to get back a λ-term. This is a translation of the
simply typed λµ-calculus into the simply typed λ-calculus already studied in [Par97]. The unfolding
of arenas corresponds to a translation of simple types into simple types (see Table 5). A typing
judgment Γ ⊢ M : A | ∆ is translated as Γ⋆,∆• ⊢ M⋆ : A⋆ where ∆• is obtained by transforming
any α : A1 → · · · → An → X into α1 : A⋆1, . . . , αn : A⋆n, α : X, and any α : A1 → · · · → An → ⊥
into α1 : A⋆1, . . . , αn : A⋆n. The translation of λµ-terms is given in Table 5.

The present analysis is developed in the context of propositional logic since the two-moves game
model was already known. However following these ideas of folding and unfolding of arenas, one
could also define a first-order two-moves game model in correspondence with the one-move one and
providing an encoding of the µ-pointers.

3.4 Forgetting structure

In the spirit of comparing the various game models for various logical systems presented before, we
can define forgetful transformations between them.

This is mainly a digressive section since the remarks mentioned here can easily be given without
any use of game semantics. However, we find particularly straightforward to understand them by
means of games, following the idea of the forgetful functor GR used in Appendix B.

From Church style first-order to Curry style first-order. In type systems dealing with
quantification, we usually have the choice between two main presentations: Church style systems
and Curry style systems. The first ones are explicitly mentioning the quantification inference rules
inside terms (as we do here from the beginning) while the second ones are not modifying the typed
term when dealing with such a rule:

Γ ⊢M : A | ∆
x /∈ Γ,∆

Γ ⊢M : ∀xA | ∆

Γ ⊢M : ∀xA | ∆

Γ ⊢M : A[t/x] | ∆
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Types.

X⋆ = X → ⊥

⊥⋆ = ⊥

(A→ B)⋆ = A⋆ → B⋆

Typed terms.

a⋆ = a

(λa.M)⋆ = λa.M⋆

((M)N)⋆ = (M⋆)N⋆

([α]M)⋆ = (M⋆)α1 . . . αnα if α has type A1 → · · · → An → X

([α]M)⋆ = (M⋆)α1 . . . αn if α has type A1 → · · · → An → ⊥

(µα.M)⋆ = λα1 . . . λαnλα.M
⋆ if α has type A1 → · · · → An → X

(µα.M)⋆ = λα1 . . . λαn.M
⋆ if α has type A1 → · · · → An → ⊥

Table 5: A translation from the λµ-calculus to the λ-calculus

From these considerations, it is absolutely immediate by starting from a Church style typed λµ-
term of type A and by erasing the Λx. and {t} constructions to get a Curry style typed λµ-term
of type A.

An example is given by:

A1 = ∀x(∀y(Xx→ Xy)→ ⊥)→ ⊥

M1 = λf.(f{x})Λy.λd.µα.(f{y})Λz.λa.µδ[α]a

M2 = λf.(f)λd.µα.(f)λa.µδ[α]a

where M1 is of type A1 in the Church style system and M2 is of type A1 in the Curry style system.
Our game models are useless at this level since we have not considered models of Curry style

systems. Let us go to the next step.

From Curry style first-order to classical propositional. The term language is the same
for a Curry style first-order type system and for a propositional type system. If M is such a λµ-
term typable with type A in the Curry style first-order system, then M is typable with type A′ in
the system of simple types (that is in propositional logic) where A′ is obtained by erasing all the
first-order information in A (i.e. ∀x.B 7→ B and X~t 7→ X).

Proposition 6 (Church to propositional)
By composing these two steps we obtain a λµ-term typed in the simple types system from a λµ-term
typed in the Church style first-order system.

Proof: If σ is a first-order strategy on the first-order arena A, by removing all the instantiation
information, we obtain a propositional strategy on the propositional arena obtained from A
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by removing the first-order information in labels (we remove the first-order labels and we
apply X~t 7→ X in the atomic labels).

Through the correctness and full completeness theorems, these transformations described on
strategies and arenas exactly correspond to the syntactic transformations going from Church
style typed λµ-terms to simply typed λµ-terms. 2

As an example, the λµ-term M2 above has type A1 in the Curry style type system but also the
type A3 = ((X → X)→ ⊥)→ ⊥ in the system of simple types.

From classical propositional to intuitionistic propositional. It is possible to go one step
further by erasing all the µα and [α] constructs in a simply typed λµ-term of type A, and by
transforming A into A′ by mapping all the propositional variables of A to the same atomic formula
⊥.

Proposition 7 (Classical to intuitionistic)
This transformation gives a simply typed λ-term from a simply typed λµ-term.

Proof: Starting from a propositional strategy σ on the arena A and by removing all the µ-
pointers, we obtain a strategy on A′ in the model with one move for atoms [DHR96] where
A′ is obtained from A by removing all the labels.

By correctness and full completeness of these models, we derive the syntactic result. 2

Going on with our example, while M2 has type A3, the corresponding λ-term:

M4 = λf.(f)λd.(f)λa.a

has type A4 = ((⊥ → ⊥)→ ⊥)→ ⊥ in the simply typed λ-calculus with one atom denoted ⊥.
The global move from the Church style classical first-order game model to the intuitionistic

propositional game model is nothing but the application of the GR functor (see Appendix B).

3.5 Linear λµ-calculus

Following the definition of the linear λ-calculus, the linear λµ-calculus is one of the possible presen-
tations of a linearized version of classical logic [Lau02, Chapter 14]. A closed λµ-term is linear if each
variable (λ-variable or µ-variable) has exactly one occurrence (two if we count the occurrence with
the binder λ or µ). A typical example is the term λf.µα.(f)λa.[α]a of type ((X → ⊥)→ ⊥)→ X.

Since the linear λµ-calculus is defined as a restriction of the λµ-calculus, any model of the
λµ-calculus is a model of the linear λµ-calculus. However it is not always easy to define a fully
complete sub-model for the linear sub-calculus. Various works on game semantics propose ways of
going in this direction [Gir01, FH02, Lai05] by mainly asking for each move to be played once in a
strategy. We are going to show that it is also possible to use the pointers (the key point being the
introduction of µ-pointers in our work).

Concerning λ-variables (thus λ-pointers), the very natural definition of a λ-linear strategy is
just to ask, in the tree of views, that for each occurrence of an Opponent move m there is exactly
one occurrence of each Player move enabled by m which is λ-pointing to m.

We apply the same kind of idea to µ-pointers: a strategy is µ-linear if, in the tree of views,
there is exactly one µ-pointer from a Player move going to each atomic label of each Opponent
move. A particular case of µ-linear strategy is given by the λ-strategies of Section 3.1.
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Proposition 8 (Linear equivalence completeness)
λ-linear and µ-linear strategies give an equivalence complete model of the linear λµ-calculus.

Proof: Easy to check by following the proofs of Section 2.5. 2

These ideas can easily be extended to notions of λ-affine and µ-affine strategies. Notice that
being linear or affine depends on the type associated with a strategy as shown in the following
examples.

Example 15

The simplest proof of the double negation elimination:

⊢ λf.µα.(f)λa.[α]a : ((X → ⊥)→ ⊥)→ X

corresponds to a λ-linear and µ-linear strategy:

( ( X → ⊥ ) → ⊥ ) → X

•

•

•

•

By slightly modifying the type, we have to slightly modify the proof:

⊢ λf.µα.(f)λa.µδ[α]a : ((X → Y )→ ⊥)→ X

which corresponds to a λ-linear and µ-affine strategy (which is not µ-linear):

( ( X → Y ) → ⊥ ) → X

•

•

•

•

The simplest proof of Peirce’s law:

⊢ λf.µα[α](f)λa.µδ[α]a : ((X → Y )→ X)→ X

corresponds to the λ-linear strategy (which is not µ-affine) already given in Example 14:

( ( X → Y ) → X ) → X

•

•

•

•
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4 Type isomorphisms

It is proved in Appendix A.2 that all the equations of Table 3 are syntactic type isomorphisms. We
are going to prove that no other isomorphism is syntactically valid, by means of game semantics
through the method developed in [Lau05a].

Definition 20 (Zig-zag play)
A play s in the arena A→ B is a zig-zag play if it is µ-rigid (see page 13) and:

• each Player move following an Opponent move in A (resp. B) is in B (resp. A)

• each Player move in A following an initial Opponent move in B is λ-justified by it

• the λ-pointers in s ↾A and s ↾B are the same

We denote by s the unique zig-zag play on B → A such that s ↾A = s ↾A and s ↾B = s ↾B .

In order to reuse results from [Lau05a], we define the function GR from arenas to ground
arenas which erases the labels of its argument. If s is a play on A, we define GR(s) as the play on
GR(A) obtained by erasing the instantiations and the µ-pointers. We extend GR to sets of plays
by applying it point-wise. The main properties of GR are given in Appendix B.

Lemma 6 (Zig-zag lemma)
If (σ, τ) defines an isomorphism between A and B in G1, then they contain only zig-zag plays and
τ = σ.

Proof: Since (GR(σ),GR(τ)) is an isomorphism between GR(A) and GR(B) (by Lemma 11
page 48), we already know that plays in GR(σ) and GR(τ) satisfy all the conditions of zig-
zag plays but maybe µ-rigidity (see [Lau05a, Proof of Theorem 9]). We also know that GR(σ)
and GR(τ) are total thus σ and τ are total, by Lemma 19 page 52.

We prove by induction on k that if s is a play of length k in σ then s is zig-zag, s is in τ and
there is an interaction sequence u on A, B and A such that u ↾A→B = s and u ↾B→A = s. It
is immediate for k = 0 since s = ε and thus u = ε. Let smn be a play in σ of length k + 2,
by induction hypothesis, we have s ∈ τ and an interaction sequence u. Assume m is in A (the
case m in B is symmetric) with a singleton atomic label (the case of an empty atomic label
is simpler). We already know that n is in B. We define u′ = um1nm

′ where m1 is a copy of
the move m in the first A and m′ is such that u′ ↾B→A ∈ τ (this move exists by totality of
τ). We have u′ ↾A→B = smn ∈ σ thus u′ ↾A→A ∈ idA. This means that in u′ ↾A→A the last
move m′ has its µ-pointer going to the previous move m1 and its instantiation is the same as
the instantiation of m1. The only way to have these properties is that m′ µ-points to n and n

µ-points to m1 in u′, and also that if ~x is the O-instantiation of m1, ~y is the P-instantiation of
n, ~z is the O-instantiation of n and ~w is the P-instantiation of m′ in u′ then ~x = ~y and ~z = ~w.
This proves smn to be a zig-zag play. Moreover u′ ↾A→A ∈ idA also entails that m′ and m1 are
“the same move with the same pointers” thus u′ ↾B→A = smn ∈ τ . 2

Theorem 4 (Game isomorphisms)
Two arenas are isomorphic in G1 if and only if they are arena isomorphic (Definition 14 page 23).
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Proof: We start with the first direction. By [Lau05a, Theorem 9], there exists an arena iso-
morphism f between GR(A) and GR(B). Moreover if smn ∈ σ (with m ∈ A) then the node
corresponding to n in GR(B) (thus in B) is the image by f of the node corresponding to n

in GR(A) (thus in A) and there exists such a play for any move m of A.

We prove by induction on the depth of the node m in A that f maps the labels of m to
the labels of f(m) turning it into an arena isomorphism between A and B. Let smn be the
view in σ dealing with the node m, it is µ-rigid (Lemma 6), thus if X~t is the atomic label
of m and X ′~t′ is the atomic label of n, we have X = X ′ and ~tθm = ~t′θn. Moreover m and n

have the same instantiation (thus first-order labels [x1, . . . , xk] and [y1, . . . , yk] of the same
length in their respective arenas). If m is a root of A, its instantiation is [o0, . . . , ok−1] and
θm = {x1 7→ o0, . . . , xk 7→ ok−1}. n is also a root and it has instantiation [o0, . . . , ok−1] thus
θn = {y1 7→ o0, . . . , yk 7→ ok−1}. From this we can deduce ~t′ = ~t[y1/x1

, . . . ,yk /xk
] showing

that f respects the atomic label of m and n. If m is not a root in A neither is n, and we
assume m is an Opponent move (otherwise we work with f−1) so is n. Let m0 be the justifier
of m in s (and n0 be the justifier of n), m and n have instantiation [oi, . . . , oi+k−1] in smn, and
θm = θm0

∪ {x1 7→ oi, . . . , xk 7→ oi+k−1} and θn = θn0
∪ {y1 7→ oi, . . . , yk 7→ oi+k−1}. From this

we obtain that the mapping of first-order labels induced by f maps ~t to ~t′.

The second direction is given by Lemma 3 page 24. 2

All these results can easily be extended to G but are not required here. See Section 6 for possible
applications of this extension.

Corollary 4.1 (Type isomorphisms)
Table 3 exactly characterizes the type isomorphisms of the Church style first-order λµ-calculus.

Proof: Let A and B be two isomorphic types. They are both isomorphic to canonical forms
A0 and B0 (see Section 1.3). By soundness of the game model, the arenas JA0K and JB0K
interpreting A0 and B0 are isomorphic in G1 thus are arena isomorphic (Theorem 4). We
prove by induction on the common number of nodes of JA0K and JB0K that A0 and B0 are
equal up to the equations of Table 3 (so that A and B are also equal up to these equations).
Let f be the arena isomorphism between JA0K and JB0K, f defines a bijection between the
roots of the two arenas. If there is more than one root, A0 and B0 are conjunctions and
each tree corresponds to one component. We apply the induction hypothesis to the pairs
of trees whose roots are related through f . Since Table 3 contains the associativity and
commutativity of conjunction, one obtains that A0 and B0 are equal up to the equations. If
JA0K and JB0K are trees, A0 and B0 are→-canonical forms. Let [x1, . . . , xk] and [y1, . . . , yk] be
the first-order labels of their roots (they have the same length), their atomic label are either
empty or X~t and X~t[y1/x1

, . . . ,yk /xk
]. Let FA and FB be the forests under these roots. By

induction hypothesis, FA and FB [x1/y1 , . . . ,
xk /yk

] correspond to canonical forms
∧

1≤i≤nAi
and

∧
1≤j≤nBj equal up to the equations. We can conclude since ∀~x(A1 → · · · → An → R)

and ∀~y(B1[
y1/x1

, . . . ,yk /xk
]→ · · · → Bn[

y1/x1
, . . . ,yk /xk

]→ S) are equal up to the equations
(with R = S = ⊥ if the roots of JA0K and JB0K have an empty atomic label and with R = X~t
and S = X~t[y1/x1

, . . . ,yk /xk
] otherwise).

Finally, by Appendix A.2, if A and B are equal up to the equations of Table 3, A and B are
isomorphic. 2
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5 Krivine’s realizability

Realizability is used in the study of the computational properties of proofs in intuitionistic logic.
The setting introduced by J.-L. Krivine allows for the extension to classical logic and even set the-
ory [Kri01]. In particular, he showed more recently that computational interpretations of classical
proofs can be given through a notion of games by means of his realizability interpretation. We
are going to explain the close relation between his games and game semantics as presented in this
paper.

5.1 A quick introduction

In the setting of Krivine’s realizability, terms are studied through their computational behaviour
via a notion of execution very similar to what happens in Krivine’s abstract machine [Kri07].

A state is a pair of a Curry style λµ-term M (see Section 3.4) and of a stack π:

π ::= ε | α |M.π

Such a state is written M ⊲⊳ π and the execution is given by a relation ≻ between states:

λa.M ⊲⊳ N.π ≻M [N/a] ⊲⊳ π

(M)N ⊲⊳ π ≻M ⊲⊳ N.π

µα.M ⊲⊳ π ≻M [π/α] ⊲⊳ ε

[α]M ⊲⊳ ε ≻M ⊲⊳ α

where M [M1...Mk.ε/α] = M [(N)M1...Mk/[α]N ] and M [M1...Mk.β/α] = M [[β](N)M1...Mk/[α]N ].
Through the following embedding of states into λµ-terms:

M ⊲⊳ M1 . . .Mk.ε 7→ (M)M1 . . .Mk

M ⊲⊳ M1 . . .Mk.α 7→ [α](M)M1 . . .Mk

these execution rules are simulated by the βµρ reduction.

5.2 UVA provability game

In this section we give a straightforward adaption of results in [Kri06, pages 77–86] to our setting.
We introduce the notion of UVA game.

A position is a triple (U ,V,A) where U and V are sets of formulas in →-canonical form and A
is a set of non-constant atomic formulas.

An Opponent move consists in choosing a formula ∀~x(A1 → · · · → An → R) in V and first-

order terms ~t. We then go to the position (U ∪ {A1[
~t/~x], . . . , An[

~t/~x]},V,A ∪ {R[~t/~x]}) if R 6= ⊥

and (U ∪ {A1[
~t/~x], . . . , An[

~t/~x]},V,A) otherwise.
A Player move consists in choosing a formula ∀~x(A1 → · · · → An → R) in U and first-order

terms ~t such that, if R 6= ⊥, R[
~t/~x] is in A. We then go to the position (U , {A1[

~t/~x], . . . , An[
~t/~x]},A).

An initial position is a position with U = A = ∅ (in particular the initial position associated
with a formula A is (∅, {A1, . . . , An}, ∅) if the canonical form of A is

∧
1≤i≤nAi). A final position

is a position with V = ∅ (it corresponds to positions where Opponent cannot play).
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A play is a (possibly empty) sequence of moves in which players alternate and which starts from
an initial position by an Opponent move. If an initial position is given, Player is said to have a
winning strategy if he is able to choose his moves in such a way that he is always able to play and
to eventually reach a final position (meaning that Opponent wins in infinite plays).

The main property of UVA games is the following theorem of Krivine:

Theorem 5

A is a provable formula if and only if there exists a winning strategy for Player in the associated
UVA game.

More precisely, if M is a Curry style λµ-term of type A, M implements a winning strategy for
Player in the UVA game associated with A:

With each formula A we associate a λ-variable aA and with each non-constant atomic formula
R we associate a µ-variable αR. If M has type A = ∀~x(A1 → · · · → An → R), we choose first-order
terms ~t and we look at the execution of M ⊲⊳ aA1[

~t/~x] . . . aAn[~t/~x].αR[~t/~x] (or with ε instead of αR[~t/~x]

if R = ⊥). It is shown that execution will stop in a state aAi[
~t/~x] ⊲⊳ π with π = M1 . . .Mk.α if

Ai[
~t/~x] = ∀~y(B1 → · · · → Bk → S) (or with ε instead of α if S = ⊥). There exists a choice of

first-order terms ~u such that for any choice of 1 ≤ j ≤ k and any choice of the first-order terms ~v
with Bj[

~u/~y] = ∀~z(C1 → · · · → Cp → T ), the execution of Mj ⊲⊳ aC1[~v/~z ] . . . aCp[~v/~z ].αT [~v/~z ] will stop
in a state aD ⊲⊳ π′ and so on... Whatever choices (for j and ~v) we make between the steps of this
sequence of runs, it will stop in a state a ⊲⊳ α (or a ⊲⊳ ε).

If we interpret execution steps (with the choices of ~u) as Player moves and index choices (with
the choices of ~v) as Opponent moves, this shows that a Curry style λµ-term of type A induces a
winning strategy for Player in the UVA game associated with A: each sequence of runs is a play
in this game.

5.3 Relation with game semantics

We are now going to extend the previous correspondence between execution of terms and the UVA
provability games to a correspondence between execution and our game model by just a slight
modification on the execution sequence. This correspondence is in fact the starting point of the
present work on game semantics.

The modifications we have to do concern the use of Church style λµ-terms and the possibility
of recovering pointers in games.

The explicit use of first-order terms in the construction of λµ-terms corresponds to the following
execution rules:

Λx.M ⊲⊳ t.π ≻M [t/x] ⊲⊳ π

M{t} ⊲⊳ π ≻M ⊲⊳ t.π

where stacks are extended with the construction t.π.
With each formula A we associate a denumerable set of λ-variables (alA)l∈N and with each non-

constant atomic formula R we associate a denumerable set of µ-variables (αlR)l∈N. Starting with a
Church style λµ-term M of type A = ∀~x(A1 → · · · → An → R) with ~x of length n′, we proceed as
follows:

• We start with a state: M ⊲⊳ t1 . . . tn′ .a1
A1[~t/~x]

. . . a1
An[~t/~x]

.α1
R[~t/~x]

.
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• When execution stops (for the ith time) in a state: amB ⊲⊳ u1 . . . uk′ .M1 . . .Mk.α with B =
∀~y(B1 → · · · → Bk → S) (with ε instead of α if S = ⊥), we choose first-order terms ~v and
an index 1 ≤ j ≤ k and we start a new execution Mj ⊲⊳ v1 . . . vp′ .a

i+1
C1[~v/~z ]

. . . ai+1
Cp[~v/~z ]

.αi+1
T [~v/~z ]

where Bj [
~u/~y] = ∀~z(C1 → · · · → Cp → T ) (with ε instead of αi+1

T [~v/~z ]
if T = ⊥).

An important point in the choice of the aiAs and αiRs is that they are always fresh (i.e. not used
yet).

Such an execution sequence can be interpreted as a play (as defined in Section 2.2) where
Opponent moves are given by the choices (v1 . . . vp′ .a

i+1
C1[~v/~z ]

. . . ai+1
Cp[~v/~z ]

.αi+1
T [~v/~z ]

for example) and

Player moves are given by the results of executions (amB ⊲⊳ u1 . . . uk′ .M1 . . .Mk.α for example).
More precisely we can rebuild a view with its pointers and instantiations from such a sequence. We
consider only the case where first-order terms introduced in Opponent moves are fresh variables
(by innocence, this is enough to recover the corresponding strategy).

Since we focus here on →-canonical forms, the corresponding arenas are trees, and the starting
state M ⊲⊳ x1 . . . xn′ .a1

A1[
~t/~x]

. . . a1
An[~t/~x]

.α1
R[~t/~x]

is interpreted as Opponent playing the root of this

arena with instantiation ~x (a1
A1[~t/~x]

. . . a1
An[~t/~x]

and α1
R[~t/~x]

are given as possible targets for future

pointers). From that point, a result of execution a ⊲⊳ u1 . . . uk′ .M1 . . .Mk.α is interpreted as a
Player move: its λ-pointer is going to the Opponent move m where a has been introduced (and let
i be its position in the state corresponding to m), the move n itself is the ith son of m in the arena,
the instantiation is ~u and the µ-pointer is going to the move where α has been introduced (if we
have ε instead of α, there is no µ-pointer). The next starting point of execution Mj ⊲⊳ y1 . . . yp′ .π
is interpreted as Opponent playing the jth son of n in the arena with a λ-pointer going to the
previous move n (as required for a view) and instantiations ~y.

Proposition 9

We obtain this way a view on the associated arena if Opponent plays its instantiations according
to (oi)i∈N.

Proof: We build the view s by induction on the length of the execution using the fact that types
are appropriately preserved along the execution (as shown through the embedding into the
λµ-calculus given in Section 5.1):

• The starting state of the shape M ⊲⊳ o0 . . . on′−1.a
1
A1[~o/~x]

. . . a1
An[~o/~x]

.α1
R[~o/~x]

is interpreted

as a valid Opponent initial move m on the arena associated with A. s is just this move.
Moreover, this defines a substitution θm = {x1 7→ o0, . . . , xn′ 7→ on′−1} as in the definition
of plays.

• If we arrive at a state aqB ⊲⊳ u1 . . . uk′ .M1 . . .Mk.α
q′

S , let m be the move of s correspond-
ing to the state where aqB has been introduced and let i be the position of aqB in the
sequence ~a in this state. Let n be the node of the arena A which is the ith son of the
node corresponding to m in A, we extend s with n with a λ-pointer going to m (this
is a correct λ-pointer). By preservation of typing in the execution, B is of the shape
∀y1 . . . ∀yk′(B1 → · · · → Bk → S′). This means that the node n in A has a first-order
label of length k′ and has k sons. As a consequence, u1 . . . uk′ is an appropriate instanti-
ation for the move n, and we can define θn = θm ∪ {y1 7→ u1, . . . , yk′ 7→ uk′}. The atomic
label of n in A is S0 with S0θn = S′[u1/y1 , . . . ,

uk′ /yk′
] = S = S1θm′ where S1 is the atomic
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label of the move m′ corresponding to the state where αq
′

S has been introduced. It is then
valid to put a µ-pointer from n to m′ and sn is a correct view in A.

• Almost the same with a state aqB ⊲⊳ u1 . . . uk′ .M1 . . .Mk.ε but without µ-pointer.

• In order to run the execution again, we build a new state:

Mj ⊲⊳ oi . . . oi+p′−1.a
l
C1[~v/~z ] . . . a

l
Cp[~v/~z ].α

l
T [~v/~z ]

(which respects the types). This corresponds to playing the jth son m of the node
corresponding to the last move of s with a λ-pointer going to it and an instantiation
[oi . . . oi+p′−1] where m has a first-order label of length p′ in A. This proves sm to be
correct view on A. 2

6 Extensions and additional comments

We have chosen to work, on the syntactic side, with a natural deduction system (the λµ-calculus).
Another possibility would have been to deal with a sequent calculus system (as in [Lau05b] for
example). It would not make very important differences. The notion of proofs in canonical form
in the sequent calculus is given by cut-free proofs with expanded axioms (introducing only non-
constant atomic formulas). In this context, µ-pointers would precisely correspond to these atomic
axioms connecting together two dual occurrences of an atomic formula. In [Lau05b], an encoding
was required and µ-pointers were somehow the missing data.

Another specific choice was to deal with a λµ-calculus without disjunction or negation. Nega-
tion is easily definable through ¬A = A → ⊥ and disjunction can be introduced as in Selinger’s
calculus [Sel01] with two new term constructs: µ(α, β).M and [α, β]M . The associated typing rules
are:

Γ, a : A ⊢M : ⊥ | ∆

Γ ⊢ ℓa.M : ¬A | ∆

Γ ⊢M : ¬A | ∆ Γ ⊢ N : A | ∆

Γ ⊢M •N : ⊥ | ∆

Γ ⊢M : A ∨B | ∆, α : A, β : B

Γ ⊢ [α, β]M : ⊥ | ∆, α : A, β : B

Γ ⊢M : ⊥ | ∆, α : A, β : B

Γ ⊢ µ(α, β).M : A ∨B | ∆

All the required material for interpreting these extensions is already given in the game category G
we have described. In particular, the interpretation of disjunction makes G1 not big enough and
requires us to work with the full control category G (as done in [Sel01]).

The explicit treatment of these extensions would require some additional work on the syntactic
side, in particular for the notion of canonical form. However no surprise would come from this and
the results presented in this paper would extend without any particular problem. We can mention
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that, concerning type isomorphisms, the following equations would be derived:

A ∨ (B ∨ C) = (A ∨B) ∨ C

A ∨B = B ∨A

A ∨ ⊥ = A

A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C)

A ∨ ⊤ = ⊤

A ∨ ∀xB = ∀x(A ∨B) x /∈ A

¬(A ∧B) = ¬A ∨ ¬B

¬⊤ = ⊥

A→ B = ¬A ∨B

Enumerated data types such as Bool or Nat are usually interpreted in game semantics by QA-
arenas with one root (a question) which has as many sons (which are answers) as elements of the
data type (possibly an infinity). The traditional approach of game semantics is to build everything
from these enumerated data types without any use of atomic formulas. We have shown in Section 3.3
how the label-rigidity constraint makes answers exactly as expressive as µ-pointers. It would be
interesting to relax this constraint to deal with systems with both enumerated data types and
atomic formulas. Some work has already been done in [HL06] to understand the expressive power
of various possible restrictions on the use of answers (in particular some are weaker than label-
rigidity). This would help to understand more precisely the possible applications of µ-pointers to
the semantics of programming languages in relation with extensions of PCF with control operators
(starting from [Lai97] and [Lai01]).

The question of introducing enumerated data types in Krivine’s realizability as been considered
in [Bef04]. It would be nice to also extend the correspondence between games and realizability to
data types.

Let us now look at the most natural logical extensions of this work. Concerning first-order logic,
it would be important to introduce the equality predicate and to be able to deal with given equational
axioms and not only with the free first-order language. Once again this could be developed in
relation with what happens in Krivine’s realizability. What makes such an extension difficult is
the requirement of some dynamism in arenas: an arena has to dynamically evolve during a play
according to the moves of the players. Concerning equality, it is just a matter of a node being able
to disappear (when an equational atomic label t = u of a node becomes true).

This dynamics induced by moves on arenas is at the core of the game interpretations of (propo-
sitional) second-order logic (see [Hug97, dL07] for example). Being able to mix our work with
second-order interpretations is the main direction for future work leading to an equivalence com-
plete game model of full second-order logic. An immediate consequence would be the associated
characterization of type isomorphisms. We conjecture the corresponding equational theory to be
the union of ours with the second-order one given in [dL08], together with ∀x∀XA = ∀X∀xA.
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(λa.M)N →β M [N/a]
λa.(M)a →η M a /∈M

(µα.M)N →µ µα.M [[α](L)N/[α]L]

[β]µα.M →ρ M [β/α]
µα[α]M →θ M α /∈M

µα.M →ν λa.µα.M [[α](L)a/[α]L] a /∈M

Table 6: Reduction rules for the λµ-calculus

A Some properties of the λµ-calculus

A.1 Canonical normal forms

A λµ-term M is simple if it is in the grammar:

M ::= a | λa.M | (M)M | µα[β]M | Λx.M |M{t}

We first remark that any typed λµ-term without pairs, projections or ⋆ is equal to a typed simple
λµ-term up to ρ: we choose a particular fresh variable ξ of type ⊥, we transform any [α]M into
µξ[α]M (by [α]M =ρ [ξ]µξ[α]M =ρ µξ[α]M) and any µα.M into µα[ξ]M (since M must be of type
⊥). To see that the result is typed, we add ξ : ⊥ to the right-hand side typing context.

Our goal is to show the existence of a canonical normal form for any typed simple λµ-term.
We are going to adapt results coming from [Py98, Chapter 5]. We recall the reductions defined in
that work in Table 6. Notice that they are all validated by the βηµρθ equational theory. The only
interesting case being the ν-reduction:

µα.M =η λa.(µα.M)a =µ λa.µα.M [[α](L)a/[α]L]

However, in a typed setting, the ν-reduction cannot always be applied (it requires µα.M to be of
arrow type), so that we cannot directly apply the results of [Py98].

A simply typed simple λµ-term M of type A = A1 → · · · → An → X is in canonical normal
form if M = λa1 . . . λanµα[β](b)M1 . . .Mk with ai of type Ai, α of type X, β of type Y , b of type
B and Mj canonical normal form of type Bj (with B = B1 → · · · → Bk → Y ).

Lemma 7 (Canonical normal form (simple types))
Let M be a simply typed µ-closed simple λµ-term, there exists a canonical normal form which is
βηµρθ equivalent to M . More precisely turning M into a canonical normal form only requires
βµρν-reductions and ηθ-expansions.

Proof: The βµρ-reduction is normalizing [Par97], so that we can concentrate on βµρ-normal
forms.

We first prove, by induction on the size of A = A1 → · · · → An → X, that if a is a λ-variable
of type A then it ηθ-expands into a canonical normal form: by induction hypothesis applied
to the λ-variables ai of type Ai, we obtain the canonical normal forms Mi, and we have:

a←∗
ηθ λa1 . . . λanµα[α](a)a1 . . . an ←

∗
ηθ λa1 . . . λanµα[α](a)M1 . . .Mn

42



By induction on the size of N , we prove that any βµρ-normal form N of type A is βηµρθ
equivalent to a pre-canonical form, that is a λµ-term of the shape λµ(b)M1 . . .Mk where λµ
is a sequence of λs and µ[ ]s ending with a µ[ ] and containing no pair of consecutive µ[ ]s, Mj

is a pre-canonical form of type Bj, and moreover b is of type B = B1 → · · · → Bk → Y (that
is each variable has as many arguments as possible).

If N is a βµρ-normal form (note that it immediately ensures the elimination of consecu-
tive µ[ ]s), under a bunch of λs and µ[ ]s, we find a term of the shape N0 = (b)M1 . . .Mp

with b of type B = B1 → · · · → Bk → Y and p ≤ k. If p = k, either N0 is un-
der a µ[ ] and it is in pre-canonical normal form or N0 is under a λ and we apply a θ-
expansion to N0. If p < k, we replace N0 by N1 (which is equivalent to it) obtained from
λbp+1 . . . λbkµξ[ξ](b)M1 . . .Mpbp+1 . . . bk (ξ fresh) by replacing each bj by its canonical nor-
mal form (using the first result above). Finally we replace each Mi by its pre-canonical form
(using the induction hypothesis).

Notice that, in a pre-canonical form M , if α is of type A→ B and [α]N is a sub-term of M
then N starts with a λ: otherwise it could only be a µ (but it would not be ρ-normal), or of
the shape (c)~L (but such a sub-term of a pre-canonical form under a [ ] is always of atomic
type). This remark allows us to define the following modified ν-reduction on pre-canonical
forms:

µα.M →ν λa.µα.M [[α]L/[α]λa.L]

if α is of arrow type.

We finally prove the lemma by showing that any pre-canonical form M is equivalent to a
canonical normal form. We prove this by induction on the sum of the sizes of the types
of the µ-variables in M . If all the types of the µ-variables of M are atomic, then M is in
canonical normal form. Otherwise, let µα.N be a sub-term of M of arrow type (remember
that the λµ-term is µ-closed), we apply a ν-reduction, this makes the induction size decrease
but we are not sure to obtain directly a pre-canonical form again: we may have to apply
some ρ-reductions to have a pre-canonical form, but these reductions terminate (the size of
the λµ-term decreases) and do not make the induction size increase. 2

In order to extend this result to the first-order case, we first define an embedding of simple λµ-
terms typed in first-order logic (without ∧ or ⊤) into the simply typed λµ-calculus. We consider
an injective embedding of first-order function symbols, first-order variables and λ-variables into
λ-variables (we still denote by f , x and a the translation of f , x and a), and an embedding of
relation symbols into 0-ary relation symbols (the image of X will be denoted by X). Moreover we
choose two particular atomic types O and F . The translation is given in Table 7.

We extend the modified ν-reduction to first-order constructs:

µα.M →ν Λx.µα.M [[α]L/[α]Λx.L]

if α is of type ∀xA and all the occurrences of [α] in M are followed by Λx.

Lemma 8 (Properties)
The translation (.)⋆ has the following properties:

• If Γ ⊢M : A | ∆ then Λ,Γ⋆ ⊢M⋆ : A⋆ | ∆⋆, where Γ⋆ contains the translations of the typing
declarations in Γ and typing declarations x : O for (at least) the free first-order variables of
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⊥⋆ = F a⋆ = a

(X~t)⋆ = X (λa.M)⋆ = λa.M⋆

(A→ B)⋆ = A⋆ → B⋆ ((M)N)⋆ = (M⋆)N⋆

(∀xA)⋆ = O → A⋆ (µα[β]M)⋆ = µα[β]M⋆

(Λx.M)⋆ = λx.M⋆

x⋆ = x (M{t})⋆ = (M⋆)t⋆

(ft1 . . . tk)
⋆ = (f)t⋆1 . . . t

⋆
k

Table 7: A translation from first-order typing to simple types

M , and Λ contains a typing declaration f : Ok → O for each function symbol f of arity k
occurring in M .

• (M [t/x])
⋆ = M⋆[t

⋆
/x]

• There is a one-to-one correspondence between the source and the target language for β-
reduction, µ-reduction, ρ-reduction, ν-reduction, η-expansion and θ-expansion. This means
that if→ is one of these rewriting rules, we have both simulation (if M → N then M⋆ → N⋆)
and co-simulation (if M⋆ → C, there exists N such that C = N⋆ and M → N).

Proof: • We first show that Λ,Γ⋆ ⊢ t⋆ : O | ∆⋆ if Γ⋆ contains typing declarations x : O for
(at least) the free first-order variables of t and Λ contains typing declarations for the
function symbols occurring in t:

Λ,Γ⋆, x : O ⊢ x : O | ∆⋆

Λ,Γ⋆ ⊢ f : Ok → O | ∆⋆ Λ,Γ⋆ ⊢ t⋆1 : O | ∆⋆

Λ,Γ⋆ ⊢ (f)t⋆1 : Ok−1 → O | ∆⋆

...
Λ,Γ⋆ ⊢ (f)t⋆1 . . . t

⋆
k−1 : O → O | ∆⋆ Λ,Γ⋆ ⊢ t⋆k : O | ∆⋆

Λ,Γ⋆ ⊢ (f)t⋆1 . . . t
⋆
k : O | ∆⋆

The only two interesting cases of λµ-terms are for first-order constructs:

Λ,Γ⋆, x : O ⊢M⋆ : A⋆ | ∆⋆

Λ,Γ⋆ ⊢ λx.M⋆ : O → A⋆ | ∆⋆

Λ,Γ⋆ ⊢M⋆ : O → A⋆ | ∆⋆ Λ,Γ⋆ ⊢ t⋆ : O | ∆⋆

Λ,Γ⋆ ⊢ (M⋆)t⋆ : A⋆ | ∆⋆

• We first check that (u[t/x])
⋆ = u⋆[t

⋆

/x] for first-order terms. Then we work by induction
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on M , with only one interesting case:

(M{u}[t/x])
⋆ = (M [t/x]{u[

t/x]})
⋆

= (M [t/x]
⋆)u[t/x]

⋆

= (M⋆[t
⋆

/x])u
⋆[t

⋆

/x]

= (M⋆)u⋆[t
⋆

/x]

= (M{u})⋆[t
⋆

/x]

• We first prove the simulation results. For redexes without first-order construct, the
result is immediate, for the other ones we have:

– (Λx.M){t} →β M [t/x] becomes (λx.M⋆)t⋆ →β M
⋆[t

⋆
/x] and we apply the previous

result

– M ←η Λx.M{x} becomes M⋆ ←η λx.(M
⋆)x

– (µα.M){t} →µ µα.M [[α]L{t}/[α]L] becomes (µα.M⋆)t⋆ →µ µα.M
⋆[[α](L)t⋆/[α]L] and

we conclude from the fact that [ ]s are not modified by the translation

– µα.M →ν Λx.µα.M [[α]L/[α]Λx.L] becomes µα.M⋆ →ν λx.µα.M
⋆[[α]L/[α]λx.L] since

each Λx under a [α] becomes a λx and ∀xA becomes O → A⋆.

• We now look at co-simulation for each rewriting rule:

– If M⋆ contains a β-redex, either both λ and application are already present in M
and the result is immediate, or they both come from the corresponding first-order
constructs and we can apply the simulation result, or exactly one come from a
first-order construct and this would be a typing error in M .

– If M⋆ contains a µ-redex, either the application is already present in M and the
result is immediate, or it comes from a first-order application and we can apply the
simulation result.

– If M⋆ contains a ρ-redex, so do M , and the result is immediate.

– If M⋆ contains a ν-redex starting with µα, so do M , and we can apply the same
reduction in M (with a Λ if α is of type O → A and with a λ otherwise). Finally
we conclude with the simulation result.

– If M⋆ η-expands to λa.(M⋆)a then N = λa.(M)a and if M⋆ η-expands to λx.(M⋆)x
then N = Λx.M{x}. We conclude with the simulation result.

– By the simulation result, the case of a θ-expansion is immediate. 2

A simple λµ-term M of type A = ∀x1 . . . ∀xp(A1 → · · · → An → R) is in quasi canonical normal
form if M = Λx1 . . .Λxpλa1 . . . λanµα[β](b{t1} . . . {tq})M1 . . .Mk with ai of type Ai, α of type R,
β of type S[t1/y1 , . . . ,

tq /yq ], b of type B and Mj canonical normal form of type Bj[
t1/y1 , . . . ,

tq /yq ]
(with B = ∀y1 . . . ∀yq(B1 → · · · → Bk → S)). A canonical form is obtained from a quasi canonical
normal form by removing the µs and [ ]s acting on µ-variables of type ⊥.

Proposition 10 (Canonical normal form)
Let M be a typed µ-closed simple λµ-term, there exists a canonical normal form which is βηµρθ
equivalent to M .
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Proof: We first show how to obtain quasi canonical normal forms. We translate M into M⋆

and we apply Lemma 7 to get a simply typed canonical normal form C. By Lemma 8 (since
going from M⋆ to C requires only βµρν-reduction and ηθ-expansion) there exists a λµ-term
N equivalent to M and such that N⋆ = C. Going from C to N transforms some λs into Λs
and some applications into first-order applications, but using the type we can see that we do
not have choices: the Λs are all arriving before the λs (for each bunch of λs of C) and the
same for applications. As a consequence N is a quasi canonical normal form.

Finally, if the quasi canonical normal form M contains some µα[β] with α of type ⊥ we apply
µα[β]N =ρ [α]µα[β]N =ρ [β]N , and if M contains some [α]N with α of type ⊥, we erase the
[α] by ρ. 2

A.2 Isomorphisms

The notion of isomorphism is very standard in algebra and in category theory. There is a natural
corresponding notion in extensions of the λ-calculus [DC76]. We consider such an extension of
the λ-calculus endowed with the equational theory on terms generated by the reduction rules
(containing the βη equality). The term M is an isomorphism if there exists a term N such that
λx.(M)(N)x = λx.x and λy.(N)(M)y = λy.y (we say that M and N give an isomorphism pair).

In a typed setting (i.e. if the calculus comes with a type system extending the simply typed λ-
calculus), we can consider isomorphisms between types [DC95]. The types A and B are isomorphic
if there exist two terms M and N such that ⊢ M : A → B, ⊢ N : B → A and M and N give an
isomorphism pair. The main question about type isomorphisms is usually to find the equational
theory characterizing them in a given calculus.

Proving that a given equation on types is a valid isomorphism only requires us to exhibit a pair
of typed terms (of appropriate types) and to prove that their compositions in both directions are
equal to the identity up to the appropriate equational theory on terms.

This is what we are looking at here with the Church style first-order λµ-calculus with terms
equal up to the βηµρθ equality.

Proposition 11 (Syntactic isomorphisms)
For each equation of Table 3, the Table 8 gives such a pair of terms validating the equation.

Proof: This proof is left to the reader. We just give one example (for the equation ∀x(A∧B) =
∀xA ∧ ∀xB) of the kind of computation we have to apply:

λc.(λa.〈Λx.π1a{x},Λx.π2a{x}〉)(λa.Λx.〈(π1a){x}, (π2a){x}〉)c

=β λc.(λa.〈Λx.π1a{x},Λx.π2a{x}〉)Λx.〈(π1c){x}, (π2c){x}〉

=β λc.〈Λx.π1(Λx.〈(π1c){x}, (π2c){x}〉){x},Λx.π2(Λx.〈(π1c){x}, (π2c){x}〉){x}〉

=β λc.〈Λx.π1〈(π1c){x}, (π2c){x}〉,Λx.π2(Λx.〈(π1c){x}, (π2c){x}〉){x}〉

=β λc.〈Λx.π1〈(π1c){x}, (π2c){x}〉,Λx.π2〈(π1c){x}, (π2c){x}〉〉

=β λc.〈Λx.(π1c){x},Λx.π2〈(π1c){x}, (π2c){x}〉〉

=β λc.〈Λx.(π1c){x},Λx.(π2c){x}〉

=η λc.〈π1c,Λx.(π2c){x}〉

=η λc.〈π1c, π2c〉

=η λc.c
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λa.〈〈π1a, π1π2a〉, π2π2a〉 : A ∧ (B ∧ C)→ (A ∧B) ∧ C

λa.〈π1π1a, 〈π2π1a, π2a〉〉 : (A ∧B) ∧ C → A ∧ (B ∧ C)

λa.π1a : A ∧⊤ → A

λa.〈a, ⋆〉 : A→ A ∧ ⊤

λa.π2a : ⊤ ∧A→ A

λa.〈⋆, a〉 : A→ ⊤∧A

λa.λb.λc.(a)〈b, c〉 : ((A ∧B)→ C)→ A→ B → C

λa.λb.(a)π1bπ2b : (A→ B → C)→ (A ∧B)→ C

λa.(a)⋆ : (⊤ → A)→ A

λa.λd.a : A→ ⊤→ A

λa.〈λb.π1(a)b, λb.π2(a)b〉 : (A→ (B ∧ C))→ (A→ B) ∧ (A→ C)

λa.λb.〈(π1a)b, (π2a)b〉 : ((A→ B) ∧ (A→ C))→ A→ (B ∧C)

λa.⋆ : (A→ ⊤)→ ⊤

λa.λd.a : ⊤ → A→ ⊤

λa.〈Λx.π1a{x},Λx.π2a{x}〉 : ∀x(A ∧B)→ ∀xA ∧ ∀xB

λa.Λx.〈(π1a){x}, (π2a){x}〉 : (∀xA ∧ ∀xB)→ ∀x(A ∧B)

λa.⋆ : ∀x⊤ → ⊤

λa.Λx.a : ⊤ → ∀x⊤

λa.Λx.λb.((a)b){x} : (A→ ∀xB)→ ∀x(A→ B)

λa.λb.Λx.(a{x})b : ∀x(A→ B)→ A→ ∀xB

λa.〈π2a, π1a〉 : A ∧B → B ∧A

λa.〈π2a, π1a〉 : B ∧A→ A ∧B

λa.Λy.Λx.a{x}{y} : ∀x∀yA→ ∀y∀xA

λa.Λx.Λy.a{y}{x} : ∀y∀xA→ ∀x∀yA

Table 8: Isomorphisms
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2

The difficult point about type isomorphisms is always the opposite direction: showing that all
the equations have been found. This is the purpose of Section 4.

B Categorical properties of games

Let A be an arena without any label (such an arena is called a ground arena), strategies on A are
exactly those defined in [DHR96, Lau05b]. In particular ground arenas and strategies allow us to
define a category G00 (this is the category also used in Section 3.2).

We define the function GR from arenas to ground arenas which erases the labels of its argument.
If s is a play on A, we define GR(s) as the play on GR(A) obtained by erasing the instantiations
and the µ-pointers (and the same with interaction sequences). We extend GR to sets of plays by
applying it point-wise.

Lemma 9

Let σ : A be a strategy, if sm ∈ σ and tn ∈ σ with GR(s) = GR(t) then there exists an O-renaming
ς such that sm = tnς.

Proof: We prove it by induction on the common length of sm and tn. If GR(m1m2) = GR(n1n2)
then m1 and n1 are Opponent moves corresponding to the same initial move in A, thus they
can only differ on their O-instantiations [x1, . . . , xk] and [y1, . . . , yk] (which must have the
same length k). We consider ς such that ς(y1) = x1, ..., ς(yk) = xk. We have m1 = n1ς,
m1m2 ∈ σ, n1n2 ∈ σ thus n1n2ς ∈ σ (by uniformity), and finally m1m2 = n1n2ς by determinism.
In a similar way, if GR(sm1m2m3) = GR(tn1n2n3) then GR(s) = GR(t) and by induction
hypothesis sm1 = tn1ς. Moreover m2 and n2 are Opponent moves corresponding to the
same move in A, they have the same justification pointer and thus they can only differ
on their O-instantiations [x1, . . . , xk] and [y1, . . . , yk]. We modify ς into ς ′ in such a way that
ς ′(y1) = x1, ..., ς ′(yk) = xk and ς and ς ′ agree on the O-variables appearing in tn1. We have
sm1m2 = tn1n2ς

′, sm1m2m3 ∈ σ, tn1n2n3 ∈ σ thus tn1n2n3ς
′ ∈ σ (by uniformity), and finally

sm1m2m3 = tn1n2n3ς
′ by determinism. 2

Lemma 10 (Preservation of strategies)
If σ is a strategy on A, then GR(σ) is a strategy on GR(A).

Proof: It is immediate that GR(σ) is a non-empty set of even length plays which is closed under
even length prefixes.

If sm = GR(t1m
′) and sn = GR(t2n

′) with t1m
′ ∈ σ and t2n

′ ∈ σ. By Lemma 9, t1m
′ = t2n

′ς
for some O-renaming ς. As a consequence sm = sn.

There is nothing to say about uniformity since moves in GR(σ) have no instantiation. 2

Lemma 11 (Preservation of composition and identity)
Let σ and τ be strategies on A → B and B → C, GR(σ ; τ) = GR(σ) ; GR(τ) and GR(idA) =
idGR(A).

Proof: We first prove the inclusion GR(σ;τ) ⊆ GR(σ);GR(τ). Let s be a play in GR(σ;τ) coming
from the interaction sequence u. GR(u) is an interaction sequence on GR(A), GR(B) and
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GR(C) with GR(u ↾A→B) = GR(u) ↾A→B, GR(u ↾B→C) = GR(u) ↾B→C , and GR(u ↾A→C) =
GR(u) ↾A→C . Since GR(s) = GR(u) ↾A→C , we conclude GR(s) ∈ GR(σ) ; GR(τ).

Concerning GR(σ) ; GR(τ) ⊆ GR(σ ; τ), we consider an interaction sequence v on GR(A),
GR(B) and GR(C) with v ↾GR(A)→GR(B) = GR(s) (s ∈ σ), v ↾GR(B)→GR(C) = GR(t) (t ∈ τ).
By applying an O-renaming if required, we can assume that the O-variables appearing in s

and t are different. We build from v an interaction sequence u on A, B and C in the
following way: if m is a move in C, we add on it the µ-pointers and instantiations coming
from t, if m is a move in A, we add on it the µ-pointers and instantiations coming from
s, if m is a move in B, we add on it the µ-pointers and instantiations coming from both
s and t. We can check that u ↾A→C ∈ P

P
A→C so that u ↾A→C ∈ σ ; τ (the only point to

verify is the condition relating µ-pointers and atomic labels, but it comes easily). This gives
v ↾GR(A)→GR(C) = GR(u ↾A→C) ∈ GR(σ ; τ).

The case of the identity is immediate by definition of idA. 2

Lemma 12 (Zipping)
Let σ : A → B and τ : B → C be two strategies, let u and v be two interaction sequences on A,
B and C such that u ↾A→B ∈ σ, v ↾A→B ∈ σ, u ↾B→C ∈ τ and v ↾B→C ∈ τ , the first move which
differs between u and v is an Opponent move in A→ C.

Proof: This is the very natural extension (with µ-pointers and instantiations) of the usual result
for HO/N games proved by induction on the length of the maximal common prefix of u and
v, using the determinism of σ and τ (see [Lau05a] for example). 2

Lemma 13

The identity is a strategy, and the composition of two strategies is a strategy.

Proof: idA is a non-empty set of even length plays which is closed under even length prefixes.
It is clearly uniform. It is deterministic: if sm ∈ idA and sn ∈ idA, the node in A underlying
m and n is the same and the justification pointers are the same since GR(idA) is a strategy
(Lemma 11), and the µ-pointers and the instantiations are the same by definition.

Let σ : A→ B and τ : B → C be two strategies, σ ; τ is a non-empty set of even length plays
which is closed under even length prefixes.

If sm ∈ σ ; τ and sn ∈ σ ; τ , let u be an interaction sequence corresponding to sm and v be an
interaction sequence corresponding to sn, by Lemma 12, one of u and v must be a prefix of
the other. As a consequence sm = sn since they have the same length.

Let s be a play in σ ; τ , u be a corresponding interaction sequence and ς be an O-renaming,
we define ς ′ as an O-renaming which coincides with ς on the O-instantiations of u in A and
C (so that sς = sς ′) and which maps O-instantiations of u in B to fresh O-variables (neither
appearing in u nor in the image of the O-instantiations of u by ς). uς ′ is an interaction
sequence on A, B and C such that uς ′ ↾A→B = u ↾A→Bς

′ ∈ σ, uς ′ ↾B→C = u ↾B→Cς
′ ∈ τ , and

uς ′ ↾A→C = sς ′ = sς, thus sς ∈ σ ; τ . 2

To turn arenas and strategies into a category, we still have to show the composition to be
associative and the identity to be neutral for composition.

Proposition 12 (Category of strategies)
Arenas and strategies define a category.
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Proof: Let σ : A → B, τ : B → C and ρ : C → D be three strategies, by Lemma 11, we know
that GR((σ ; τ) ; ρ) = GR(σ ; (τ ; ρ)). This means that we only have to look at µ-pointers
and instantiations to show that (σ ; τ) ; ρ = σ ; (τ ; ρ). We just sketch the arguments (a more
precise proof would go through a zipping lemma [Har99, Lemma 3.2.3]).

If sm ∈ (σ ; τ) ; ρ with m ∈ A equipped with a µ-pointer to a move in D, it is obtained by
following µ-pointers through B in an interaction sequence coming from the composition σ ; τ
until arriving in C and then by following µ-pointers in C in an interaction sequence coming
from the composition (σ ; τ) ; ρ until arriving in D. In σ ; (τ ; ρ), this µ-pointer is obtained by
building a µ-pointer p from B to D by following the µ-pointers through C in an interaction
sequence coming from the composition τ ; ρ and then by following µ-pointers from A to the
source of p through B in an interaction sequence coming from the composition σ ; (τ ;ρ). This
means that in both case we build a path going from A to D through moves in B and C in
the same way, and thus we obtain the same µ-pointer.

Concerning instantiations, they are built by applying an O-substitution ϑ1 corresponding to
pairs of O-instantiations and P-instantiations in B and an O-substitution ϑ2 corresponding
to pairs of O-instantiations and P-instantiations in C. By disjointness of the O-instantiations
in B and C, applying first ϑ1 and then ϑ2 or the converse leads to the same instantiations in
(σ ; τ) ; ρ and σ ; (τ ; ρ).

The neutrality of the identity with respect to composition is easy and left to the reader. 2

Lemmas 10 and 11 show that GR defines a functor from the category of arenas and strategies
to the full sub-category of ground arenas and strategies.

We are now able to prove Proposition 3 (page 15).

Lemma 14

Let σ be a view function, pVC(σ)q = σ.

Lemma 15

Let σ be an innocent strategy, VC(pσq) = σ.

Proof: By definition, there exists a view function τ such that σ = VC(τ) thus:

VC(pσq) = VC(pVC(τ)q)

= VC(τ) by Lemma 14

= σ

2

Lemma 16 (Composition of view closures)
Let σ be a view function on A→ B and τ be a view function on B → C, there exists a view function
ρ on A→ C such that VC(σ) ; VC(τ) = VC(ρ).

Proof: In the usual setting of games for extensions of the simply typed λ-calculus, there is
a well known direct characterization of innocent strategies, and they are known to com-
pose (see [McC96, Har99] for example). This tells us that VC(σ) ; VC(τ) = VC(ρ0) with
ρ0 = pVC(σ) ; VC(τ)q (since our definition of pre-view is the usual definition of view and our
definition of view closure is the usual one).
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What remains to be checked are our constraints on first-order instantiations which are not
present in the traditional setting. More precisely, we define ρ = pVC(σ) ; VC(τ)q and we have
to show that ρ is a view function such that VC(ρ) = VC(ρ0). ρ is a non-empty set of even
length views closed under even length prefixes. Moreover ρ ⊆ ρ0 since ρ0 is closed under
O-renaming (by uniformity of VC(σ) ; VC(τ)). We deduce that ρ is a view function and that
VC(ρ) ⊆ VC(ρ0). Finally VC(ρ0) ⊆ VC(ρ) since, for any play s, psq ∈ ρ0 implies psq ∈ ρ. 2

Proposition 3

Arenas and view functions give a category G.

Proof: The identity view function is a view function on A → A (whose view closure is the
identity strategy). If σ is a view function on A→ B and τ is a view function on B → C, the
composition of σ and τ is pVC(σ) ; VC(τ)q which is pVC(ρ)q = ρ (for some view function ρ, by
Lemmas 16 and 14) thus it is a view function.

The identity view function is neutral for composition (we give only one side):

σ ; pidq = pVC(σ) ; VC(pidq)q

= pVC(σ ; id)q by Lemma 15

= pVC(σ)q

= σ by Lemma 14

The composition of view functions is associative:

σ ; (τ ; ρ) = pVC(σ) ; VC(pVC(τ) ; VC(ρ)q)q

= pVC(σ) ; (VC(τ) ; VC(ρ))q by Lemmas 16 and 15

= p(VC(σ) ; VC(τ)) ; VC(ρ)q

= pVC(pVC(σ) ; VC(τ)q) ; VC(ρ)q by Lemmas 16 and 15

= (σ ; τ) ; ρ

2

GR turns view functions into view functions, and thus defines a functor from G to G00.
Additional structure of this category is given by Theorem 1 (page 18). We will prove it after a

few lemmas.

Lemma 17 (Composition of µ-rigid strategies)
Let σ : A→ B and τ : B → C be two µ-rigid strategies, σ ; τ is µ-rigid.

Proof: We prove (by induction on its length) that any interaction sequence u on A, B and C,
such that u ↾A→B ∈ σ, u ↾B→C ∈ τ , has its µ-pointers given in a µ-rigid way. If u is empty,
the result is immediate, if the last move corresponds to a Player move of σ, the result comes
from the µ-rigidity of σ and the same with τ . As a consequence, the µ-pointers in u ↾A→C

respect the µ-rigidity.

In a similar way, between two moves m and n (n Player move in A→ C) in A or C in u, the
O-substitution induced by u identifies each O-instantiation with the previous one in moves
in B, and we deduce that the P-instantiation of n is the same as the O-instantiation of m. 2
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Lemma 18

Let σ and τ be two µ-rigid strategies on A, if GR(σ) = GR(τ) then σ = τ .

Proof: By symmetry, it is enough to show σ ⊆ τ . We prove by induction on the length of s

that s ∈ σ entails s ∈ τ . The case of ε is immediate. If smn ∈ σ, there exists tm′n′ ∈ τ such
that GR(smn) = GR(tm′n′). By induction hypothesis, s ∈ τ , thus by Lemma 9 there exists
an O-renaming ς such that s = tς. We consider an O-renaming ς ′ such that s = tς ′ and
ς ′ maps each O-variable in the O-instantiation of m′ to the corresponding O-variable in the
O-instantiation of m. We look at smn′′ = (tm′n′)ς ′ ∈ τ . We want to prove smn = smn′′. We
have GR(smn) = GR(smn′′), thus n and n′′ correspond to the same node in A and have the
same justification pointer. Moreover they are µ-rigid thus their µ-pointers and instantiations
are obtained in the same way. 2

These two lemmas show that GR, restricted to the sub-category of G given by µ-rigid strategies,
is faithful.

Theorem 1 (Control category of games)
The category G of arenas and view functions is a control category.

Proof: Since G00 is a control category [Lau05b] and GR preserves the various constructions on
arenas and strategies (GR(A+B) = GR(A)+GR(B), GR(σ+τ) = GR(σ)+GR(τ), GR(A×
B) = GR(A) ×GR(B), GR(σ × τ) = GR(σ)×GR(τ), ...) as well as basic morphisms (such
as associativity and commutativity of the constructions, which are µ-rigid), any commutative
diagram required in the definition of a control category and concerning only µ-rigid strategies
commutes in G (by faithfulness of GR on µ-rigid strategies).

The other properties are about the monoid structure (with respect to the pre-monoidal prod-
uct) defined on each object and about cartesian closedness. They are not difficult to check
and left to the reader. 2

Lemma 19

GR reflects totality and finiteness: GR(σ) is total if and only if σ is total, GR(σ) is finite if and
only if σ is finite.

Proposition 13 (Composition of total finite strategies)
The composition of two total finite strategies is a total finite strategy.

Proof: Let σ and τ be two total finite strategies, σ ;τ is total finite iff GR(σ ;τ) is total finite (by
Lemma 19) iff GR(σ);GR(τ) is total finite. By the full completeness result of [DHR96], GR(σ)
and GR(τ) are the interpretations of two simply typed λ-terms M and N and GR(σ) ;GR(τ)
is the interpretation of λx.(M)(N)x thus a total finite strategy. 2

It would be possible to extend this categorical analysis of our game model by introducing a
notion of first-order control hyperdoctrines (in the spirit of control hyperdoctrines [dL08]), and by
proving our games to give such a first-order control hyperdoctrine. We do not think it would help
a lot in the present work.
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