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Abstract12

We revisit sequentialization proofs associated with the Danos-Regnier correctness criterion in the13

theory of proof nets of linear logic. Our approach relies on a generalization of Yeo’s theorem for14

graphs, based on colorings of half-edges. This happens to be the appropriate level of abstraction to15

extract sequentiality information from a proof net without modifying its graph structure. We thus16

obtain different ways of recovering a sequent calculus derivation from a proof net inductively, by17

relying on a splitting `-vertex, on a splitting ⊗-vertex, on a splitting terminal vertex, etc.18

The proof of our Yeo-style theorem relies on a key lemma that we call cusp minimization. Given19

a coloring of half-edges, a cusp in a path is a vertex whose adjacent half-edges in the path have20

the same color. And, given a cycle with at least one cusp and subject to suitable hypotheses, cusp21

minimization constructs a cycle with strictly less cusps. In the absence of cusp-free cycles, cusp22

minimization is then enough to ensure the existence of a splitting vertex, i.e. a vertex that is a cusp23

of any cycle it belongs to. Our theorem subsumes several graph-theoretical results, including some24

known to be equivalent to Yeo’s theorem. The novelty is that they can be derived in a straightforward25

way, just by defining a dedicated coloring, again without any modification of the underlying graph26

structure (vertices and edges) – similar results from the literature required more involved encodings.27
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1 Introduction35

Proof nets are a major contribution from linear logic [14]. Contrary to the usual representation36

of proofs as derivation trees in sequent calculus, proof nets represent proofs as general graphs37

respecting some correctness criterion [7], which imposes the absence of a particular kind of38

cycle. Proof nets identify derivations of the sequent calculus up to rule commutations and,39

as a consequence of this canonicity, results like cut elimination become easier to prove in40

this formalism. A key theorem in this approach is the fact that each proof net is indeed the41

graph representation of a derivation of sequent calculus: the process of recovering such a42

derivation tree is called sequentialization. Many proofs of this result can be found in the43

literature [14, 7, 16, 18, 5, etc.], but proving sequentialization is still considered as not easy.44
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Not only many proofs but more generally many equivalent correctness criteria have been45

introduced in the last 40 years, based on the existence or absence of particular paths in an46

associated graph (long trips, switching cycles, alternating-elementary-cycles) [14, 7, 35], on47

the success of a rewriting procedure (contractibility, parsing) [6, 27, 22, 8], on homological [31]48

or topological [30] properties, etc. They all describe the same set of valid graphs (those49

which are the image of a sequent calculus derivation) but through very different statements50

of properties characterizing the appropriate structure. The diversity of these approaches51

reflects both the central nature of the concept of proof net in linear logic, and the variety52

of motivations in the design of correctness criteria: some ensure tight complexity bounds53

(especially those based on contractibility), some weave connexions with other fields (e.g.,54

topology or graph theory), some are more naturally generalized to other logical systems, etc.55

On the other hand, when it comes to the study of the theory of proof nets (confluence,56

normalization, reduction strategies, etc.) most of those approaches are hardly usable in57

practice. This gives the Danos-Regnier criterion [7] a special status: the absence of switching58

cycles is of direct use for proving results about proof nets. For instance, it forbids the59

occurrence of axiom-cut cycles along cut elimination [17]; it ensures the confluence of60

reduction in multiplicative-exponential linear logic [34]; it provides the existence of so-called61

closed cuts [28], which play a crucial rôle in geometry of interaction [15]; it allows for the62

definition of a parallel procedure of cut elimination for multiplicative-exponential linear63

logic [21]; etc. This means in particular that, based on this criterion, it becomes possible64

to develop the theory of proof nets without referring to the sequent calculus anymore. For65

this reason, we are interested in a better understanding of this precise criterion and its links66

with the sequential structure of tree derivations, via sequentialization. Following previous67

lines of work on relating graph theory and proof net theory [35, 10, 33], we looked for a68

direct link between graph properties and the sequential structure of proof nets: splitting69

vertices. Indeed the key step for extracting a sequent calculus derivation from a proof net is70

to inductively decompose it into sub-graphs themselves satisfying the correctness condition.71

In graph theory, it is common to have several (equivalent) characterizations for a same class72

of graphs, and an inductive characterization may allow for simpler proofs – see e.g., cographs,73

k-trees or graphs with a unique perfect matching. Such an inductive characterization may be74

deduced from the existence of a vertex or an edge separating the graph in a “nice” manner75

(e.g. a bridge [3]). Five theorems yielding such a vertex or edge have been shown equivalent76

by Szeider [39], meaning they can be deduced from each other using an encoding of the graph77

under consideration. Among those five are Yeo’s theorem on colored graphs [40], Kotzig’s78

theorem on unique perfect matchings [26], but also Shoesmith and Smiley’s theorem on79

turning vertices [38] – interestingly the approach of the latter bears striking resemblance80

with our own work, that we discuss more in detail in the last part of the paper.81

On the proof net side, Rétoré remarked that perfect matchings provided an alternative82

presentation of proof nets [35]: in this context, he recovered sequentialization proofs based on83

different notions of splitting vertex, in the spirit of Kotzig’s theorem. Remarkably, Nguyễn84

later established that Kotzig’s theorem is in fact equivalent to the sequentialization theorem85

of unit-free multiplicative proof nets with mix [33], again through graph encodings.86

In the present paper, we focus on Yeo’s theorem [40] instead, which is about edge-colored87

undirected graphs. Our goal is to obtain the existence of splitting vertices in proof nets by88

a direct application of a Yeo-style statement to an edge-coloring of the proof net (with no89

modification of the graph structure at all). In an edge-colored graph, a cycle is alternating90

when all its consecutive edges have different colors. Yeo’s theorem states that an edge-colored91

graph G with no alternating cycle has a splitting vertex v, i.e. such that no connected92
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−→

Figure 1 Example of Yeo’s theorem with a filled splitting vertex and dotted connected components

component of G− v (the removal of v) is joined to v with edges of more than one color – see93

Figure 1. This decomposition can be carried on, so as to give an inductive representation of94

graphs with no alternating cycle. This important structural result on edge-colored graphs95

has been used extensively in the literature (see e.g. the book [3] or papers such as [1, 12]).96

To allow a direct application to proof nets, we generalize Yeo’s theorem in two directions.97

First, we consider a more general notion of edge-coloring, that we called local coloring: it98

associates a color with each endpoint of each edge (this is equivalent to coloring half-edges,99

but we avoid to introduce half-edges formally, just to stick to more basic graph-theoretic100

notions). Second, we introduce a parameter (a set of vertex-color pairs, i.e. a set of vertices101

labeled with colors) which gives us finer control over the obtained splitting vertex.102

Our proof of this new result is elementary and based on a key lemma we call cusp103

minimization, as well as on the definition of an ordering on vertex-color pairs induced by104

local coloring. Formally, a cusp in a path of a locally colored graph is a pair of two successive105

edges, such that the color associated with the middle vertex is the same for both edges. The106

ordering on vertex-color pairs is induced by particular cusp-free paths. Moreover, given a107

cycle ω containing a cusp, and a non-cusp vertex v of ω, satisfying some additional technical108

conditions, our cusp minimization result (Lemma 6) yields either a cusp-free cycle, or another109

cycle with strictly less cusps than ω, but also having v as a non-cusp vertex. In a locally110

colored graph without cusp-free cycle, our generalization of Yeo’s theorem then follows easily111

by considering a maximal vertex-color pair among those in the parameter.112

Cusp minimization also provides a proof of the original version of Yeo’s theorem, as113

simple as known short proofs from the literature [29, 32]. While the generalization to local114

colorings gives a statement that we prove equivalent to Yeo’s theorem, it seems difficult115

to reduce the parametrized version to the non-parametrized one. We moreover show how116

the local and parametrized generalization of Yeo’s theorem allows to deduce each of the117

statements considered in [39] (as well as [13, Theorem 2]), simply by choosing appropriate118

colorings, without modifying the sets of vertices and edges of the graph under consideration.119

Back to linear logic and the theory of proof nets, it is possible to derive the existence of a120

splitting vertex (in the sense of sequentialization) from the generalization of Yeo’s theorem,121

and we are even able to modularly focus on a particular kind of splitting vertex: an arbitrary122

splitting vertex, a splitting multiplicative vertex (` or ⊗), a splitting ` (a.k.a. section [7]),123

a terminal splitting multiplicative vertex, etc. From any of these choices, a sequentialization124

procedure is easy to deduce. Notably, this proof of the sequentialization theorem applies125

directly in the presence of the mix rules, and the mix-free case can be easily deduced.126

Putting everything together, we get a direct simple proof of sequentialization for the Danos-127

Regnier criterion, assuming no prerequisite in graph theory. The path to sequentialization in128

linear logic that we propose starts from cusp minimization then goes to the generalization of129

Yeo’s theorem and concludes with the extraction of an inductive decomposition of proof nets.130

Outline. This paper is organized into three parts: first a purely graph-theoretical part131

leading to our generalization of Yeo’s theorem; then two independent segments leveraging132

this result, one about proof nets of linear logic and sequentialization, and another on graph133
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theory comparing our generalization to other graph statements. We start by recalling usual134

notions (graphs, paths, . . . ) and with our definition of local coloring (Section 2). Then135

we state and prove our generalization of Yeo’s theorem (Theorem 8), through the cusp136

minimization lemma (Section 3). Next comes the part about logic, with a definition of137

unit-free multiplicative linear logic with the mix rules and the associated notion of proof net138

(Section 4). We then give various proofs of the sequentialization theorem for these proof nets,139

leveraging our generalization of Yeo’s theorem (Section 5). Last, we go back to graph theory140

and show the parameter-free version of our Yeo-style result is equivalent to the original141

one, and how to use it to deduce, in a straightforward way by only defining an appropriate142

coloring, the four other equivalent theorems from [39] as well as a generalization of Yeo’s143

theorem to H-colored graphs [13, Theorem 2] (Section 6).144

2 Graphs and Cusps145

2.1 Partial Undirected Graphs and Paths146

As we take interest in proof nets and Yeo’s theorem in this paper, we study undirected paths147

in finite undirected partial multigraphs. We recall here quickly some basic notions from148

graph theory, for more details we refer the reader to [2].149

A (finite undirected multi) partial graph (without loop) is a triple (V, E , ψ) where V150

(vertices) and E (edges) are finite sets and ψ (the incidence function) associates to151

each edge a set of at most two vertices. An edge e is total when ψ(e) is of cardinal two,152

and a total graph (or simply a graph) is one whose edges are total. Many notions lift153

immediately from total graphs to partial graphs, e.g. isomorphisms – that we denote ≃. An154

edge e is incident to a vertex v if v ∈ ψ(e), in which case v is an endpoint of e.155

A path p is a finite alternating sequence of vertices and edges (v0, e1, v1, e2, v2, . . . , en, vn)156

such that for all i ∈ {1; . . . ;n}, the endpoints of ei are exactly vi−1 and vi (which are distinct).157

A path always has at least one vertex, but it can have no edge and be reduced to a single158

vertex (v0), in which case it is called an empty path. With the notation above, v0 is the159

source of p, vn is its target and both make the endpoints of p. Since a given vertex may160

occur more than once in a path, we may have to talk about occurrences of vertices in a161

path to distinguish these equal values. We use the following notations:162

the concatenation of two paths p1 = (v0, e1, . . . , ek, vk) and p2 = (vk, ek+1, . . . , en, vn)163

is the path p1 · p2 = (v0, e1, . . . , ek, vk, ek+1, . . . , en, vn);164

the reverse of a path p = (v0, e1, v1, . . . , ek, vk) is p = (vk, ek, vk−1, . . . , e1, v0);165

if v and u are two (occurrences of) vertices of a path p, with v occurring before u, p(v,u)166

is the unique sub-path (i.e. sub-sequence that is a path) of p with source v and target u.167

A path is simple if its edges are pairwise distinct and its vertices are pairwise distinct168

except possibly its endpoints which may be equal. A path is closed if it has equal endpoints,169

otherwise it is open. A cycle is a non-empty simple closed path.170

Given a partial graph G = (V, E , ψ), a sub-graph of G is a partial graph G′ = (V ′, E ′, ψ′)171

such that V ′ ⊆ V, E ′ ⊆ E and ψ′ is the restriction of ψ to E ′ in its domain and sets of V ′
172

in its codomain. Connectedness is not immediate to define in partial graphs because paths173

go from vertices to vertices. Two vertices v and u are connected when there exists a path174

with endpoints v and u. Two edges are connected if they are incident to two connected175

vertices. An edge e and a vertex v are connected if e is incident to a vertex connected to v.176

A partial graph G is connected when any two different vertices or edges of G are connected.177

A connected component is a non-empty connected sub-graph maximal for the inclusion.178
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2.2 Local Coloring and Cusps179

Let G be a (partial) graph. A local coloring of G is a function c taking as arguments an180

edge e and one of its endpoints v. By convention, the elements c(e, v) are called colors. The181

intuition is that given an edge e and one of its endpoints v, c(e, v) is the color of e according182

to v. A local coloring can also be seen as a coloring of half-edges, i.e. c(e, v) is the color of183

the half of e near v. When drawing a graph, we therefore represent c(e, v) by coloring the184

part of e touching v, with colors also given by the shape of the edges (solid, dashed, . . . ). We185

recover the standard notion of edge-coloring, which maps edges to colors, when for every186

edge e, c(e,_) has the same value for all endpoints of e. An example of locally colored graph187

is given on Figure 2, where c(e, v) = solid, c(e, u) = solid, c(f, u) = solid, c(f, w) = dashed,188

c(g, v) = dashed, c(g, w) = solid and c(h, v) = dotted.189

A cusp at v of color α is a triple (e, v, f) where e and f are distinct edges such that190

v is an endpoint of both of these edges and c(e, v) = α = c(f, v). In this case, v is called191

the vertex of the cusp, α the color of the cusp and (v, α) is called a cusp-point. More192

generally, we will consider in this paper vertex-color pairs which are pairs made of a vertex193

and a color, and a cusp-point is a particular instance of a vertex-color pair. The locally194

colored graph in Figure 2 has two cusps, (e, u, f) and (f, u, e), both of vertex u and color195

solid, so that (u, solid) is the only cusp-point of this graph.196

A cusp of a path p is a cusp made by a sub-sequence (e, v, f) of this path or, in case197

p is closed, a cusp (en, v0, e1) made by its last edge en, its source (and target) v0 and its198

first edge e1. Remark that the reverse of a path contains the same number of cusps as this199

path. A cusp-free path, also called an alternating path, is one without cusp. Given a200

non-empty path p, whose source is v0 and first edge is e1, its starting color is c(e1, v0).201

Similarly, if its target is vn and its last edge is en, then the ending color of p is c(en, vn).202

Remark the starting (resp. ending) color of p is the ending (resp. starting) color of p. For203

instance, in the graph depicted on Figure 2 the path (v, e, u, f, w) has one cusp at u of color204

solid, its starting color is solid and its ending one is dashed.205

▶ Fact 1. Let ω be a cycle with no cusp at its source, and α a color. Then α is not the206

starting color of ω or α is not the starting color of ω.207

We call splitting a vertex v such that any cycle containing it has a cusp at v. We will208

show in Section 6.1 that this fits the notion at play in the conclusion of Yeo’s theorem [40].209

▶ Remark 2. We invented this “local coloring”, which is not standard in the literature, and210

the name “cusp”. When used only through the notions of cusps and splitting vertices, that a211

given color is used on different vertices has no impact. Hence, we could use different sets of212

colors depending on each vertex, or not use more colors than the maximal degree of the graph.213

Equivalently, a local coloring is an equivalence relation on the edges incident to v, for each214

vertex v. We keep the idea of local coloring as it is a direct generalization of edge-coloring.215

3 A Generalization of Yeo’s Theorem216

We prove a version of Yeo’s theorem [40] for locally colored partial graphs, which is moreover217

parametrized by the choice of a set of vertex-color pairs (subject to a technical condition):218

Theorem 8. We first fix a partial graph G with a local coloring c.219

The main idea is to follow a path that is an evidence of progression, i.e. a strict partial220

order ↱: a vertex is smaller than another when there is a path from the first to the second,221

and we will prove that a maximal vertex is splitting. As the hypothesis of the theorem is222
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Figure 2 Example of locally colored graph
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Figure 3 Illustration of Lemma 6

about cusp-free cycles, it makes sense to consider cusp-free paths in this ordering. However,223

two issues prevent ↱ from being an order. First, the concatenation of two cusp-free paths224

may not be cusp-free. To have ↱ transitive, we impose a condition on the starting and ending225

colors of the cusp-free path – which is why we consider vertex-color pairs and not simply226

vertices. Second, there is no reason for this relation ↱ of “being linked by a cusp-free path”227

to not loop. Hence, we add a condition on the path that there is no way to go back on it,228

yielding from ↱ a relation ◁ which will be our strict partial order. This entails the following:229

▶ Definition 3. Given vertices v and u, and colors α and β, we write (v, α)
p

↱ (u, β) if p is230

a simple open cusp-free path from v to u with starting color not α and with ending color β.231

We note (v, α)
p
◁ (u, β) when (v, α)

p

↱ (u, β) and for all vertex w, color τ and path q such that232

(u, β)
q

↱ (w, τ), w is not in p. We simply write (v, α)◁ (u, β) when such a path exists.233

▶ Lemma 4. Let v, u and w be vertices, α, β and τ be colors, and p and q be paths. If234

(v, α)
p
◁ (u, β) and (u, β)

q

↱ (w, τ) then (v, α)
p·q
↱ (w, τ).235

▶ Lemma 5. The relation ◁ is a strict partial order on vertex-color pairs.236

The key ingredient for proving our Yeo-style theorem is showing that for any pair (v, α)237

maximal for the strict partial order ◁, v is splitting. It is a consequence of the following:238

▶ Lemma 6 (Cusp Minimization). Fix a partial graph G with a local coloring. Assume ω is a239

cycle starting from a vertex v, with no cusp at v but containing a cusp of vertex u and color240

α. If (u, α)
q

↱ (w, β) with w a vertex of ω, then either there exists a cusp-free cycle or there241

exists a cycle ω′ starting from v, with no cusp at v and strictly less cusps than ω.242

Proof. Use Figure 3 as a reference for notations. W.l.o.g. q has no vertex in common with243

ω other than its endpoints u and w. We use the notation v1 for the occurrence of v at the244

source of ω, and v2 for its occurrence at the target of ω.245

By symmetry (considering the reverse of ω if necessary), we can assume that w is in246

ω(u,v2) and if w = v2 then β is not the starting color of ω. Indeed, if w /∈ ω(u,v2), we reverse247

ω. Otherwise and if w = v2, we apply Fact 1 to ω and β to get that ω or ω respects our248

assumption.249

Consider the cycles ω′ = ω(v1,u) · q ·ω(w,v2) and d = q ·ω(w,u) (see Figure 3). We count the250

cusps in ω, ω′ and d. Recall that u is a cusp of ω of color α, q is cusp-free and its starting251

color is not α, and that ω′ has no cusp at v (by our symmetry argument above). Thus, there252

are n1 + 1 + n2 + bω
w + n3 cusps in ω, n1 + bω′

w + n3 in ω′, and bd
w + n2 in d, where:253

n1 (resp. n2, n3) is the number of cusps of ω(v1,u) (resp. ω(u,w), ω(w,v2));254

bω
w (resp. bω′

w , bd
w) is 1 if ω (resp. ω′, d) has a cusp at w and 0 otherwise.255
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If ω′ has strictly less cusps than ω we are done, otherwise bω′

w ≥ 1 + n2 + bω
w. Hence, n2 = 0,256

bω
w = 0 and bω′

w = 1. But the latter two imply bd
w = 0, so that d is a cusp-free cycle. ◀257

▶ Proposition 7. Let v be a non-splitting vertex of a locally colored partial graph which has258

no cusp-free cycle. For any color α there exists a cusp-point (u, β) such that (v, α)◁ (u, β).259

Proof. Since v is not splitting, it is the source (and target) of a cycle ω which has no cusp260

at v. W.l.o.g. ω has a minimal number of cusps among all such cycles, and has not α as a261

starting color (thanks to Fact 1 and as reversing a path preserves the number and vertices of262

cusps). For ω cannot be cusp-free, it contains at least one cusp: denote by u the vertex of the263

first cusp of ω, and by β its color. We have (v, α)
ω(v,u)

↱ (u, β), and conclude (v, α)
ω(v,u)
◁ (u, β)264

by Lemma 6, the minimal number of cusps of ω and the absence of cusp-free cycles. ◀265

A set P of vertex-color pairs dominates cusp-points if for any cusp-point (v, α), either266

(v, α) ∈ P or there is (u, β) ∈ P with (v, α)◁ (u, β). Our main result follows by Proposition 7.267

▶ Theorem 8 (Parametrized Local Yeo). Take G a partial graph with a local coloring and268

pose P a set of vertex-color pairs which dominates cusp-points. If G has no cusp-free cycle,269

the vertex of any ◁-maximal element of P is splitting.270

4 Multiplicative Proof Nets271

4.1 Unit-Free Multiplicative Linear Logic with Mix272

We focus on unit-free multiplicative linear logic whose formulas are given by:273

A ::= X | X⊥ | A⊗A | A`A274

The dual operator (_)⊥ is extended to an involution on all formulas by De Morgan duality:275

(X⊥)⊥ = X, (A⊗B)⊥ = A⊥ `B⊥ and (A`B)⊥ = A⊥ ⊗B⊥. We consider the deduction276

system MLL0,2
hyp of open derivations in cut-free multiplicative linear logic with mix rules:277

(ax)
⊢ A⊥, A

⊢ A,Γ ⊢ B,∆
(⊗)

⊢ A⊗B,Γ,∆
⊢ A,B,Γ

(`)
⊢ A`B,Γ

⊢ Γ ⊢ ∆
(mix2)

⊢ Γ,∆
(mix0)

⊢
(hyp)

⊢ A278

The (hyp) rule introduces an hypothesis A in a derivation, with A a single formula. We279

restrict ourselves to a single formula not because we consider the (mix2) rule but because280

substitution of proof structures along more than one edge is much more complex. In this281

restricted setting, it is clear that all hypotheses formulas of a proof belong to distinct282

sequents and that we only need substitution of one hypothesis at a time. If π is a derivation283

with hypotheses ⊢ A1, . . . , ⊢ An and conclusion ⊢ B1, . . . , Bk, we call π a derivation of284

A1, . . . , An ⊢ B1, . . . , Bk. If π1 is a derivation of Σ ⊢ Γ, A and π2 is a derivation of A,Θ ⊢ ∆,285

the substitution of π1 in π2 is a derivation of Σ,Θ ⊢ Γ,∆: it is obtained from π2 by286

replacing the (hyp) rule on ⊢ A with π1 (this adds Γ to all sequents of π2 below ⊢ A).287

To be formal, we should be more precise on how we handle occurrences of formulas (e.g.288

considering sequents as lists and having an explicit exchange rule) but we keep this implicit.289

We also consider the following rewriting of derivations which we call mix-Rétoré reduc-290

tion (due to its similarity to Rétoré’s reduction on the exponential connective ? [6, page 77],291

with contraction and weakening forming a monoid):292

⊢ Γ
(mix0)

⊢
(mix2)

⊢ Γ
⇝ ⊢ Γ

(mix0)
⊢ ⊢ Γ

(mix2)
⊢ Γ

⇝ ⊢ Γ293

It defines a confluent and strongly normalizing rewriting system on derivations.294
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ax

` ⊗
axXX⊥

X⊥ ` X

Y

(X⊥ ` X) ⊗ Y

Y ⊥

Figure 4 Example of proof structure

ax

` ⊗
ax

Figure 5 Locally colored proof structure

▶ Lemma 9 (Mix-Rétoré Normal Forms). If π is a derivation in mix-Rétoré normal form,295

either it is
(mix0)

⊢ , or it does not contain the (mix0) rule and it proves a non-empty sequent.296

4.2 Proof Structures297

A proof structure is a partial graph with labeled vertices and edges. Edges are labeled298

with formulas, and vertices with names of the three following rules: ax , ⊗ or `. Vertices are299

named according to their label: ax-vertices, ⊗-vertices and `-vertices. Some additional300

local constraints are required depending on the label of vertices, also pictured below:301

ax
A⊥ A ⊗

A B

A⊗B

`
A B

A`B

302

each ax-vertex has two incident edges, called its conclusions, labeled with dual formulas;303

each ⊗-vertex has three incidents edges, labeled by A, B and A⊗B for some formulas A304

and B; the first two edges are its premises, the last one is its conclusion;305

each `-vertex has three incidents edges, labeled by A, B and A`B for some formulas A306

and B; the first two edges are its premises, the last one is its conclusion;307

an edge is the premise of at most one vertex and the conclusion of at most one vertex.308

An example of proof structure is given on Figure 4. A vertex is terminal when all its309

conclusions have exactly one endpoint (or equivalently, are not premises). An edge that is the310

premise of no vertex is a conclusion of the proof structure. An edge that is the conclusion311

of no vertex is an hypothesis of the proof structure.312

▶ Remark 10. There are many ways to define proof structures. In the typed multiplicative313

case considered here, it is easy to check our definition is equivalent to others in the literature314

(e.g. [14, 33]). To strictly recover the usual notion of proof structure, and to distinguish for315

example the two proof structures with two conclusions typed X⊥`X⊥ and X⊗X, we should316

impose an order on the premises of vertices, as well as on the hypotheses and conclusions:317

we do not do so since this has no impact on correctness nor on (proofs of) sequentialization.318

To identify proof structures corresponding to proofs, and create a distinction between ⊗-319

and `-vertices, it is usual to ask for a proof structure to respect a correctness criterion. As320

explained in the introduction, we use one due to Danos and Regnier [7]. A path in a proof321

structure is called switching when it does not contain the two premises of any `-vertex. A322

proof structure is DR-correct (and is called a proof net) if it has no switching cycle.323

▶ Remark 11. The original definition of the acyclicity condition in the Danos-Regnier324

correctness criterion [7] (extended to (mix2) in [11]) is in fact slightly different. They consider325

correctness graphs: graphs obtained by removing one of the two premises of each `-vertex.326

A proof structure is correct when all its correctness graphs are acyclic (and connected in327

the original work without the mix rules). This condition is equivalent to the fact that any328

cycle in the proof structure must contain the two premises of some `-vertex (i.e. no cycle329
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is feasible in the sense of [11]). This is also equivalent to the apparently weaker condition330

that any cycle in the proof structure must go through the two premises of some `-vertex331

consecutively:332

▶ Lemma 12 (Local-Global Principle). A simple path that never goes through the two premises333

of a `-vertex consecutively (including as last and first edges for a cycle) is a switching path.334

4.3 Desequentialization335

We define, by induction on a derivation π of A1, . . . , An ⊢ B1, . . . , Bk, its desequentializa-336

tion D(π) which is a DR-correct proof structure with hypotheses labeled A1, . . . , An and337

conclusions labeled B1, . . . , Bk.338

If π is reduced to an (ax) rule with conclusion
⊢ A⊥, A, then D(π) is the proof structure with
one ax-vertex v and two edges labeled A⊥ and
A, both with unique endpoint v.

(ax)
⊢ A⊥, A 7→ ax

A⊥ A

339

If the last rule of π is a (⊗) rule applied to two
derivations π1 and π2 then D(π) is obtained
from the disjoint union of D(π1) and D(π2)
by adding a new ⊗-vertex v. The conclusions
of D(π1) and D(π2) labeled by the principal
formulas A and B of the (⊗) rule now have v
as an additional endpoint, and we add a new
edge, labeled A⊗B, with v as unique endpoint.

π1
⊢ A,Γ

π2
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

7→

D(π1) D(π2)

⊗
A B

A⊗B

340

If the last rule of π is a (`) rule applied to a
derivation π1 then D(π) is obtained from D(π1)
by adding a new `-vertex v. The conclusions of
D(π1) labeled by the principal formulas A and
B of the (`) rule now have v as an additional
endpoint, and we add a new edge, labeled A`B,
whose unique endpoint is v.

π1
⊢ A,B,Γ

(`)
⊢ A`B,Γ

7→

D(π1)

`
A B

A`B

341

If the last rule of π is a (mix2) rule applied
to two derivations π1 and π2 then D(π) is the
disjoint union of D(π1) and D(π2).

π1
⊢ Γ

π2
⊢ ∆

(mix2)
⊢ Γ,∆

7→ D(π1) D(π2)
342

If π is reduced to a (mix0) rule, D(π) is the
empty proof structure (no vertex, no edge).

(mix0)
⊢ 7→343

If π is reduced to a (hyp) rule on ⊢ A, then
D(π) is the proof structure with no vertex and
a single edge with no endpoint, labeled A.

(hyp)
⊢ A 7→ A

344

There is a bijection between the (ax), (⊗) and (`) rules of π and the vertices of D(π).345

Moreover, if π2 is obtained from π1 by a mix-Rétoré reduction then D(π1) ≃ D(π2).346

▶ Lemma 13 (Desequentialization of a substitution). If π is the substitution of a derivation347

π1 for a hypothesis A in a derivation π2, then D(π) is obtained from the disjoint union of348

D(π1) and D(π2) by identifying the conclusion e of D(π1) labeled A with the hypothesis e′ of349

D(π2) labeled A. The obtained edge has label A and endpoints the union of those of e and e′.350

5 Sequentialization from Parametrized Local Yeo351

This section is dedicated to show how sequentialization results (see [14, 7, 6, 11] for example)352

can be deduced from Theorem 8. We provide several proofs of the known statement:353
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▶ Theorem 14 (Sequentialization [14, 7, 6, 11]). Given a DR-correct proof structure ρ, there354

exists a derivation π in MLL0,2
hyp such that ρ ≃ D(π); π is called a sequentialization of ρ.355

The first step is to define the following local coloring c (see Figure 5 for an example):356

for an ax-vertex v of conclusions e1 and e2, set c(e1, v) = solid and c(e2, v) = dashed;357

for a ⊗-vertex v of premises e1 and e2 and conclusion f , set c(e1, v) = solid,358

c(e2, v) = dotted and c(f, v) = dashed;359

for a `-vertex v of premises e1 and e2 and conclusion f , set c(e1, v) = c(e2, v) = solid360

and c(f, v) = dashed.361

Note the cusp-points of a colored proof structure are exactly the pairs (v, solid) where v is a362

`-vertex – which is in fact the only condition we need and requires a local coloring (see the363

left ax in Figure 5). In all this section, we assume proof structures to be colored this way.364

Then, the absence of switching cycles means there is no cusp-free cycle. Theorem 8 gives a365

splitting vertex for any set P dominating cusp-points – i.e. pairs (v, solid) with v a `-vertex.366

Observe that, with the local coloring we have fixed, we recover the notions of splitting ⊗-367

or `-vertex which play a crucial rôle in most of the sequentialization results for DR-correct368

proof structures: finding such a vertex allows to decompose a proof net in smaller components,369

and to deduce sequentialization inductively. Indeed, for v a splitting vertex:370

If v is a ⊗-vertex with conclusion labeled A ⊗ B, its premises and conclusion are not371

connected, except through v. By removing v, we obtain three disjoint proof structures: ρ1372

with a conclusion A, ρ2 with a conclusion B, and ρ0 with a hypothesis A⊗B. By induction373

hypothesis, we get corresponding derivations π1, π2 and π0. By adding a (⊗) rule to π1374

and π2, and substituting the obtained derivation in π0, we get a sequentialization of ρ.375

If v is a `-vertex with conclusion labeled A ` B, its premises are not connected to376

its conclusion, except through v. By removing v from ρ, we obtain two disjoint proof377

structures: ρ1 with conclusions A and B, and ρ0 with a hypothesis A`B. By induction378

hypothesis, we get two corresponding derivations π1 and π0. By adding a (`) rule to π1379

and substituting the obtained derivation in π0, we obtain a sequentialization of ρ.380

If v is an ax-vertex with conclusions labeled A⊥ and A, its conclusions are not connected,381

except through v. By removing v from ρ, we obtain two disjoint proof structures: ρ1382

with a hypothesis A⊥ and ρ2 with a hypothesis A. By induction hypothesis, we get two383

corresponding derivations π1 and π2. By first substituting a derivation reduced to a single384

(ax) rule into π1, and then substituting the result in π2, we get a sequentialization of ρ.385

We fix a DR-correct proof structure ρ: ρ has no cusp-free cycle. We review how natural386

choices for the parameter P in Theorem 8 yield various proofs of Theorem 14, differing only in387

the order in which splitting vertices are selected along the sequentialization procedure. Each388

of these choices satisfies the hypothesis of Theorem 8 trivially: P contains all cusp-points.389

General splitting vertices. Take P the set of all vertex-color pairs. By Theorem 8, for each390

◁-maximal element (v, α) ∈ P , the vertex v is splitting. As described above, v allows391

to decompose ρ and to go on by induction. It remains only to treat the case P = ∅, i.e.392

without vertex. If ρ is empty (no vertex, no edge), it is the desequentialization of the393

derivation reduced to a (mix0) rule. If ρ is a single edge (with no endpoint), it is the394

desequentialization of a derivation reduced to a (hyp) rule. Else, decomposing ρ into395

connected components corresponds to applying (mix2) rules on the sequent calculus side.396

Splitting `- or ⊗-vertices. Let P := {(v, α) | v is a ⊗- or `-vertex and α is a color in ρ}.397

By Theorem 8, each ◁-maximal element (v, α) ∈ P yields a splitting vertex v, which must398

be a `- or ⊗-vertex. We reason inductively as before, which leaves only the case P = ∅: all399

vertices must be ax-vertices and we reason as above, splitting along connected components400

that can be an ax-vertex with its two conclusions or an edge without endpoint.401
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Splitting `-vertices (a.k.a. sections) [7]. Let P be the set of all cusp-points: a ◁-maximal402

element of P is (v, α) with v a splitting `-vertex by Theorem 8, so we can reason403

inductively. It remains only to treat the case P = ∅ (i.e. no `-vertex, hence no cusp in404

ρ): by DR-correctness, ρ is cycle-free, and all the remaining vertices are splitting.405

Splitting terminal vertices [14]. Let P := {(v, solid) | v is a ⊗- or `-vertex}∪{(v,dotted) |406

v is a ⊗-vertex}, and let (v, α) ∈ P be maximal for ◁. Then v is not only splitting by407

Theorem 8, but it is also terminal. Indeed, otherwise its conclusion e has another endpoint408

u. This u must be a ⊗- or `-vertex (as e can only be one of its premises, and these are409

the only vertices with premises). Then (v, α)
(v,e,u)
↱ (u, c(e, u)) since c(e, v) = dashed ̸= α.410

Moreover, we cannot have (u, c(e, u))
p

↱ (v, β) for a color β as this would yield a cusp-free411

cycle (v, e, u) ·p. We obtain (v, α)◁ (u, c(e, u)), contradicting the maximality of (v, α). So,412

if P ̸= ∅, we obtain a splitting terminal ⊗- or `-vertex. The sequentialization procedure413

is then the same as before, except that we can focus on terminal vertices all along.414

Now having sequentialization for MLL0,2
hyp, we consider some restrictions and characterize415

sub-systems of the sequent calculus by means of properties of their image in proof structures.416

Hypothesis-free derivations. A derivation π contains no (hyp) rule if and only if D(π) is417

hypothesis-free (i.e. each edge is the conclusion of some vertex). We thus recover the418

usual sequentialization result of (hypothesis-free) proof nets into ((hyp)-free) derivations.419

Note that following the splitting terminal vertices procedure above, we never need to420

consider (hyp) rules nor hypotheses in proof structures. Indeed, if ρ is hypothesis-free421

and v is a splitting terminal vertex: the components associated with the premises of v422

are also hypothesis-free; and those associated with its conclusions are reduced to a single423

hypothesis edge, so there is no need to perform a substitution.424

Connected proof structures. Another important sub-system is obtained by removing the425

mix rules, which is captured by a connectedness property of DR-correct proof structures.426

Given some DR-correct proof structure ρ, the DR-connectedness degree d(ρ) is the427

number of connected components of any its correctness graphs (see Remark 11). Note that,428

thanks to acyclicity, d(ρ) does not depend on the choice of the correctness graph. We say429

ρ is DR-connected if d(ρ) = 1 (in particular it is not empty). Given a derivation π, one430

can check that d(D(π)) = 1+#mix2 −#mix0, where #mixi is the number of (mixi) rules431

in π. In particular, derivations without mix have a DR-connected desequentialization.432

Conversely, depending on d(ρ), we can transform the derivations π such that ρ ≃ D(π) to433

obey some constraints on mix-rules, without changing their image by D. By Lemma 9, if434

π is a mix-Rétoré normal form, then π contains (mix0) if and only if D(π) is empty, and435

π contains (mix2) if and only if d(D(π)) > 1. Combined with Theorem 14, we obtain:436

▶ Theorem 15 (Connected sequentialization). Given a DR-connected and DR-correct437

proof structure ρ ( i.e. d(ρ) = 1), there exists a mix-free derivation π such that ρ ≃ D(π).438

6 Comparison of our Generalized Yeo’s Theorem with the Literature439

6.1 Local and Global Colorings440

First, remark our parametrized version implies a simpler one, closer to Yeo’s theorem.441

▶ Theorem 16 (Local Yeo). Take G a partial graph equipped with a local coloring and with442

at least one vertex. If G has no cusp-free cycle, then there exists a splitting vertex in G.443
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Proof. The set P of all vertex-color pairs of G is finite and non-empty (if we only consider444

colors used in G, plus a dummy one if there is no such color), and thus contains a maximal445

element (v, α) with respect to ◁ (Lemma 5). The vertex v is splitting (Theorem 8). ◀446

As an example, the graph depicted on Figure 2 has no cusp-free cycle, and u is its only447

splitting vertex. We now bridge the gap with the terminology from Yeo’s theorem [40] and448

prove it is a direct consequence of our local version. For G a partial graph and v a vertex449

of G, the partial graph G \ v is the sub-graph obtained by removing v from the vertices of450

G (same edges with possibly less endpoints). This gives an alternative characterization of451

splitting vertices: a vertex v is splitting if and only if any two edges with endpoint v and452

connected in G \ v have the same color on v. Let us move to the terminology for total graphs:453

As G\v leads in general to a partial graph, it has to be replaced with the operation G−v454

on total graphs, which removes not only v but also all its incident edges. Connectedness455

on partial graphs gives the standard notion when restricted to total graphs.456

Recall the standard notion of edge-coloring that maps edges to colors. An alternating457

cycle for an edge-coloring is the restriction of the same notion for a local coloring: a458

cycle whose consecutive edges are of different colors, including its last and first edges.459

▶ Theorem 17 (Yeo’s Theorem). If G is a non-empty edge-colored (total) graph with no460

alternating cycle, then there exists a vertex v of G such that no connected component of461

G− v is joined to v with edges of more than one color.462

Proof. Call c the edge-coloring of G, we set a local coloring c′ by c′(e, v) = c(e). Alternating463

cycles with respect to c′ are those with respect to c. Theorem 16 yields a splitting vertex v,464

so no connected component of G− v is joined to v with edges of more than one color. ◀465

While Theorem 16 seems more general than Theorem 17, we deduce the first from the466

second by a graph encoding. Partial edges play no role, so we consider only total graphs.467

Take G a graph with local coloring c, we associate with it a graph G with an edge-coloring c:468

all vertices of G are considered as vertices of G (and some are going to be added);469

with each edge e of G of endpoints v and u such
that c(e, v) = c(e, u), we associate one edge f in G
with the same endpoints as e and c(f) = c(e, v);

v

u

v

u

e 7→ f

470

with each edge e of G of endpoints v and u such that
c(e, v) ̸= c(e, u) and e is in a cycle, we associate two
edges f1 and f2 and a new vertex w, the endpoints
of f1 being v and w, and the endpoints of f2 being
w and u, with c(f1) = c(e, v) and c(f2) = c(e, u);

v

u

v

u

we 7→
f1

f2

471

with each edge e of G of endpoints v and u such
that c(e, v) ̸= c(e, u) and e is not in a cycle (i.e. e
is a bridge), we associate one edge f in G with the
same endpoints as e and an arbitrary color c(f).

v

u

v

u

e 7→ f

472

An example of this encoding is on Figure 6. The key properties of this encoding are that:473

alternating cycles in the obtained graph G correspond to those of G;474

a vertex of G is splitting in G if and only if the corresponding one is splitting in G;475

no added vertex is splitting in G.476

Using these properties, one easily deduces Theorem 16 for a graph G with a local coloring c477

from Theorem 17 applied to G and c.478
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7→

Figure 6 Example of encoding of local coloring as edge-coloring, where filled vertices are splitting
ones and square vertices represent added ones

▶ Remark 18. The encoding (_) is not stable by sub-graph, e.g. after removing the leftmost479

splitting (filled) vertex in the graph on Figure 6, the unique solid-dashed edge should not be480

encoded with a vertex in its middle anymore, because it is no longer in a cycle. An encoding481

stable by sub-graph seems hard to come by. In particular, an idea that cannot work is adding482

a same “gadget” graph in the middle of each edge (or of each “bicolored” edge) so as to483

duplicate each edge and color them correspondingly – whether this gadget is simply a single484

vertex or a more complex graph. Indeed, the gadget to add must not have any cusp-free cycle485

so as to be able to apply Theorem 17, nor should it have any splitting vertex as one wants to486

find a splitting vertex in the original graph. Such a graph cannot exist by Theorem 17 itself!487

6.2 Variants of Yeo’s Theorem488

It is known that Yeo’s theorem is equivalent to various other graph-theoretical results. In489

particular, Szeider [39] exhibited four such alternative statements. One of them is Kotzig’s490

theorem, proved equivalent to the sequentialization of unit-free multiplicative proof nets with491

mix [33]. We will also consider the generalization of Yeo’s theorem to H-coloring from [13].492

In [39] are given non-trivial encodings of graphs into graphs such that applying one493

theorem on an encoding allows to prove another theorem on the initial graph. We show here494

that Theorem 8 provides a natural unifying principle subsuming all these results (Theorems 17,495

19–22, and 25). Indeed, we prove each of these results by applying Theorem 8 to a well-chosen496

local coloring of the graph with no modification of its structure (vertices and edges), giving497

somehow “encoding-less” proofs. Besides, this implies that our proof of Theorem 8 via cusp498

minimization is also a proof of each of these results, just by adapting the definition of a cusp.499

A perfect matching (or 1-factor) of an undirected total graph G is a set of edges F500

such that every vertex has a unique edge in F incident to it. It is well known that a perfect501

matching F in a graph G is unique if and only if G contains no F -alternating cycle, which502

is a cycle whose edges are alternatively in and out of F , including the last and first ones (it is503

e.g. a simple variant of [4, Theorem 1] which considers F -alternating open paths). A bridge504

is an edge whose removal increases the number of connected components of the graph.505

▶ Theorem 19 (Kotzig [26]). If a graph G has a unique perfect matching F , then G has a506

bridge which belongs to F .507

Proof. It suffices to define an edge-coloring c of G into {0, 1} by c(e) = 1 iff e ∈ F . Then508

F -alternating cycles are exactly cusp-free cycles, so by Theorem 16 (here even Theorem 17509

would suffice) there is a splitting vertex v. The unique edge of F incident to v is a bridge. ◀510

▶ Theorem 20 ([36]). Take a graph G and a function ϕ from its vertices to its edges such511

that ϕ(v) is incident to v for all vertex v. If G has no cycle ω satisfying ϕ(v) ∈ ω for every512

v ∈ ω, then there exists a vertex u such that ϕ(u) is a bridge.513

Proof. Set a local coloring into {0, 1} by c(e, v) = 1 iff e = ϕ(v). With this local coloring, G514

has no cusp-free cycle, so Theorem 16 gives a splitting vertex v: ϕ(v) is a bridge. ◀515
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v

u w x

yϕ(u) e

f ϕ(w) = ϕ(x)

ϕ(v) = ϕ(y)

Figure 7 No edge-coloring for Theorem 20

v

u

w

e

f

g

Figure 8 No edge-coloring for Theorem 22

Note that an edge-coloring c cannot prove Theorem 20 without changing the structure of516

the graph: consider the graph drawn on Figure 7. For the cycle ω = (u, f, w, e, v, ϕ(u), u) to517

have exactly cusps corresponding to vertices z such that ϕ(z) /∈ ω, we need c(f) = c(e) (at518

w), c(e) = c(ϕ(u)) (at v) and c(ϕ(u)) ̸= c(f) (at u), absurd.519

▶ Theorem 21 ([20]). Any 2-edge-colored graph has a splitting vertex or an alternating cycle.520

Proof. This is just the particular case of Theorem 17 restricted to two colors. ◀521

The next theorem considers undirected paths in directed graphs. A directed graph522

is the same as a graph defined in this paper, except the incidence function ψ yields an523

ordered pair (v, u) given a directed edge a: v is the source of a, while u is its target. An524

undirected path is a path in the underlying graph where one forgets the orientation of the525

edges. (See [2] for more details.) In a directed graph, a vertex v of a cycle ω is a turning526

vertex of ω if all directed edges incident to v in ω are either all of source v or all of target v.527

▶ Theorem 22 (Shoesmith and Smiley [38]). If a non-empty set S of vertices of a directed528

graph G contains a turning vertex of each undirected cycle of G, then S contains a vertex529

which is a turning vertex of every undirected cycle it belongs to.530

Proof. Forget the orientation of the graph, but let c(e, v) = 0 if v ∈ S is the source of e,531

c(e, v) = 1 if v ∈ S is the target of e and c(e, v) = e /∈ {0; 1} otherwise. Cycles with no turning532

vertex in S are exactly cusp-free cycles, so Theorem 8 with P := {(v, α) | v ∈ S, α ∈ {0; 1}}533

yields a splitting vertex v ∈ S, which is a turning vertex of every cycle it belongs to. ◀534

We need the parametrized version of our result to deal in a simple way with the parameter535

S. Here again, an edge-coloring c is not enough for proving Theorem 22 without changing the536

structure of the graph: look at Figure 8 with all vertices in S. To have the equivalence between537

cycles without turning vertex and cusp-free cycles, one needs c(f) = c(g) ̸= c(e) = c(f).538

▶ Remark 23. Shoesmith and Smiley’s stated and proved Theorem 22 to handle a particular539

kind of proofs represented as graphs [37], sharing striking similarities with proof nets of540

multiplicative linear logic (notably, forbidding some classes of cycles).1 Moreover, Theorem 22541

can be used directly to obtain a splitting ` in a proof net by instantiating S as the set of all542

`-vertices. Furthermore, Shoesmith and Smiley’s proof of this theorem is quite similar to our543

proof by cusp minimization: the key idea of both proofs is to look at cycles with a minimal544

number of cusps (or turning vertices). Still, there are important differences: we construct an545

explicit order relation on vertex-color pairs, while their proof builds an infinite path to reach546

a contradiction; besides, the association of colors with vertices in our parameter makes our547

result more modular. This is particularly relevant for proof nets: Theorem 22 seems limited548

to giving a splitting `, without the unifying character of Theorem 8 seen in Section 5.549

1 We were not aware of this work during the research leading to the present paper: it only came to our
attention via Szeider’s equivalence results [39]. As far as we know, 46 years after the publication of [37]
and 37 years after the publication of [14], the first line of work has been ignored by the linear logic
community: it would certainly be of interest to investigate further connexions with proof nets.
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Theorem 16 implies another generalization of Yeo’s theorem [13]. An H-coloring is an550

edge-coloring with colors the vertices of a graph H. An H-cycle is a cycle where the colors551

of consecutive edges (including the last and first ones) are linked by an edge in H. When552

H is a complete graph, we recover the standard edge-coloring and H-cycles correspond to553

alternating cycles. A complete multipartite graph R has vertices S1 ⊎ . . . ⊎ Sk (disjoint554

union) where each Si is an independent set of vertices (no edge in R between vertices of Si)555

and if v ∈ Si and u ∈ Sj (with i ̸= j) then there is exactly one edge between them in R.556

▶ Definition 24. Given a graph G with an H-coloring c, and v a vertex of G, Gv is the557

graph with vertices the edges of G incident to v, and one edge between e and f if and only if558

their colors c(e) and c(f) are linked by an edge in H.559

▶ Theorem 25 ([13, Theorem 2]). Take H a graph and G a non-empty H-colored graph.560

Assume G has no H-cycle and that, for every vertex v of G, Gv is a complete multipartite561

graph. Then there exists a vertex v of G such that every connected component D of G− v562

satisfies that the set of edges of G between v and vertices of D is an independent set in Gv.563

Proof. Define a local coloring c by c(e, v) is the independent set in Gv to which e belongs. For564

G has no H-cycle, it has no cusp-free cycle for c, and the result follows by Theorem 16. ◀565

As far as we know, this theorem was not known to be equivalent to Yeo’s theorem before.566

7 Conclusion567

We gave a new simple proof of sequentialization, as a corollary of a generalization of Yeo’s568

theorem (Theorem 8), by defining an appropriate coloring. This new theorem is very modular:569

it can give a splitting terminal vertex, a splitting `-vertex, or a general splitting vertex. This570

generalization has a simple proof, that can be reformulated as a proof of sequentialization571

just by defining what is a cusp in proof structures. It also allows to deduce theorems known572

to be equivalent (Theorems 17, 19–22, and 25), again just by defining a coloring. Thus, our573

simple proof can also be adapted as one of any of these results by defining what is a cusp.574

Focusing on proof nets, this approach can be extended to richer systems than cut-free575

MLL. As usual, dealing with cuts is easy once we know how to deal with (⊗) rules. Dealing576

with multiplicative units is also straightforward, as long as we allow for mix-rules and forget577

about DR-connectedness [11]: those just amount to the introduction of premise-free vertices,578

without any particular treatment. Our approach is also successful without the mix-rules, in579

a framework with a jump edge for each ⊥-vertex (linking it with another vertex) [18, 24, 23].580

One should only take care that cusps are exactly made by the non-jump premises of `-vertices;581

this can be done e.g. by giving a new color to each jump edge.582

Similarly, sequentialization in presence of exponentials – with structural rules (weakening,583

contraction, dereliction for the ? modality) and promotion – is also easy to deduce from584

the multiplicative case: contraction is treated as a `-vertex, and promotion boxes allow to585

sequentialize inductively. Again, this works both with the mix-rules or with jump edges [18].586

Dealing with additive connectives in the spirit of the unit-free multiplicative-additive587

proof nets from Hughes and van Glabbeek [25] requires more work, but our approach can be588

adapted, yielding a proof of sequentialization in a much more involved context. The main589

price to pay is establishing a further generalization of Theorem 8 allowing some cusp-free590

cycles – whose proof also reposes on the cusp minimization lemma. The argumentation for591

the additives then follows the same idea as the one for MLL: a non-splitting vertex cannot be592

maximal for ◁. As in MLL, the approach is robust enough to also enable sequentialization593
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through terminal vertices, as opposed to what is done in [25]. Nevertheless, the technical594

details are a bit more involved, making this result out of scope for the present paper.595

More details about the results presented in this paper and in particular regarding the596

extension to the additive connectives can be found in [9, Part II].597
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