
E�ient sampling from perpetuities using oupling from the pastOmar FawziSeptember 3, 20071 IntrodutionIn numerous �elds, one needs to get samples of a set of objets aording to a given distribution. Sometimes,the struture of this set is ompliated so one annot enumerate the objets e�iently. In these ases, an ergodiMarkov hain is devised with the wanted distribution as a stationary distribution, the state spae of these hainsis usually huge but it is easy to ompute transitions. Monte Carlo Markov Chain simulation onsists on beginningin an arbitrary state and running the transition a su�iently long time so that we get lose enough to the limitdistribution, in this way we get an approximate sampling tehnique.Propp and Wilson in [12℄ devise a way to get a perfet sample from the stationary distribution of a generi�nite ergodi Markov hain in expeted �nite time, this method is known as oupling from the past (CFTP).In this report, we will be using this method to get exat samples from partiular distributions given as a solutionof a stohasti equation. We will begin with the distribution of a random variable X for whih
X

L
= (1 +X)U (1)where U is a uniform independent of X . This distribution is known as the Dikman distribution and it appears forexample in analyti number theory and in the analysis of the Quikselet algorithm ([6℄ and [7℄). For example, in[7℄, it is shown that the Dikman funtion is the limit distribution of Cn,m−n

n provided m = o(n) where Cn,m is the(random) number of omparisons done by Hoare's seletion algorithm to �nd the m-th smallest element in a list of
n elements.We will try to develop a general way for getting samples from distributions de�ned by a stohasti equationusing oupling from the past. Tehnially speaking, we will begin with equations X L

= Uα(1 +X) whih are alledVervaat perpetuities, and then more general perpetuities X L
= AX +B, with some onstraints on random variables

A and B. Devroye in [3℄ developed methods for sampling from Vervaat perpetuities using rejetion sampling, butthese methods are quite ompliated so our objetive is to develop easier tehniques that are more e�ient andeasier to generalize to di�erent �xed-point equations. Also Kendall and Thönnes in [9℄ and Fill and Huber in [4℄have developed methods using oupling from the past but we haven't seen a published paper disussing the problemin detail.The two main problems we have to takle to ahieve our goal is the fat that the state spaes of the hains weare onsidering are unbounded and the fat that we have to �nd appropriate oalesing ouplings.2 Preliminaries2.1 NotationsThe set of integers will be denoted by Z, and the set of reals R. For the set of nonnegative integers we write Z+and R+ for the set of nonnegative reals. The indiator funtion of a set A, that is the funtion whose value is 1 on
A and 0 everywhere else will be denote IA.We will be writing P{A} for the probability of an event A, and E{X} for the expeted value of a random variable
X . The law of a random variable X will be denoted by L(X). Also, when we have a probability measure P havinga distribution funtion F , and a random variable X having distribution P , we will write X ∼ P or X ∼ F . If tworandom variables X and Y follow the same law, we write X L

= Y .Here are some of the standard probability distributions we will be using:1



• The Geometri distribution with parameter 0 < p < 1, is a distribution on Z+ de�ned by P{X = n} = (1−p)pnfor n ≥ 0.
• The Poisson distribution is the distribution on Z+ de�ned by P{X = n} = e−1

n! for n ≥ 0.
• The Uniform distribution is the distribution on [0, 1] having distribution funtion x 7→ xI[0,1], and density
x 7→ 1I[0,1]

• The Exponential distribution is the distribution on R+ with distribution funtion x 7→ IR+
(1 − e−x), anddensity funtion x 7→ IR+

e−x.And about the onvergene of random variables, we say that Xn onverges to X in distribution when thesequene of distribution funtions Fn of Xn onverges to the distribution funtion F of X for every point. We saythat Xn onverges to X almost surely when Xn(ω) onverges to X(ω) for every ω ∈ A where A is an event withprobability 1.2.2 SamplingIn our ontext, we suppose we have aess to a random number generator that produes independent uniformrandom variables, and we also suppose we do the alulations with in�nite preision. Provided we have this kindof random number generator, the samples that our proedure will output will have the orret distribution.Of ourse this is not true in pratie. The random number generator are not atually ideally random, and weannot alulate with in�nite preision, but our fous is to build random variables with ompliated distributionsfrom basi building bloks, we have to suppose the random number generators are perfet if our objetive is exatsampling. Construting e�ient pseudo-random number generators is another subjet.2.3 Markov hainsWe will be using Markov hains, so let us have a quik review. A Markov hain is a sequene Xn of random variablestaking values in a set of states S, and suh that Xn+1 depends only on Xn and not on X0, . . . Xn−1. This meansthat
P{Xn+1 = x|X1 = x1, . . . Xn = xn} = P{Xn+1 = x|Xn = xn}.A Markov hain is de�ned by giving an initial distribution on S (the distribution of X0) and a transition matrix

P , whose elements pij represent the probability of going from state i to state j. We will be writing p
(n)
ij theprobability of going from state i to state j in n steps.We will also be representing the transition funtion as a random mapping, for x ∈ S, φ(x) is the random nextstate. And when we need to highlight the randomness used in the mapping, we will represent the next state by adeterministi funtion x 7→ φ(x, U) taking as an argument a random variable (that will often be a uniform randomvariable). Here are some basi de�nitions about Markov hainsDefinition 1. • An irreduible hain is a hain suh that for all pairs of states i and j, starting a walk from

i, there is a positive probability of reahing j i.e., there exists n suh that P{Xn = j|X0 = i} > 0.
• An aperiodi hain is a hain suh that for all states i, j gcd{n : P{Xn = j|X0 = i} > 0} = 1.
• An ergodi hain is one that is both irreduible and aperiodi.
• A stationary distribution π for a Markov hain is a distribution that is invariant after a move of the hain. If
X0 ∼ π then X1 ∼ π.

• The mean reurrene time of state i is E{Ti} where Ti is the random variable Ti = min{n : Xn = i|X0 = i}.Ergodi hains are important beause they have the following property:Property 1. An ergodi hain has a unique stationary distribution π, and for any initial distribution, Xnonverges in distribution to π. This means that for every state i, P{Xn = i} −−−−→
n→∞

π(i). Moreover, the meanreurrene time E{Ti} = 1
π(i) . 2



Markov hains are very useful in sampling, in fat, when we need to get a random ombinatorial objet, it isoften easy to onstrut a Markov hain that makes moves between suh objets. For example, onsider we wantto generate a random mathing of a graph. We see that it is not easy to have an enumeration of the mathingsfrom whih we ould sample, as if they were only numbers. But it turns out it is easy to build a Markov hainwhose state spae is the spae of mathings and whose stationary distribution is uniform on all the mathings ofthis graph. The transition from a mathing M is basially to hoose an edge e of the graph randomly, to remove itif it's already in M , to add it to our mathing M if we an, or else to stay with M . Now that we have our Markovhain, we an get approximate samples by running the Markov hain long enough, and one an alulate this timedepending on the desired approximation by studying the mixing time of this hain.This tehnique is alled Monte Carlo Markov Chain and it has a lot of appliations, not only in omputersiene but also in statistial physis. The tehnique was originally oneived to approximate integrals (viewed asexpetations), by using the law of large numbers. An important example is the Gibbs sampler whih is heavilyused in probabilisti inferene. Sampling is also related to approximate ounting, if we an sample the mathingsin a graph, then we an approximate the number of mathings in this graph. Sampling is also very important instatistial physis simulations.2.4 Rejetion samplingAnother sampling method we will be using is based on the density of our distribution. Suppose we have a distributionwith density funtion f . Then it is known that the distribution of X has density f if (X,Y ) is uniform on the surfae
Sf = {(x, y) ∈ R

2|0 ≤ y ≤ f(x)}. Reiproally, if X has density f , and Y = Uf(X) where U is an independentuniform random variable, then (X,Y ) is uniform on the same surfae. Suppose now we have a ompliated densityfuntion f that we want to sample from. It is not easy to get a uniform random variable on Sf . Now onsideranother funtion g that veri�es f(x) ≤ g(x) and is equal to g(x) = c×h(x) where c is a onstant and h is an "easy"density funtion, i.e. a density funtion from whih we an sample (for example an exponential or a uniform). Notethat it is easy to get a sample uniform on the surfae Sg de�ned by g = c× h, in fat just get X from the density
h and Y = Uc× h(X), U being a uniform on [0, 1].We get two possible ases, either (X,Y ) ∈ Sf and we output (X,Y ) or (X,Y ) /∈ Sf and we rejet the point
(X,Y ). Using this proedure, alled rejetion sampling, we get a uniform point on Sf , and by taking the x-oordinatewe get a sample with distribution having density f .

f(x)

g(x)

Figure 1: Rejetion sampling2.5 Coupling from the pastCoupling from the past (CFTP) is a method for getting an exat sample from the stationary distribution of aMarkov hain. Consider starting hains at time −T from all the states of the hain, and whenever two of themend up in the same state, they stay together. Suppose that when we reah time 0, all the hains have reahed thesame state s. This means that if we use the same randomness, and we start from any state from time −t for any
−t ≤ −T , then we will end up in that same state s, simply beause at time −T we have to enounter one of thestates of the Markov hain, and then we will follow the same route. The idea of CFTP is to start from an arbitrarytime in the past −t and run all the hains until time 0, if we have oalesene, then the single state reahed at time
0 by all the hains is our sample. Else, we go bak say by one starting at −t− 1 and again hek for oalesene attime 0. Note that it is very important to do the same transitions as the ones we did in the previous unsuessfulstep, that is keep the randomness used at eah time. 3



Now let us make things more formal. Suppose we have a �nite set of states S, and random maps ft desribingthe transitions at time t. Instead of going forward as in MCMC for example, we will at eah step go bakwards onestep more, and always look at the state at time 0. We denote by F 0
−t the mapping orresponding to the transitionfrom time −t to time 0, that is

F 0
−t = f−1 ◦ · · · ◦ f−t.For example F 0

−1(x) is a random state we get at step 0 when we start with state x at time −1. Note that alulating
F 0
−t(x) for a ertain x is harder than simply going forwards, in fat we annot ompute F 0

−t(x) from F 0
−t+1(x).Instead we have to keep F 0

−t+1(y), for all states y, so that we alulate ft(x), and then apply F 0
−t+1 to ft(x). Butwe'll get the reward later. To get a sample from the stationary distribution of our Markov hain, we an alulatefor any state x, F 0

−∞(x) whih will be well distributed. The idea of ouping from the past is that we do not needto go to time −∞ to get this value. In fat suppose that for some T , the mapping F 0
−T is a onstant mapping.This means that if we start from time −T in any state, we will end up in a single same state s. But then onsider

F 0
−T−1(x) = F 0

−T (f−T−1(x)) = s, and thus we get F 0
−∞(x) = s.So it is now lear how we will proeed, ompute the mapping F 0

−t for inreasing values of t until it is onstantand then output this onstant. The question now is how we an be sure our mapping will ever be onstant (we willbe alling this event oalesene). This depends on the oupling used. Note that we did not mention anything aboutthe relations between ft(x) and ft(y), we know that both of them have a distribution desribed by the Markovhain but how are they related. Are they independent or dependent ? Atually this does not matter, we an ouplethese two random variables as we want. Let us show that in the ase of independent hoies we have oalesenewith probability one.In fat beause the hain is ergodi, for all states x, y there exists an Mx,y suh that n ≥ Mx,y, p
(n)
xy > 0. Let

M = maxMx,y, so the probability that F 0
−M is onstant is greater than ∏s∈S p

(M)
sx and hene positive. The sameholds for F−M

−2M , and F−kM
−(k+1)M . Now beause eah of these mappings are independent, then the probability thatthere does not exist a T suh that F 0

−T is onstant is 0.Let us illustrate CFTP with a simple example. The standard example given to illustrate this method is arandom walk on n points. Consider we have n states numbered from 1 to n. When we are at state k we move to
max(k − 1, 1) with probability 1

2 or min(k + 1, n) with probability 1
2 . To de�ne our update, the most natural idea,is to �ip a oin that will be the same for all states i.e., either everybody goes up, or everybody goes down.

φ(k, U) =

{

max(k − 1, 1) if U ≤ 1
2

min(k + 1, n) if U > 1
2It is lear that the uniform distribution on the states is the stationary distribution of this Markov hain. Fig. 2shows a sample run of the proedure on this Markov hain.Note that the algorithm as stated needs a lot of memory. In fat we need to store funtions over the set of states,and often the state spae is very large, and that is why we use MCMC methods to get samples. A possible solutionis to ensure that we have a monotone oupling. This means that if x ≤ y then ft(x) ≤ ft(y) with probability 1.In our example, the oupling was monotone, graphially this means two arrows never ross eah other. In this aseit is possible to keep trak only of the maximum state smax and the minimum state smin, beause we know that if

F 0
−t(smin) = F 0

−t(smax), then F 0
−t is a onstant funtion.Monotoniity is all the more important for us beause our state spae will not only be big, it will be in�nite, infat our state spae is R+.For more details on CFTP, see the original paper [12℄ and Wilson's web site on perfet sampling [15℄.2.6 Stohasti equationsWe are interested in a type of distributions that are desribed by an equation. For example, we know that if X hasdistribution µ, and if A and B are independent of X with some �xed distribution then AX + B has distribution

µ. We assume that A and B are positive random variables and in all the ase we will onsider X will be positive.Whih onditions on A and B ensure the existene and uniqueness of the solution to equation X
L
= AX + B ?This kind of problem is solved using �xed point arguments. As in [13℄ we introdue a metri (Mallow metri) ondistribution funtions that have �nite seond moment E{X2} <∞:

d2(F,G) = inf
X∼F,Y∼G

||X − Y ||2 = inf
X∼F,Y∼G

E((X − Y )2)1/24
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Step (6)Figure 2: A run of CFTP proedure, the output is 3.This de�nes a metri spae M2 whih turns out to be a omplete spae. To show the existene and uniquenessof a solution of a stohasti equation we an show that it is a �xed point of a funtion that is a ontration. Forthe ase of equation 1 we show that a T : F 7→ L
(

(1 + X)U
), with X ∼ F and U an independent uniform, is aontration for d2. To show this we onsider variable X and Y with distributions F and G, we then onstrut therandom variables (1+X)U and (1+Y )U with the same U . These random variables respetively have distributions

T (F ) and T (G).
d2(T (F ), T (G)) ≤ ||(X − Y )U ||2 =

√

1

3
||(X − Y )||2Then by taking the in�mum on all possible ouplings of X and Y , we get

d2(T (F ), T (G)) ≤ 1√
3
d2(F,G)Then we onsider the following sequene Xn+1 = (1+Xn)Un+1, we have L(Xn+1) = T (L(Xn)), the fat that Tis a ontration shows that L(Xn) is a Cauhy sequene in M2 whih is a omplete spae so L(Xn) has a limit andit is a �xed point of T . So the distribution we are studying is the limit distribution of the sequene Xn. For moregeneral theorems on the solutions of stohasti equations, see [13℄.These distributions that verify stohasti equations often arise in the study of the limit laws, for example in theQuikselet algorithm in [6℄, [7℄ and [1℄ but also as limit distributions in other strutures as in [11℄. In [2℄, Devroyeand Neininger give properties and methods for approximating the densities of suh distributions.2.7 Problems to faeThe straightforward appliation of oupling from the past for our sequene Xn+1 = Un+1(Xn+1) would be to starta hain from every possible x ∈ R+ and for the oupling, use the same Un+1 for every one of these hains. We see5



there are two main problems : we do not have a maximal state and this oupling never gives oalesene, simplybeause the funtion x 7→ (1 + x)u is injetive.The �rst problem is really intrinsi to the CFTP method. In fat applying CFTP requires that the onvergenespeed of the Markov hain be "the same" for all the starting points, and if we onsider our unbounded spae, hainsbeginning at 1, 000 will take longer to approah equilibrium than hains beginning at 1, we say that the hain isnot uniformly ergodi. For a preise desription of this fat, see [5℄. So it is impossible to get omplete oaleseneof all the hains. Meanwhile one an use the idea of dominated CFTP, introdued by Kendall in [8℄. The idea is touse a "simple" Markov hain D oupled to our Markov hain X suh that D dominates X . Here simple means thatthe Markov hain has a stationary distribution that we an sample from, and also that we an simulate the hainbakwards. The dominating hain basially says that a hain starting at time −∞ that is under D will always stayunder D, and in this way we only have to hek the oalesene of hains beginning at a state under the dominatinghain.The seond problem an be solved by using more appropriate ouplings. For this we have to write the updatefuntions in a di�erent way, or we use ideas like layered multishift oupling as in [16℄.First we study the Dikman distribution de�ned by equation 1, then we try to generalize the method. Thenombining ideas from this method and [9℄, we present an even more general method. Then we onsider di�erentases where the random variable B is unbounded.3 The proedure3.1 IntrodutionWe want to sample from the limit distribution of the sequene of random variables de�ned by Xn+1 = (1+Xn)Un+1.Instead of using the natural update funtion (x, u) 7→ u(1+x), we will use a di�erent oupling, we de�ne the followingmapping
f : (x, u, v) 7→ ⌊u(x+ 1)⌋ +

{

v if ⌊u(x+ 1)⌋ ≤ ⌊x⌋
v(x− ⌊x⌋) elseNote that this is just another way of oupling the hains for every x, in fat we have

∀x, f(x, U, V )
L
= (1 + x)Wif U and V are independent uniform random variables andW is a uniform random variable. The hains with update

f will be alled Y . The reason we hoose suh an update will appear later, it is mainly to obtain oalesene.3.2 DominationAnd now we say
f(x, u, v) ≤ ⌊u(⌊x⌋ + 2)⌋ + vNow let us all
g : (n, u) 7→ ⌊u(n+ 2)⌋So we an de�ne an update that dominates f as we have f(x, u, v) ≤ g(⌊x⌋, u) + v. The idea is to builda dominating hain Dn, having update Dn+1 = g(⌊Dn⌋, Un+1) + Vn+1 so that we do not have to are abouthains that are above D−n. We will be denoting the main hains Y having update Yn+1 = f(Yn, Un, Vn), and

Zn+1 = g(Zn, Un) the integer part of the dominating hain Dn+1. Note now that g has a very nie property, in fatif Z is a Poisson random variable, Z veri�es
Z

L
= g(Z,U)where U is a uniform independent of Z.In fat if Z is a Poisson random variable with parameter 1,6



P{g(Z,U) = n} =

∞
∑

k=n−1

P{Z = k}P{n ≤ u(k + 2) < n+ 1}

=
1

e

∞
∑

k=n−1

1

k!

1

k + 2

=
1

e

∞
∑

k=n−1

1

(k + 1)!
− 1

(k + 2)!

= P{Z = n}The objetive now is to onstrut a stationary hain Z−n respeting the update that we an extend arbitrarilybak into the past, so that if we do not get oalesene we go bak one step further. Generating Z0 is easy, beauseit is a Poisson random variable, then we must onstrut Z−1 so that when we look at the transition Z−1, Z0 itfollows the wanted transition g(., U).3.3 Time-reversal of the dominating hainNow that we have Z0 we want to alulate Z−1, and U0 suh that
• Z−1 is a Poisson random variable
• U0 knowing Z−1 is uniform

P{Z−1 = n|Z0 = k} =
P{Z0 = k|Z−1 = n}P{Z−1 = n}

P{Z0 = k}

P{Z−1 = n|Z0 = k} = In≥k−1
1

n+ 2

k!

n!
(2)This equation de�nes the time reversal of the hain Z. We will be using this distribution to simulate Z bakwards.It is useful to see that

P{Z−1 = n|Z0 = k} = In≥k−1(n+ 1)
k!

(n+ 2)!
= In≥k−1(k!)

( 1

(n+ 1)!
− 1

(n+ 2)!

)Now we an see that by taking
U0 =

Z0 + U∗

Z−1 + 2with U∗ an independent uniform variable, U0 has the desired distribution.3.3.1 CoaleseneNote that if the dominating proess reahes D−n < 1 at step −n, then we are assured that all hains using update
f beginning at time −m before −n (m > n) will oalese at time −n. This is beause the update f is built insuh a way that its image has only one point in intervals [k, k + 1), so if D−n < 1, the paths have no hoie ! Sothe algorithm will onsist on waiting until D−n < 1 that is Z−n = 0, and then we just simulate the hain Y n thatbegins at a uniform point in [0, 1] that we alled V−n, and that represents the range of the update funtion whenapplied to points between 0 and D−n−1.
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3.3.2 The algorithmLet us sum up the algorithm :
• Generate Z0 as a Poisson random variable
• Update Z bakwards until Z−T = 0, we have for all n ≤ T , Z−n+1 = ⌊U−n+1(Z−n + 2)⌋.
• Now we say Y T−T = V−T , where V−T is a uniform, and update the proess Y T using f , using the sameuniforms U−n as the ones used for updating Z, and new independent uniform variables V−n
• Return Y0An implementation in C of this algorithm an be found in the appendix.Theorem 1. The algorithm terminates with probability one, with an expeted running number of steps to the pastequal to 1 +

∫ 1

0
et−1
t dt < 2.32. The Y0 returned by the algorithm has the wanted distribution.Proof. For the analysis of the running time, see the next setion.We onstrut the sequene of random variables de�ned by : X0 is a uniform, and Xn+1 is de�ned by Xn+1 =

Wn+1(Xn+1) withWn being independent uniforms. Let us de�ne Y n, by Y n−n is a uniform and is updated forwardsusing f with the same Uk's as for the proess Z and with independent Vk's (that are the same for all the Y n's).Then we have Y n0 L
= Xn for all n, so Y n0 onverges in distribution to the Dikman distribution beause Xn does so.Now, onsider T suh that Z−T = 0, and onsider Y n−T for n ≥ T , i.e. hains that begin before −T . Beausethe proess Z + V dominates Y n, as we mentioned we know we have oalesene at time −T , so we have Y n−T =

Y T−T = V−T for all n ≥ T . And hene Y n0 = Y T0 beause we use the same randomness. And beause T < ∞with probability one, the sequene of random variables Y n0 onverges almost surely to Y T0 . But we know that
Y n0 onverges in distribution to the Dikman distribution, as a onsequene the random variable Y T0 has Dikmandistribution.3.3.3 Analysis of running timeWe take as a measure of the running time the number of steps to the past needed. In this way the running time isthe time taken by the time reversal of the dominating hain to reah 0. The transition probabilities for this hainare given in equation 2. So let us alulate the expeted time Tn0 to go from state n to state 0, for this, we beginby alulating E{Tk(k−1)}, the expeted time to go from state k to k − 1.If we write

Tk(k−1) =

Nup
∑

i=1

T≥k
kk,(i) + 1where Nup is the number of exursions made from state k before going to state k − 1, and T≥k

kk is the length ofone suh exursion, and beause Nup and T≥k
kk,(i) are independent we get

E{Tk(k−1)} = 1 + E{Nup}E{T≥k
kk }Remember that when we are at state k with k ≥ 1, we go to state k− 1 with probability k

k+1 as we an see fromequation 2. So
E{Nup + 1} =

k + 1

kAs a onsequene
E{Nup} =

1

kNow we onsider E{T≥k
kk }. To evaluate this quantity, we onsider the hain from whih we remove the states

k− 1 and below. The quantity we are looking for is the mean reurrene time for state k in this hain. So the onlything we have to do is get the stationary distribution of this Markov hain. Note that for state k, we remove the8
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k+1 . If

(pi)i≥k is the stationary probability distribution then we show by indution that pi+1 = 1
i+1pi for all i ≥ k.In fat

pk = (k + 1) × 1

k + 2
pk +

k + 1

k + 2
pk+1whih means

pk+1 =
1

k + 1
pk.And for i ≥ k

pi = (k + 1) × 1

k + 2

k!

i!
pk +

i
∑

j=k+1

1

j + 2

j!

i!
pj +

i+ 1

i+ 2
pi+1

=
k + 1

i+ 2

k!

i!
i× · · · × (k + 1)pi +

i
∑

j=k+1

1

i+ 2

j!

i!
i× · · · × (j + 1)pi +

i+ 1

i+ 2
pi+1

=
k + 1

i+ 2
pi +

i
∑

j=k+1

1

i+ 2
pi +

i+ 1

i+ 2
pi+1

pi+1 =
1

i+ 1
pi.Remember what we wanted from this distribution is the mean reurrene time for state k, that is 1

pk
, we analulate this by saying that the sum of pi's is 1, that is

∞
∑

i=k

1

(k + 1) × · · · × i
pk = 1.

9



So
1

pk
= k!

∞
∑

i=k

1

i!

= k!

∫ 1

0

et
(1 − t)k−1

(k − 1)!
dt

= k

∫ 1

0

et(1 − t)k−1dtusing Taylor's formula. So going bak to E{Tk(k−1)}, we get
E{Tk(k−1)} = 1 +

1

k

1

pk

= 1 +

∫ 1

0

et(1 − t)k−1dtand as a onsequene
E{Tn0} =

n
∑

k=1

E{Tk(k−1)}

=

n
∑

k=1

1 +

∫ 1

0

et(1 − t)k−1dt

= n+

∫ 1

0

et
1 − (1 − t)n

t
dt.Finally we get the expeted running time

E{T } =

∞
∑

n=0

P{Z = n}E{Tn0}

=
1

e

∞
∑

n=0

1

n!

(

n+

∫ 1

0

et
1 − (1 − t)n

t
dt
)

= 1 +
1

e

∞
∑

n=1

∫ 1

0
et 1−(1−t)n

t dt

n!

= 1 +
1

e

∫ 1

0

et
∞
∑

n=1

1 − (1 − t)n

n!t
dt

= 1 +
1

e

∫ 1

0

et
1

t
(e− e1−t)dt

= 1 +

∫ 1

0

et − 1

t
dt

< 2.32.Note that we ould also take the number of "elementary" operations as a measure of the running time. In fatat eah step we sample from a distribution with in�nite tail, and to do this we use the inversion method : we take10



a uniform random variable U and get the minimal n suh that ∑n
i=1 pi < U , and thus we have a random time foreah step, and the expeted time is the expetation of the random variable, more preisely it is E{Z−1 − (k − 2)},whih does not exeed e− 1. In fat for k ≥ 1,

E{Z−1 − (k − 2)} =

∞
∑

j=0

P{Z−1 > j + k − 2}

=
∞
∑

j=0

k!
1

(j + k)!

≤ e− 1We also have to add to this a deterministi time 1 for applying the forward update.So by using Wald's lemma we an see that the expeted number of omputational operations performed is 1 fortime 0 and the expeted number of steps bak in the past times the expeted number of operations per step whihis less that 1 + e2 < 8.39. This quantity has atually no real meaning beause we did not preisely de�ne what anelementary operation was, but this was just to show that the random omputation times for eah step are not toolarge.Note also that the expeted memory used for keeping the uniforms is the expeted number of steps taken intothe past whih is less than 2.32 (this is only the memory for the "reusing randomness" part of CFTP, of ourse wehave to add the memory for urrent omputation).3.4 GeneralizationLet us now onsider the distribution that is a solution of
X

L
= Uα(1 +X)Note that, in general, we don't have a nie oalesing mapping separating the integer and the frational partlike f beause the distribution of Uα(1 + x) onditioned on n ≤ Uα(x + 1) < n + 1 depends on n and on x now.But it does not depend on x for n = 0, so we hoose an update fα that oaleses only on [0, 1)

fα(x, u, v) =

{

uα(1 + x) if uα(1 + x) ≥ 1
vα if uα(1 + x) < 1And we have, if U is a uniform and V,W are independent uniforms, then

fα(x, V,W )
L
= Uα(1 + x)3.4.1 Vervaat with α ≥ 1Let us start with α ≥ 1. We also de�ne the sequene Zn+1 = ⌊Un+1(Zn + 2)⌋. We still have that Zn + 1 dominatesa proess Yn that uses update fα. In fat if ⌊Yn⌋ ≤ Zn then ⌊Yn+1⌋ ≤ ⌊Un+1(⌊Yn⌋ + 2)⌋ ≤ Zn+1.The proedure is the same: we wait until Z−T = 0, and then we simulate a hain Y T starting with Y T−T ,a uniform to the power α, and having update fα. And by using the same arguments, we get that Y T0 has thewanted distribution. Beause we use the exat same dominating proess and the dominating proess determinesthe oalesene, we have the same expeted number of steps.3.4.2 Vervaat with α < 1The problem now is that we have to hange the dominating proess. The analog of the update g used for the proess

Z would be here
gα(n, u) = ⌊uα(n+ 2)⌋11



But now we don't have a simple distribution for a random variable Z that would verify Z L
= gα(Z,U). Whatwe do is �nd P{Z = k} as a funtion of P{Z = 0}, but alulating the normalization onstant is hard so we userejetion sampling tehniques to draw from suh a distribution.Let us begin with the alulation of the values of P{Z = k}. We an verify by alulation that the probabilitydistribution de�ned by

P{Z = k} =

∏k
i=1(i+ 1)β − iβ

(k!)β
P{Z = 0}with β = 1

α veri�es Z L
= gα(Z,U). We an determine the distribution with

P{Z = 0} =
1

∑∞
k=0

Q
k
i=1

(i+1)β−iβ
(k!)βbut this sum is hard to evaluate. To draw a sample from this distribution, we will bound this sum with aneasy sum. We will introdue pk =

Qk
i=1

(i+1)β−iβ
(k!)β , our objetive is to draw a sample from the distribution that isproportional to (pk).Using a Taylor inequality we get (i+ 1)β − iβ ≤ β(i+ 1)β−1, beause β > 1.
∏k
i=1(i+ 1)β − iβ

(k!)β
≤ βk

(k + 1)β

k!Now by introduing cβ = (β/ lnβ)β

ββ/ ln β , a bound of the sequene (k+1)β

βk+1 , we get
(k + 1)β ≤ cββ

k+1and hene
∏k
i=1(i+ 1)β − iβ

(k!)β
≤ cβ

(β2)k+1

k!

def
= qkAnd now this sum an be alulated,

∞
∑

k=0

qk = cββ
2eβ

2The idea, is to draw a uniform between 0 and cββ2eβ
2

= R and to rejet the sample if we get something biggerthan S =
∑

pk. Even though we don't know S, we have a inreasing sequene onverging to S, (
∑n

k=0 pk)n, andalso a dereasing sequene (
∑n

k=0 pk +
∑∞

k=n+1 qk)n that we an alulate and that onverges to S. So if oursample U < S, there will exist a �nite n for whih U <
∑n

k=0 pk, and if U > S there will be an n suh that
U >

∑n
k=0 pk +

∑∞
k=n+1 qk.After this, we apply the same idea of taking the time reversal of the hain with update gα, and we wait tillthe dominating proess reahes 1, i.e. Z reahes 0 to make forwards simulations, using update funtion fα. Thetransition probabilities for alulating Z bakwards are
P{Z−1 = n|Z0 = k} =

P{Z0 = k|Z−1 = n}P{Z−1 = n}
P{Z0 = k}

= In≥k−1

[

(k + 1

n+ 2

)β

−
( k

n+ 2

)β
]∏n

i=1(i+ 1)β − iβ
∏k
i=1(i+ 1)β − iβ

(k!)β

(n!)βNote here that determining the innovations U−n from Z−n and Z−n−1 is not as straightforward as in thease α = 1, so we just generate independent uniform variables and we take U−n to be the �rst one suh that
Z−n = ⌊Uα−n+1(Z−n−1 + 2)⌋.This generalization is not pratial at all, in fat even for α = 0.1, it takes more than a minute to get onesample, ompared to more than 50,000 samples for α = 1 for the same time. We now introdue another methodwhih solves more general ases and is signi�antly faster for small values of α.12



4 A general methodWe now present a general method for X L
= AX + B with 0 ≤ A ≤ 1 and with B positive and bounded B ≤ c. Weshow that this ase omes down to �nding a method for X L

= A(X+1). First onsider X L
= AX+ c, by introduing

Y = X − c we get Y = A(Y + c) and Z = Y/c we get Z = A(Z + 1). So we an just simulate Z and then take
X = cZ + c. But if we an get a dominating hain to sample from the solution of X L

= AX + c, then using theexat same domination we an sample from X
L
= AX +B.Now let us onsider X L

= A(X + 1), and the sequene Xn+1 = An+1(Xn + 1). Note that ⌊Xn+1⌋ an be either
⌊Xn⌋+ 1, ⌊Xn⌋ or less than ⌊Xn⌋. These three events will be what drives our dominating proess. Let us alulatethe probability of these events, for a �xed x, we have

P{⌊A(x+ 1)⌋ = ⌊x⌋ + 1} = P{A(x+ 1) ≥ ⌊x⌋ + 1} = P{A ≥ ⌊x⌋ + 1

x+ 1
}Reall the objetive is to obtain a dominating proess, so we want the dominating proess to go up with moreprobability. For this we an have a lower bound on the value of ⌊x⌋+1

x+1 , by supposing x ≥ κ for some positive integer
κ. This idea of separating the ases x ≥ κ and x ≤ κ is due to Kendall and Thönnes in [9℄.

x ≥ κ,
⌊x⌋ + 1

x+ 1
≥ 1 − 1

κ+ 1Now the event UP = {A ≥ 1 − 1
κ+1} has a probability greater than event ⌊A(x + 1)⌋ = ⌊x⌋ + 1, for x ≥ κ. Wealso de�ne the events EQ = {1 − 2

κ+1 ≤ A ≤ 1 − 1
κ+1}, and DOWN = {A ≤ 1 − 2

κ+1}.Now let us de�ne the following update for our dominating proess:
φ(n,A) =







n+ 1 if 1 − 1
κ+1 ≤ A ≤ 1

n if 1 − 2
κ+1 ≤ A ≤ 1 − 1

κ+1

max(κ, n− 1) if 0 ≤ A ≤ 1 − 2
κ+1So the sequene de�ned by Zn+1 = φ(Zn, An+1) is a andidate dominating proess for ⌊Xn⌋, and so, Dn = Zn+1would dominate the sequene Xn.Now Z has some nie properties:

• Simple random walk on Z+.
• If we hoose κ big enough suh that P{DOWN} > P{UP} then the hain has limit distribution κ +

Geom( P{UP}
P{DOWN} ). In fat P{Z = κ+ n} = (1 − P{UP}

P{DOWN} ) P{UP}
P{DOWN}

n.
• Z is time reversible, this means that P{Z−1 = n|Z0 = k} = P{Z0 = n|Z−1 = k}, so it is really easy to simulatebakwards.For Vervaat perpetuities, we an hek that taking κ = ⌊ 2

1−(1/2)α ⌋ works �ne.It remains to �nd a good way of oupling the hains so that oalesene an happen. In fat, if we apply thetrivial oupling of applying the same A for all hains, we will never get the hains to ouple. But note that it isimportant that the oupling we hoose be monotone, i.e. if x ≤ y then N(x) ≤ N(y) where N is our random updatefuntion.We use multishift oupling as desribed in [16℄. We will introdue a monotone oupling but the image of theset of all the states lying in an interval will be disrete. Let us �rst onsider a simple ase, we want to onstruta oupling for the transition φ : s 7→ s + Vs, where Vs is a uniform for every s. By generating a uniform V0 andonsidering the mapping φ : s 7→ ⌈s − V0⌉ + V0, it veri�es the wanted property that is for all s, φ(s) − s has auniform distribution. The idea is that we build a line grid with length 1, and the image of our mapping must lie inone of the points in Z + U0. So eah point s is mapped to the �rst point in this grid that is greater than s.Now let us ompliate things a little bit more and suppose V has a general distribution having a density funtion
f . For simpliity we suppose that f is unimodal, that is there is anm suh that f inreasing for x ≤ m and dereasingfor x ≥ m. To do this, we observe that : if (X,Y ) is a uniform point on the surfae Sf = {(x, y) ∈ R

2|0 ≤ y ≤ f(x)},and X1 and X2 is suh that f(X1) = f(X2) = Y , then hoosing a Z uniformly on [X1, X2] yields another point13



X1 X2X

Y = Uf(X)

Figure 4: Layered multishift oupling
(Z, Y ) that is also distributed uniformly on Sf . In this way, we get bak to the ase of V being a uniform. Here ishow to do it.

• Choose X having density f .
• Let Y = Uf(X) with U a uniform, so that (X,Y ) is uniform on Sf .
• Calulate X1 and X2, suh that f(X1) = f(X2) = Y , X1 < X2.
• The unit of the grid is now L = X2 −X1, the range of the mapping is LZ + (X −X1).
• Finally φ(s) = min{x ∈ LZ + (X −X1), x ≥ s}.Remember our update is φ : s 7→ A(s+1) = elnA+ln(s+1). We know we an sample from ψ : s 7→ ln(s+1)+ lnAprovided A has a density that we know. Then we take φ(s) = eψ(s).Suppose we are at time −n, we have a method that generates one random variable lnA and use it for all thehains. And beause our oupling is monotone, we an only simulate one lower hain and one upper hain. Thelower hain will begin at state 0 and the upper hain at state D−n. The problem is that when simulating thedominating hain, we already produed the random variable A−n+1 and we have to use the same one so that ourdomination argument remains valid. In fat, when we make the alulations, we suppose the randomness is thesame for both hains. But if we use the same A−n+1 for all the hains we will never get oalesene.To solve this problem, notie that the oupling we de�ned earlier has some kind of origin at point 0 (as an originfor the grid). But we an hoose this origin arbitrarily. This means we are free to hoose one point and de�neits image. Remember the important thing is to preserve the domination of the dominating hain. So if, for theupper hain, we use the random variable A−n+1 for the update so that D−n gets mapped to A−n+1(D−n + 1) anddepending on this we reate the grid desribed by multishift oupling, we will know the state 0 gets mapped to astate lower that A−n+1(D−n + 1) and thus is dominated by Z−n+1.Let us sum up the proedure by giving an overview, we suppose we have a valid κ, suh that P{DOWN} >

P{UP} :1. Generate Z0 with distribution P{Z = κ+ n} = (1 − P{UP}
P{DOWN} ) P{UP}

P{DOWN}
n.2. Generate a random variable A′

0 with the distribution of A and let Z−1 = φ(Z0, A
′
0).3. Generate A0 suh that Z0 = φ(Z−1, A) (we an do this by generating A0's until getting a valid one).4. Let Y up,−1

−1 = Z−1 + 1, and Y up,−1
0 = A0(Y

up,−1
−1 + 1).5. Let Y low,−1

−1 = 0, and Y low,−1
0 is alulated using multishift oupling.6. If we get Y up,−1

0 = Y low,−1
0 then we return this value, else we go bak one step with Z, and then do simulationsforward.Note that we must keep the randomness used at eah step so that the mapping for eah time be always thesame. This applies also for the random variables involved in the multishift oupling. We do not give the detailedsteps of the algorithms to avoid introduing too muh notations.14



What remains to show is that oalesene happens with probability 1. For this, we try to bound the expetedtime until oalesene. We give a sketh of a proof that the expeted time is �nite in the ase of perpetuities, i.e.
A = Uα. For this suppose that the dominating hain has value κ+1, then the probability that the upper hain andthe lower hain oalese in one step is a positive onstant p > 0, in fat if the grid unit L is big enough, κ+ 1 and
0 get mapped to the same value. This does not �nish the proof sine the dominating hain is not always at κ+ 1.But the state κ+1 of the hain has mean reurrene time 1

(1 − P{UP}
P{DOWN} )

. At eah time the dominating hain hasvalue κ+ 1, we have a probability at least p of oalesene. So, as these events at di�erent steps are independent,the expeted time in the past until oalesene is �nite.This method has been implemented in MATLAB and tested on Vervaat perpetuities and works roughly as fastas the method presented in setion 3 for α = 1 but signi�antly faster for α < 1.5 Other types of perpetuitiesWe have not yet onsidered the ase where one of the two random variable A or B is unbounded. We onsider thefollowing equation
X

L
= qX +B (3)with 0 < q < 1 and B a positive random variable.Let us �rst onsider the existene of suh a distribution. If we suppose that E{B2} <∞, the funtion T : F 7→

L(qX + B) with X ∼ F is well de�ned from M2 into itself. Moreover for two random variables X and Y havingdistribution funtions F and G, by taking random variables with distributions T (F ) and T (G) with the same value
B, we get

d2(T (F ), T (G)) ≤ (E{(q(X − Y ))2})1/2 = q||(X − Y )||2And by taking the in�mum on all the possible ouplings of X and Y , we get that T is a ontration and henethe existene and uniqueness of suh a distribution. We an also onstrut a sequene that onverges in law to thisdistribution as follows
Xn+1 = qXn +Bnwith Bn a sequene of independent random variables distributed like B, in other words,
Xn =

n
∑

k=1

qkBk.The objetive is to simulate this distribution perfetly in �nite time. As usual, for this, we introdue a dominatinghain. Note that if B is bounded by M , then we an de�ne a dominating hain to be the onstant 1
1−qM . In thegeneral ase we take

Zn+1 = max
( Bn

1 −√
q
,
√
qZn

)

.We an easily verify that the mapping for a �xed B, f : x 7→ qx + B is dominated by the mapping g : x 7→
max( B

1−√
q ,
√
qx). We need to look now for the stationary distribution of this hain. We an write it as follows

Z∞ =
1

1 −√
q

max
n≥0

√
q
n
B′
nwith B′

n distributed as B. We see immediately that Z∞
L
= max

(

B
1−√

q ,
√
qZ∞

).
15



5.1 Simulation of the stationary distribution of the dominating hainWe will use rejetion sampling method, by �nding an upper bound of the density funtion. We write the distributionfuntion F of Z∞, as a funtion of the distribution funtion G of B. We make the full alulations only for B havingexponential distribution.
F (x) = P{Z∞ ≤ x} =

∞
∏

n=0

P{√qnB′
n ≤ x} =

∞
∏

n=0

G(
x√
qn

)Thus, the density funtion an be written if we denote by g the density funtion of B
fZ∞

(x) =

∞
∑

k=0

1
√
qk

g( x√
qk )

G( x√
qk )

F (x)Lemma 1 (Dominating the density). We de�ne ρ : x 7→ xg(x)
G(x) , if ρ is a dereasing funtion, and the distributionfuntion F of Z∞ veri�es F (x) ≤ x then we have the bound

fZ∞
(x) ≤ ρ(x) − 1

1 −√
q

ln(G(x))and when B is exponential, the onditions are met and we get
fZ∞

(x) ≤ xe−x

1 − e−x
− 1

1 −√
q

ln(1 − e−x).Proof. If we suppose F (x) ≤ x then,
fZ∞

(x) ≤
∞
∑

k=0

x
√
qk

g( x√
qk )

G( x√
qk )then by de�nition of ρ,

fZ∞
(x) ≤

∞
∑

k=0

ρ(
x

√
qk

).Now beause ρ is dereasing, we have
fZ∞

(x) ≤
∞
∑

k=0

ρ(
x

√
qk

)and we are going to bound this funtion by an integral, beause ρ is dereasing, we have
ρ(

x
√
qk+1

) ≤ 1
x√
qk+1 − x√

qk

∫ x
√

qk+1

x
√

qk

ρ(y)dybut we also have
1
x√
qk+1

ρ(
x

√
qk+1

) ≤ 1
x√
qk+1 − x√

qk

∫ x
√

qk+1

x
√

qk

ρ(y)

y
dy.And thus

x
√
qk+1

1
x√
qk+1

ρ(
x

√
qk+1

) ≤ 1

1 −√
q

∫ x
√

qk+1

x
√

qk

ρ(y)

y
dy.As a onsequene

fZ∞
(x) ≤ ρ(x) +

1

1 −√
q

∫ ∞

x

ρ(y)

y
dy = ρ(x) − 1

1 −√
q

ln(G(x))In the exponential ase we have : 16



• F (x) ≤ 1 − e−x ≤ x

• We see that ρ(x) = xe−x

1−e−x is dereasing by alulating the derivativeHene, we an apply the bound
fZ∞

(x) ≤ xe−x

1 − e−x
− 1

1 −√
q

ln(1 − e−x)For the rest, we will only onsider the ase where B is exponential. We need to do some more work to get tosimple densities that we an simulate. Near 0 it is ln(1 − e−x) that is important, we bound it for x ≤ 1 as follows
ln

(

1

1 − e−x

)

= ln

(

1

x

x

1 − e−x

)but for x ≤ 1, x
1−e−x ≤ 1

1−e−1 and thus
ln

(

1

1 − e−x

)

≤ ln

(

1

x

)

+ ln

(

e

e− 1

)

.And for x ≥ 1, we bound the term 1
1−e−x ≤ 1

1−e−1 , and we write ln
(

1
1−e−x

)

= ln
(

1 + e−x

1−e−x

)

≤ e−x

1−e−x so wegetLemma 2 (Domination of the density fZ∞
with a weighted sum of easy densities). If B has exponential distribution,then

fZ∞
(x) ≤

{

e
e−1e

−x + 1
1−√

q ln( e
e−1 ) + 1

1−√
q ln( 1

x ) for x ≤ 1
e
e−1xe

−x + 1
1−√

q
e
e−1e

−x for x > 1This bound is onvenient beause eah term is the density funtion of a well-known random variable. So todraw a sample uniformly under the surfae de�ned by this funtion, we �rst determine from whih one of the �veomponents we will get our sample and then simulate aording to it.The �ve omponents an be obtained as follows :
• exponential E with weight e

e−1 (we group with part of x > 1)
• uniform U with weight 1

1−√
q ln( e

e−1 )

• produt of independent uniforms U × U ′ with weight 1
1−√

q

• shifted exponential 1 + E weight e
e−1 ( 1

1−√
q − 1)

• sum of independent exponentials E + E′ restrited to [1,∞) with weight e
e−1

2
eIt remains to approximate the density of the target distribution, to deide if we rejet or aept a sample fromthe dominating density.Remember

fZ∞
(x) =

∞
∑

k=0

ρ

(

x
√
qk

)

F (x)

xLemma 3. For an exponentially distributed B, there exists funtions gn and hn that we an alulate, suh thatboth gn(x) and hn(x) tend to fZ∞
(x) when n goes to ∞. Moreover for all n, gn(x) ≤ fZ∞

(x) ≤ hn(x).
17



Proof. First we de�ne the partial produt Fn(x) =
∏n
j=0(1− e

−x
√

qj ), we have Fn(x) tends to F (x) from above, nowlet us bound the error :
Fn(x) − F (x) = 1 −

∞
∏

j=n+1

(1 − e
−x
√

qj ).So we onsider the produt
∞
∏

j=n+1

(1 − e
−x
√

qj ) ≥ 1 −
∞
∑

j=n+1

e
−x
√

qj .As a onsequene we get
Fn(x) − F (x) ≤ 1

1 −√
q

1

x/
√
qn
e−x/

√
qnso

gn(x) =
n
∑

k=0

e
− x

√
qk

√
qk(1 − e

− x
√

qk )

(

Fn(x) − 1

1 −√
q

√
qn

x
e
− x√

qn

)

≤ fZ∞
(x).Now for the upper sequene we have to evaluate,

∞
∑

k=n+1

e
− x

√
qk

√
qk(1 − e

− x
√

qk )
=

∞
∑

k=n+1

e
− x

√
qk

√
qk(1 − e

− x
√

qk )

≤
∞
∑

k=n+1

e
− x

√
qk

√
qk x√

qk

=
1

x

∞
∑

k=n+1

e
− x

√
qk

≤ 1

x

∞
∑

k=n+1

e
−x ln( 1√

q )k

=
1

x
ex ln

√
q(n+1) 1

1 − ex ln
√
qSo if we take

hn =

(

n
∑

k=0

e
− x

√
qk

√
qk(1 − e

− x
√

qk )
+

e(n+1)x ln
√
q

x(1 − ex ln
√
q)

)

Fn(x)we get fZ∞
(x) ≤ hn(x).To sum up the proedure for sampling from Z∞, we �rst get a uniform sample on the surfae under the funtiondominating the density fZ∞

de�ned in lemma 2 by hoosing one of the �ve omponents, eah one with probabilityproportional to its weight, and then sampling from the hosen omponent. After this, we have to deide whetherthis sample point (x, y) should be rejeted or not, this is done by alulating the two approximations of fZ∞
(x),

gn(x) and hn(x) for inreasing values of n. If for some n, we reah y ≤ gn(x), then we an aept the sample x,and if for some n, we get hn(x) < y, the sample x is rejeted and we restart the whole proess.
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5.2 Simulating Z bakwardsRemember that we need to be able to simulate the dominating hain bakwards, so we have a value for Zn+1 andwe need to ompute Zn that is well distributed. Reall the update for Z is
Zn+1 = max

( Bn
1 −√

q
,
√
qZn

)

.To alulate Zn, we �rst alulate the probability that Zn+1 =
√
qZn,

P{Zn+1 =
√
qZn|Zn+1 ∈ [z, z + dz]} =

P{Zn+1 =
√
qZn, Zn+1 ∈ [z, z + dz]}

P{Zn+1 ∈ [z, z + dz]}

=
P{√qZn ∈ [z, z + dz], Zn+1 =

√
qZn}

P{Z∞ ∈ [z, z + dz]}

=
P{√qZn ∈ [z, z + dz], Bn

1−√
q ≤ √

qZn}
√
qfZ∞

(z)dz

=
P{√qZn ∈ [z, z + dz], Bn

1−√
q ≤ z}

√
qfZ∞

(z)dz

=
fZ∞

( z√
q )√

qfZ∞
(z)

G
(

(1 −√
q)z
)

= pSo suppose we an toss a oin with heads having this probability, then, knowing the value z of Zn+1 we tossthe oin, if we get heads we just assign Zn = z√
q and we assign Bn to be an exponential restrited to [0, z]. In theother ase, we know that Zn+1 = Bn

1−√
q , so we assign Bn = z(1 − √

q), and for Zn, we draw a sample distributedlike Z∞ restrited to [0, z√
q ].It remains to show how to toss a oin with this probability. We simply generate a uniform random variable Uon [0, 1] and we have sequenes that onverge p from above and from below (using funtions gn and hn introduedin the previous setion), so we an deide if U < p or not, and hene make our deision.5.3 CouplingThe dominating proess is now all set up, we an simulate it in the past as far as we want. We have already omputedthe random variables when simulating the dominating hain. Now we use this randomness for the forward hain

X de�ned by Xn+1 = qXn + Bn. We atually simulate two hains, the lower hain beginning at 0 and the otherbeginning at Z−n. We ouple this hain using multishift oupling as desribed in setion 4. The global algorithmis basially the same, exept that here the dominating hain is more ompliated.AknowledgmentsI would like to thank Lu Devroye, my supervisor, for all explanations and disussions. Also many thanks to theComputational Geometry group at MGill university for hosting me during my training period.Referenes[1℄ Wei-Mei Chen and Hsien-Kuei Hwang. Analysis in distribution of two randomized algorithms for �nding themaximum in a broadast ommuniation model. Journal of Algorithms, 46:2 (2003), 140-177, 2003.[2℄ L. Devroye and R. Neininger. Density approximation and exat simulation of random variables that aresolutions of �xed-point equations. Advanes of Applied Probability, vol. 34, pp. 441-468, 2002.19
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double p = 1;for(n=0; ;n++) {if(u*exp(1) <= p) {return n;}p = p + 1.0/( (double) t*(n+1));t = t*(n+1);}}/* Stak for reusing the u's */strut node {double data;strut node *next;};strut node *top;void push(double y) {strut node *x;x=mallo(sizeof(strut node));x->data = y;x->next = top;top = x;}double pop() {double x;strut node *temp;if(top==NULL) {printf("error, stak empty");return 0;}else {x=top->data;temp = top->next;free(top);top=temp;return x;}}/* Returns a double with Dikman distribution */double rand_dikman() {// some variablesint z, new_z;double u;top = NULL; // the stak holds the u'sdouble y;int n=0;int k, a;int N;double F; 21



double v, p;z = rand_poisson();while(1) {if(z == 0) {y = rand_uniform();for(k=(n-1); k >= 0 ; k--) {u = pop();N = floor(y);F = y - N;if(floor(u*(N+1+F)) > N) {y = floor(u*(N+1+F)) + F*rand_uniform();}else {y = floor(u*(N+1+F)) + rand_uniform();}}return y;}// applying bakward updatev = rand_uniform();p = 1/((double) z+1); a = z-1;for(k=0 ; k<100;k++) {if( 1-p > v ) {new_z = a;break;}a = a+1; p = p/(a+2);}push((z + rand_uniform())/(new_z+2));z = new_z;n = n+1;}}int main() {srand(1);r = rand_dikman();}
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