
M1 ENS Lyon: Computational Complexity Fall 2014

Lecture 1 — September 10

Lecturer: Omar Fawzi Scribe: Omar Fawzi

1.1 Some admin

See course website http://www.omarfawzi.info/teaching/complexity.

1.2 From computability to complexity

The object of study for this course is the fundamentals of computation. Computation was
precisely defined by Turing (and others) in the 1930s. In this course, we study problems that
are within the computable. We would like to differentiate between problems in terms of the
resources needed to solve them. For example, can we formalize the differences between the
tasks of addition and multiplication, of testing whether a graph is 2-colorable and testing
whether it is 3-colorable, between solving a Sudoku puzzle and checking that a solution is
correct.

1.2.1 Objectives and motivation

Complexity theory is a resource theory for computation. We define relevant resource for
computation and study what are the resources needed in order to compute a given computa-
tional task. Typical resources of interest include time, space (or memory), communication,
randomness, etc... We also study the relation between the different resources: can I improve
the running time at the expense of using more memory? We also compare tasks by the
resources needed to solve them: given a black box that performs a given task, can I use it
to efficiently perform the task I am interested in?

Complexity theory is an essential ingredient in modern cryptography. In fact, most of today’s
cryptography is based on complexity assumption. One main tool is called a one-way function,
which is a function that can be efficiently computed but cannot be inverted in polynomial
time. In order to break the protocol, an adversary would need to perform the costly (in
terms of computation resources) task of inverting the function.

1-1

http://www.omarfawzi.info/teaching/complexity

M1 ENS Lyon Lecture 1 — September 10 Fall 2014

Taking a broader picture in the sciences, understanding computation is certainly a way of
understanding a theory in physics. For example, quantum information has proved quite
useful in the understanding of quantum mechanics. We can mention that quite recently
researchers studying black hole physics got interested in quantum error correcting codes and
quantum complexity classes. 1

Some of the big questions of complexity theory. As you all know, the P versus NP
question is a fundamental open question in complexity theory, but in general in mathematics.
But we are actually very far from solving it. One frontier is showing that circuits with and,
lor, not and mod6 gates of constant depth cannot solve the problem sat

Another very interesting question is about the power of randomness. To state it in terms of
classes, is P = BPP, or is L = RL?

Also, for which problems can quantum mechanical computers give speedups? How to com-
pare the class BQP of problems solvable in polynomial time on a quantum computer to
traditional complexity classes like P and NP?

1.3 Turing machines and time

The course will follow closely the book [1] and for some parts [2].

We start with the definition of a Turing machine.

Definition 1.3.1 (Turing machine). A k-tape Turing machine is described by a triple
(Γ, Q, δ) with the following properties

· Γ is a finite set of symbols (also called alphabet). We assume � ∈ Γ is the blank
symbol and B ∈ Γ denotes the beginning of the tape.

· Q is a finite set of states, with two distinguished states called qstart, qhalt ∈ Q

· A function δ : Q× Γk → Q× Γk−1 × {L, S,R}k

How does a computation work? The starts in the state qstart and we think of the machine as
acting on k infinite tapes (we take them to be infinite only on one side here). The first tape
(called input tape and is read-only) is initialized to Bx1 . . . xn�� . . . , where x1 . . . xn repre-
sents the input to the Turing machine. All other tapes are initialized to B�� Each tape

1http://www.nature.com/news/theoretical-physics-complexity-on-the-horizon-1.15285

1-2

http://www.nature.com/news/theoretical-physics-complexity-on-the-horizon-1.15285

M1 ENS Lyon Lecture 1 — September 10 Fall 2014

has a head that starts at the beginning of the tape. The machine then changes its configura-
tion as follows. Considering its internal state q and the k symbols σ1, . . . , σk at the positions
of the head of each tape, we apply the function δ(q, σ1, . . . , σk) = (q′, (σ′2, . . . , σ

′
k),m), where

m ∈ {L, S,R}k. q′ is the new internal state of the machine and σ′i is the new symbol that
replaces σi at the i-th tape in the position given by the head. m dictates the movement of
the heads for the next configuration, Left, Stay or Right.

Now let us define what it means for a Turing machine M to compute a function f .

Definition 1.3.2. For a function f : Σ∗in → Σ∗out, we say that M computes the function f
if on all inputs x ∈ Σ∗in, the machine M halts on x and f(x) is written on the output tape.

We say thatM computes f in time T (n) ifM computes f and for all x ∈ Σ∗in, the computation
of M on input x halts after at most T (|x|) steps, where |x| refers to the number of symbols
of x.

Remark To fully specify a function, we have to specify an encoding. There are usually
many possible encodings and these in general can affect the resources used. But mostly for
this course, the encoding will not play an important role as long as it is reasonable. For
example, the standard encoding for an integer would be a binary encoding, for a matrix it
would be the list of its entries and for a graph, it would be its adjacency matrix. Another
observation is that the running time of a machine is defined as the worst case over all inputs
x of the same size.

Example Consider the function Even : {0, 1}∗ → {0, 1} with Even(x) = 1 iff the number
whose binary representation is x is an even number. An example of a 2-tape TM that
computes Even is as follows. The idea is to read the input until we reach the symbol � and
then come back one cell to figure out the last digit. Let Γ = {B,�, 0, 1}, Q = {qstart, qhalt, q1}
and δ is as follows.

∀σ ∈ {B, 0, 1} δ(qstart, (σ,B)) = (qstart,B, (R,R)) (1.1)

∀σ ∈ {B, 0, 1} δ(qstart, (σ,�)) = (qstart,�, (R, S)) (1.2)

δ(qstart, (�,�)) = (q1,�, (L, S)) (1.3)

∀σ ∈ {0, 1} δ(q1, (σ,�)) = (qhalt, σ, (S, S)) (1.4)

δ(q1, (B,�)) = (qhalt, 1, (S, S)) (1.5)

For the last line, we took the convention that the empty string is in Even.

Before moving to the defining our first complexity classes, we highlight some of the important
properties of the computational model.

1-3

M1 ENS Lyon Lecture 1 — September 10 Fall 2014

1. The computational model is robust, e.g., the size of the alphabet, the number of tapes
but more generally, TMs can simulate all known physically realizable computation
devices. The idea that a TM can simulate any such physically realizable device is
known as the Church Turing thesis.

2. It is simple to encode a TM M = (Γ, Q, δ) into a bit string. We can thus label TMs
by bit strings that correspond to their encoding. We call Mα the TM encoded by
α ∈ {0, 1}∗.

3. There exists a universal TM.

Theorem 1.3.3. There exists a TM U such that for every x, α ∈ {0, 1}∗, U(x, α) =
Mα(x). Moreover, if Mα halts on input x within T steps, then U(x, α) halts within
CT log T steps where C is a number independent on |x| and depending only on Mα’s
alphabet size, number of tapes and number of states.

1.4 The classes P and NP

A complexity class is simply a set of functions that can be computed within some resource
bounds. It is convenient to restrict ourselves to boolean functions (this is especially for
nondeterministic classes) f : Σ∗ → {0, 1}. Equivalently, one can talk about the language
L = {x ∈ Σ∗ : f(x) = 1}.

Definition 1.4.1. L ∈ DTIME(T (n)) iff there exists a constant c > 0 and a TM M that
runs in time cT (n) that computes L.

Remarks The reason we allow for this constant c is so that DTIME(T (n)) does not
dependent on the alphabet size of the Turing machine. In fact, it is perhaps not so surprising
that by increasing the alphabet size. This is sometimes known as an acceleration theorem,
see [2, Theorem 2.E] for more details.

Definition 1.4.2. P =
⋃
`≥1 DTIME(n`)

Examples

1. Even ∈ DTIME(n) ⊂ P.

1-4

M1 ENS Lyon Lecture 1 — September 10 Fall 2014

2. Given two integers x and y and i, determining whether the i-th bit of the product x · y
is 1 can be clearly done in DTIME(n2) ⊂ P. It can actually be done much more
efficiently, almost in O(n log n).2

3. Given a graph G and a number k, determining whether G has a matching of size ≥ k
is in P.

P is generally consider as the class of problems that are efficiently solvable ”in nature”. Of
course, this might be not the relevant notion for many settings in practice. Sometimes, the
inputs are so large that a number of steps of O(n2) is out of the question. In the area of
streaming algorithms, researches study a model in which one has only one pass over the
input x and a working memory that is, say, O(log |x|). But let us mention some reasons for
which P is considered to capture efficiently computable problems.

1. P seems quite robust to the model of computation. This is sometimes known as the
strong Church Turing thesis, which claims that every physically realizable computation
can be simulated by a TM with at most a polynomial overhead. We should note that
this idea is a bit controversial especially with the definition of quantum computers.

2. The class P is closed under subroutine. We would like to have a definition of efficiency
that satisfies the following property: if, in an efficient program, you replace some
instructions by efficient subroutines, the overall program should be efficient. The class
P satisfies this property.

3. Another argument is that for the known problems of interest that have a polynomial
time algorithms, they are in DTIME(n`) for some reasonably small value of `.

We now move to the complexity class NP which captures many of the problems that we want
to solve. Intuitively, NP corresponds to the class of problems for which you can efficiently
check whether a solution is valid or not.

Definition 1.4.3 (NP). L ∈ NP iff there exists a polynomial p and a polynomial time
machine M such that for every x ∈ {0, 1}∗,

x ∈ L ⇔ there exists u ∈ {0, 1}p(|x|) such that M(x, u) = 1 . (1.6)

u is called a certificate or witness for x.

2http://en.wikipedia.org/wiki/Multiplication_algorithm

1-5

http://en.wikipedia.org/wiki/Multiplication_algorithm

M1 ENS Lyon Lecture 1 — September 10 Fall 2014

Examples

1. Even ∈ NP, and more generally P ⊆ NP

2. sat ∈ NP. This problem will be defined in more detail in the next lecture.

1-6

Bibliography

[1] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cam-
bridge University Press, 2009.

[2] Sylvain Périfel. Complexité Algorithmique. Ellipses, 2014.

7

	Some admin
	From computability to complexity
	Objectives and motivation

	Turing machines and time
	The classes ¶ and NP

