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We study the effect of introducing altruistic agents in a Schelling-like model of residential segre-
gation. We find that even an infinitesimal proportion of altruists has dramatic catalytic effects on
the collective utility of the system. Altruists provide pathways that move the system away from the
suboptimal equilibrium it would reach if the system included only egoist agents, allowing it to reach
the optimal steady state.

Simple social models may be useful to improve our
intuitive, often implicit, conceptualizations of social pro-
cesses [1–4]. For example, the segregation model pro-
posed by Schelling [5] helps understanding that the col-
lective state reached by agents may well be different
from what each of them seeks individually. Specifically,
Schelling’s model shows that even when all agents share
a preference for a mixed city, the macroscopic stationary
state may be segregated [6]. In this Letter, we show that
introducing a vanishingly small concentration of altruist
agents gives rise to a strongly non linear response.

Our model combines two important themes for many
disciplines, including physics and economics: The large
effects of small perturbations and the influence of altru-
istic behavior on coordination problems. On the first
point, microscopic causes leading to macroscopic effects
are well-known in physics. Chaos theory has shown that
some dynamical systems are prone to an exponential in-
crease of small perturbations [7], a topic of recurring in-
terest in other fields, such as modeling of ecological com-
petition [8] or pattern formation [9]. More related to our
work, there are several examples of large effects arising
from small changes in population composition. It has
been shown that a small variation in the proportion of
uninformed individuals may lead to strong changes in the
way collective consensus is achieved by groups manipu-
lated by an opinionated minority [10]. In the minority
game [11], introducing a small proportion of fixed agents
- i.e. agents that always choose the same option - induces
a global change in the population behavior, leading to an
increase of the overall gain [12, 13]. In the voter model,
a finite density of voters that never change opinion can
prevent consensus to be reached [14].

On the second point, altruism is a major topic in evo-
lutionary biology and economics [15–17]. Many models
have shown that pair interactions between selfish play-
ers lead to stationary states of low utility. They have
introduced various types of altruistic behavior to inves-
tigate how it may lead to a better equilibrium: altruis-
tic punishment [15, 16], inequity aversion [18], fraternal
attitudes [19], agent mobility[20] . . . Here, we use a sim-
ple definition of altruism (see below) and concentrate on

the proportion of altruists needed to reach the social op-
timum. We show that, unexpectedly, an infinitesimal
proportion of altruists can coordinate a large number of
egoists and allow the whole system to reach the social
optimum.
Description of the model. Our model represents the

movement of a population of agents in a "city", which is
divided into Q � 1 non overlapping blocks, also called
neighborhoods. Each block is divided into H sites and
has the capacity to accommodateH agents (one per site).
Initially, a number of agents N = QHρ0 are distributed
randomly over the blocks, leading to an average block
density ρ0 (ρ0 = 0.4 throughout the paper). All agents
share the same utility function u(ρ) that depends on the
agents density ρ in the neighborhood where they are lo-
cated. We choose a triangular utility (see Fig. 1): agents
experience zero utility if they are alone (ρ = 0) or in full
blocks (ρ = 1), and maximum utility u = 1 in half-filled
blocks (ρ = 0.5). The collective utility U is defined as
the sum of all agents’ utilities, U = H

∑Q
q=1 ρqu(ρq) and

the average utility ũ per agent is ũ = U/N .
Building upon our past work on Schelling’s segregation

model [6], we now mix two types of agents: "egoists",
who act to improve their own, individual, utility, and a
fraction p of "altruists", who act to improve the collec-
tive utility. Thus, egoists have as objective function the
variation of their individual utility ∆u, while altruists
consider the variation of the overall utility ∆U . The dy-
namics is the following: at each time step, an agent and
a free site in another block are selected at random. The
agent accepts to move to this new site only if its objective
function strictly increases (note that the moving agent is
taken into account to compute the density of the new
block). Otherwise, it stays in its present block. Then,
another agent and another empty site are chosen at ran-
dom, and the same process is repeated until a stationary
state is reached, i.e., until there are no possible moves for
any agent.
Limiting cases: pure egoist or altruist populations. In

[6], we have computed analytically the stationary states
of a homogeneous population of egoist or altruist agents.
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Figure 1: Agent utility function: u(ρ) = 2ρ for ρ ≤ 0.5
and u(ρ) = 2(1− ρ) for ρ > 0.5.

Altruists always reach the optimal state, given by half
filled (or empty) blocks and an average pure altruist util-
ity ũA ' 1. In contrast, a pure egoist population col-
lectively maximizes not U but an effective free energy
that we have called the link L. The link is given by the
sum over all blocks q of a potential lq: L =

∑
q lq, where

lq =
∑Nq

nq=0 u(nq/H), withNq = Hρq is the total number
of agents in block q. In the large H limit,

l(ρq) ≈ H
∫ ρq

0
u(ρ) dρ. (1)

The link may be interpreted as the cumulative of the in-
dividual marginal utilities gained by agents, as they pro-
gressively enter the blocks from a reservoir of zero utility.
Its key property is that, for any move, ∆L = ∆u. Since
egoists move only when their individual ∆u is positive,
the stationary state is given by maximizing L over all pos-
sible densities {ρq} of the blocks, from which no further
∆u > 0 can be found. Analytical calculations [6] show
that this stationary state corresponds to crowded neigh-
borhoods, far above the state of maximum average utility
given by ρq = 1/2. For the case studied in this paper,
the stationary density is given by ρE = 1/

√
2, leading to

a pure egoist utility ũE = 2(1 − ρE) ' 0.586 � 1. Nu-
merical simulations have confirmed these results, though
the existence of many metastable states around ρE ' 0.7
leads to fluctuations in the simulated final densities.
Mixing populations: qualitative picture. We now in-

vestigate how adding a fraction of altruists drives the sys-
tem away from the frustrated pure egoist case to the opti-
mal configuration observed in the pure altruist case. We
find that, instead of a linear response, the system reaches
the optimal state even at very low altruist concentrations
(p < 0.01 in figure 2 a). To help understanding the origin
of this strongly non-linear effect, the different panels of
Fig. 3 illustrate the evolution of a small system (H = 225,
Q = 36 and p = 0.04). Initially, altruists (yellow) and
egoists (red) are distributed randomly in the blocks (a),
which all have a density ρ ' ρ0 = 0.4. Then, blocks
with the lowest densities are depleted by both altruists
and egoists that prefer districts with higher densities. At

Figure 2: Evolution of the average utility as a function
of (a) the altruists’ fraction p (note the log scale on the
x-axis) and (b) the rescaled fraction p∗ = 2pQρ0. We
take H = 200 and vary Q as shown. The fluctuations
for low p∗ values (before the transition) arise from

metastable states in the pure egoist regime.

some point, when the block density increases, the behav-
ior of the two kinds of agents diverge. Altruists "sacrifice"
themselves and leave these high density blocks, moving
to blocks with lower densities, as this increases the util-
ity of their many (former) neighbors, leading to an in-
crease in global utility. On the other hand, egoists would
loose individual utility by doing so, and therefore remain
in these high density blocks which continue to feed on
the remaining neighborhoods with ρ < 1/2. After a few
iterations (Fig. 3b-c), selfish agents have gathered into
"segregated" neighborhoods. This is the classical segrega-
tion observed in the pure egoist case [6], arising from the
well studied amplification of density fluctuations. Note
that all altruists have left the egoist blocks and gather
into few blocks with lower densities (Fig. 3c) and then
into a single neighborhood, whose density increases until
it becomes attractive for egoist agents who "invade" it
(Fig. 3d-e), while altruists leave it for other lower den-
sity blocks (Fig. 3e). The density of some of these new
blocks then increases, allowing for successive egoist inva-
sions (Fig. 3f-g). These migrations of egoist agents reduce
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the density of the overcrowded egoist blocks, increasing
the overall utility. Eventually, the system reaches a sta-
tionary state in which no agent can move to increase its
objective function (Fig. 3h).
Quantitative description. We now give a quantitative

explanation of the decrease of egoist block densities and
show that an altruist concentration p ' 1/Q is sufficient
to drive the system towards the optimal state, ũ = 1.
To understand altruists’ dynamics, it is useful to replace
their dynamics by an equivalent egoist dynamics with a
utility ualtr(ρ) that differs from the original utility u(ρ).
An exact mapping can be done in the following way.
As mentioned above, each altruist agent tries to max-
imize the global utility U = H

∑Q
q=1 ρqu(ρq). In con-

trast, an egoist agent acts to maximize the link function
L =

∑
q `(ρq), with `(ρq) given in Eq. (1). As a result,

an altruist agent exactly behaves as an equivalent egoist
agent with a utility function ualtr(ρ) satisfying the rela-
tion

ρu(ρ) =
∫ ρ

0
ualtr(ρ′) dρ′ (2)

since the resulting function to be maximized is the same.
Differentiating this last equation, one finds

ualtr(ρ) =
∂
(
ρ u(ρ)

)
∂ρ

=
{

4ρ, for ρ ≤ 1
2

2(1− 2ρ), for ρ > 1
2

(3)

This effective utility function for altruists is plotted on
Fig. 4. Note that this effective utility is not the one
used to compute average or global utilities, it only helps
understanding altruists’ moves, since an altruist moves to
a new block only if ualtr(ρ) increases. Fig. 4 shows that
altruists have a clear preference for blocks with densities
just below 1/2. The large discontinuity at ρ = 1/2 arises
because at this density the original utility function u(ρ)
changes slope and starts to decrease. Then, an altruist
moving from a block with ρ < 1/2 to a slightly more
populated one with ρ > 1/2 induces a large decrease of
total utility, since all its former neighbors loose utility
(as the density of the initial block decreases) and so do
its new neighbors, as the density of their block increases.

Fig. 2b suggests that the transition towards the op-
timal state is continuous and takes place at an altruist
concentration p ' 1/Q for all values of Q. This Q de-
pendence is important, since in the thermodynamic limit
(Q → ∞), the transition would take place at p → 0.
We now derive this result in a simple way by comput-
ing analytically the evolution of the average utility as
a function of the altruist concentration p. Let’s start
with very low altruist concentrations and assume that
the initial dynamics is dominated by egoists, which form
the usual Schelling’s overcrowded blocks, as observed
above (Fig. 3c) and in previous work [6]. Therefore,
we take as starting point a city composed of nE ego-
ist blocks with uniform density ρe = ρE > 1/2, such

that ρE = (1 − p)Qρ0/nE . Taking a uniform ρe value
is justified because any density fluctuation for ρe > 1/2
is rapidly wiped out by the dynamics, as shown by the
unique density of egoist blocks in Fig. 3i. Altruists can
be initially somewhat scattered over the remaining blocks
but, as their effective utility clearly shows (Fig. 4), they
rapidly aggregate into a single block, leading to an altru-
ist density ρa = pQρ0 provided ρa < 1/2, or equivalently

p < phigh ≡
1

2ρ0Q
. (4)

The driving force for the transition are the relative values
of agents’ utilities in egoist and altruist blocks, respec-
tively ue = uE = 2 − 2ρE and ua = 2ρa since ρa < 1/2
and ρE > 1/2. For very low p values, ρa is small, leading
to ue > ua and the system remains in the usual frus-
trated Schelling egoist state ũ(p) ' ũE which is essen-
tially constant. When p reaches a value plow such that
u(ρa+1/H) > u(ρE), a first egoist can improve its utility
by moving into the altruist block, whose density becomes
ρa + 1/H (Fig. 3d-f). This gives :

plow ≡
1− ρE − 1/H

ρ0Q
, (5)

The density of the invaded block rapidly increases
(Fig. 3e) and eventually reaches 1/2. At this point, al-
truists’ effective utility becomes negative, pushing them
to leave for other lower density blocks (Fig. 3f). As previ-
ously, altruists gather in another single block of identical
density ρa = pQρ0. The invasion has led to a slight de-
crease of the density of egoist blocks to ρe < ρE , and
therefore to a slight increase of egoists’ utility, ue =
u(ρe) > u(ρE). Successive invasions of the block partially
filled by altruists are possible until ρe decreases down to
the value ρ∗e such that u(ρ∗e) = u(ρa+1/H). This leads to
ρ∗e = 1−pQρ0−1/H (ρ∗e > 1/2 as long as p < phigh). The
equality of utilities implies ũ(p) = u(ρa) = 2pQρ0 +2/H.
When p = phigh, the final (lowest) egoist density reaches
the optimal value ρ∗e = 1/2 and no further improvement
in average utility is possible: ũ(p) = 1 (to simplify the
discussion, we ignore here corrections of order 1/H that
depend on the parity of H). This description remains
valid for larger altruist concentrations, the only differ-
ence being that, at the end, the additional altruists form
stable blocks with densities ρa = 1/2.

In summary, the evolution of the average utility ũ fol-
lows:

ũ(p) = 2− 2ρE for p ≤ plow

ũ(p) = 2pQρ0 + 2/H for plow ≤ p ≤ phigh

ũ(p) = 1 for p ≥ phigh

(6)

Our analysis predicts that plotting ũ as a function of
the rescaled altruist proportion p∗ = p/phigh = 2pQρ0
should lead to a universal transition starting at p∗ =
2 − 2ρE ' 0.586 and ending at p∗ = 1. Simulations
perfectly confirm our calculations (Fig. 2b).
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Discussion. Our model illustrates the complexity of
the dynamics produced by two types of agents, even when
they follow simple rules. Introducing altruists into a
population dominated by egoists increases the average
utility much more rapidly than expected from a linear
projection. The interplay between the different behav-
iors leads to complex "catalytic" phenomena. By cat-
alytic, we mean that altruists are not "consumed" once
they coordinate egoists, and can continue to help ego-
ists finding the optimal configuration indefinitely. The
global utility increase per altruist at small p can be
computed easily: δUaltr ≡ (U(p) − U(p = 0))/NA '
(1 − 0.56)ρ0QH/(pρ0QH) = 0.44/p. When p = 1/Q,
δUaltr ' 0.44Q. Each altruist induces a utility change
proportional to the system size, which becomes infinite
for infinite systems. The fact that such large effects arise
from endogenous dynamics is a key point suggested by
recent models of social systems [2, 10, 13, 14]. Indeed,
most economic models focus on equilibrium and explain
crisis by exogenous factors. In contrast, physics models
can interpret large opinion swings in a population as a
branching process that generates avalanches or abrupt
optimal strategy switches as intrinsic first order transi-
tions [2].

Interestingly, while the stationary state of a system
composed of a single type of agents (either egoists or al-
truists) can be mapped to an equilibrium state, this is
no longer the case when including two types of agents,
except if some restrictive conditions are met [6]. In
a thermodynamic analogy, the utility function can be
mapped (in the zero temperature limit considered here)
to a chemical potential, as shown in [21], when a sin-
gle type of agents is present. If a system with both
egoist and altruist agents could be mapped to an equi-
librium system, chemical potentials could be defined as
µe(ρa, ρe) = u(ρa+ρe) and µa(ρa, ρe) = ualtr(ρa+ρe). As
chemical potentials derive from a free energy, their cross
derivatives would be equal, ∂µe/∂ρa = ∂µa/∂ρe, leading
to u′(ρ) = u′altr(ρ). This equality is not satisfied as seen
from Figs. 1 and 4, showing that the system reaches a
non equilibrium steady state.

We are well aware that simple models do not allow to
draw any rigorous conclusion about what is going on in
the real world [4, 22, 23]. While Schelling’s segregation
model neatly shows that one cannot logically deduce in-
dividual racism from global segregation, it may well be
that for some towns racism is one cause of segregation,
for some others not; at any rate the reasons behind ur-
ban segregation are far more complex than those that any
simple model can come up with. Simple models can be
helpful to analyze some interesting phenomena, the origin
of which may be obscured in more complicated realistic
settings. Ours may help thinking about the effectiveness
of coordination by an infinitesimal proportion of altruist
agents, but it cannot be directly applied to real systems.
Real agents do not behave like these virtual robots: they

are able to put their actions into context, to anticipate
the behavior of the others and moreover, they disagree
about what is the social "optimum" [4, 24].
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(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 10

(e) t = 12 (f) t = 35

(g) t = 36 (h) t = 240

(i) Density profile

Figure 3: Evolution of the city for p = 0.03, Q = 36 and
H = 225. Panels (a-h) show the occupation of the

different neighborhoods at different times. Egoists are
represented in red, altruists in yellow, empty sites in
black. (a) initial; (b) first steps; (c) usual segregation;
(d-e): first invasion and altruist escape from the block
surrounded in blue; (f-g): final invasion of the block

surrounded in blue; (h): stationary state. In panel (i),
each continuous line represents the evolution of the

density of a single neighborhood. Vertical dashed lines
show the times corresponding to panels (a-h).
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Figure 4: Effective utility function of altruistic agents.


