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Abstract

We present a simplistic model of the competition between di�erent

currencies. Each individual is free to choose the currency that minimizes

his transaction costs, which arise whenever his exchanging relations have

chosen a di�erent currency. We show that competition between curren-

cies does not necessarily converge to the emergence of a single currency.

For large systems, we prove that two distinct communities using di�er-

ent currencies in the initial state will remain forever in this fractionalized

state.

1 Introduction

In general, a currency is useful - and therefore sought by an individual - only
insofar as it can be used to buy goods. This implies that the currency is widely
accepted as payment by her suppliers. In a world where several currencies
exist, the attractiveness of a currency for an individual can be measured by its
greater or less acceptance in the group of individuals with whom it is used to
exchange goods. It follows that the more a currency is accepted, the greater
its attractiveness becomes. From this point of view, money is akin to language
[1]. The assumption that in cross-currency competition, increasing returns to
adoption play a fundamental role has been present in economic theory since
the famous article by Carl Menger [2]. The same idea has been examined by
various authors in the Economics litterature [3, 4, 5, 6, 7, 8, 9, 10] as well as
in Physics journals [11, 12, 13]. Recent models have pushed further Menger's
basic idea either by trying to introduce social aspects of money [8], or providing
a uni�ed framework able to explain at the same time the emergence of a single
currency and some other economic phenomena. Yasutomi's[11] model, further
re�ned by [12, 13], can also describe the collapse of a currency, while Donangelo
and Sneppen's links the emergence of money to its anomalous �uctuation in
value [14]. Du�y and Ochs [7] tested some predictions of Kiyotaki and Wright
model[4] in laboratory experiments. Another stream of literature connects the
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emergence of money to the more general question of the emergence of social
norms using game theory[5, 7, 6, 10].

In this article, we propose a model that di�ers from all these approaches by
two characteristics : its exchange mechanism is simpler and it takes into ac-
count the speci�city of local situations through the introduction of a network of
exogenously �xed bilateral links, for example because of constraints originating
in the social division of labor. On the �rst point, most previous work assume
some more realistic exchange mechanism. For example, models inspired by Ya-
sutomi's model [11, 12, 13] take, as elementary interaction between two agents,
the �transaction�, which "consists of several steps including search of the co-
trader, exchange of particular goods, change of the agent's buying preferences
and �nally the production and consumption phase". On the second point, un-
like most models, we do not assume a completely connected interaction network,
which leads to simpler analytical treatments but obscures the local aspects of
economic transactions. We demonstrate that, under such conditions, compe-
tition between currencies does not necessarily converge to the emergence of a
single currency. Even if an equilibrium with a single currency remains possi-
ble, the most frequent stable con�guration is the division of the trading space
between di�erent currencies. For large systems, we prove that two distinct com-
munities using di�erent currencies in the initial state will remain forever in this
fractionalized state.

2 General framework

We consider an economy composed of N agents, numbered i = 1, ..., N , each
starting with its own currency si. A currency will be referred to as an integer
in [1, N ], and we assume that each agent begins with its own currency si = i.
The agents are disposed on the vertices of a random graph [15], whose edges
represent commercial links between the agents. After choosing a density of links
p ∈ [0, 1], for each pair of agents (i, j), we create a link between i and j with
probability p, or let the agents disconnected with probability (1− p).

The interaction dynamics is set in the following way. Each time step, we
choose an agent at random. First, this agent is allowed to change the currency
it uses. Then, it trades with all its neighbours, i.e. with all the agents he shares
a link with. The pro�t an agent gets is de�ned according to the following idea:
if two agents share the same currency, their trading business is made easier and
no cost has to be paid; conversely, if they use di�erent currencies, they must
trade through the help of some "moneychanger" who gets a commission for its
work: we will then consider that those agents have to a�ord some �xed cost
(which we will take as a unit cost) in order to complete their trade. As there
is no other constraint, we translate the pro�t of each particular trade to the
origin so that a successful trade is worth 0 and a trade which has to resort to a
moneychanger is worth −1.

We de�ne a simple utility function Ui(t) for an agent i at period t, as the
opposite of the sum of all trading costs an agent has to pay when realising its
trades at period t:

Ui = −
∑
j∈V(i)

(1− δsjsi ) = −Card
{
j ∈ V(i)|sj 6= si

}
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where V(i) is the set of the neighbours of the agent i in the graph and δ
sj
si is the

Kronecker symbol, ie δ
sj
si =

{
1 if si = sj
0 if si 6= sj

.

We also de�ne a social utility function for the economy as a whole, as the
sum of the utilities of all agents:

U =

N∑
i=1

Ui = −1

2

∑
i,j neighbours

(1− δsjsi )

where the factor 1
2 accounts for the fact that each pair of neighbours is counted

twice in the sum.
As we assume that agents are fully rational and maximize their own utility

function, the rule for currency adoption is the simplest mimetic one: an agent
adopts the most common currency among its neighbours; if several currencies
are used by the same maximal number of neighbours, two cases appear: either
the agent already uses one of them, and keeps using it by default, or she was
using another one, in which case she picks at random one of the most popular
currencies among her neighbours. Agents do not take into account neither the
anticipated cost of future trades (for t′ > t) nor the in�uence their choice could
have on other agents.

From the evolution rule we have de�ned, we can infer that social utility can
only increase with time; more, it increases strictly when an agent changes its
currency. Indeed, if agent i switches from currency s to currency s′ at time t,
social utility increases with

∆U = ∆Ui +
∑
j∈V(i)

∆Uj

=
∑
j∈V(i)

δ
sj
s′ − δ

sj
s +

∑
j∈V(i)

δs
′

sj − δ
s
sj

= 2

(
Card

{
j ∈ V(i)|sj = s′

}
− Card

{
j ∈ V(i)|sj = s

})
where we write sj = sj(t − 1) = sj(t) for all j ∈ V(i). By de�nition, agent i
switches from s to s′ at time t if and only if

Card
{
j ∈ V(i)|sj = s′

}
> Card

{
j ∈ V(i)|sj = s

}
,

which yields
∆U > 0. (1)

An interesting consequence of equation (1) is that the system can not come
back to a state it has already visited: There exists no loop in the phase diagram.
Because the number of states the system can visit is �nite, we can infer that from
any initial con�guration, the system will reach an equilibrium with probability
1 as time tends to in�nity, equilibrium being de�ned as any state in which no
agent can change its currency. Rather than studying the precise dynamics of
the system, we will hence be more interested in �nding the di�erent equilibria
that this economy could reach.

An obvious equilibrium corresponds to the whole economy using a single
currency. It is also clearly a social optimum, as no agent has to pay any change
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Figure 1: A metastable state where social utility is stuck at −2.

Figure 2: At equilibrium for N = 100, average number of currencies (circles)
and of connected components (squares). Insert: average number of currencies
per connected component against mean number of neighbours.

cost. However, equation (1) does not imply that social utility will necessarily
reach its maximum, which is zero. As �gure 1 shows, we can imagine a situa-
tion where separated communities appear, within which agents share the same
currency, but where several di�erent currencies coexist on the overall economy.
Such an equilibrium is clearly not optimal as at least one agent, although suf-
fering losses from the trades with agents from other communities, is nonetheless
unable to adopt another currency, as this would entail it to su�er even more
losses during some time steps. This contradiction between the individual and
collective optima can be found in many economic simple models [16, 17, 18].

3 Numerical simulations

3.1 One community

In order to �nd what kind of equilibria can be reached by the system, we ran
10, 000 simulations of the model. In each simulation, we consider an economy
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Figure 3: Social utility function for N = 100, p = 0.05 and a single connected
component. At equilibrium, 14 di�erent currencies are present.

of N = 100 agents, each beginning with its own currency. Note that two di�er-
ent sources of randomness can in�uence the results: the topology of the graph
and the order in which we pick the agents. Hence, we draw a new distribu-
tion of edges for each simulation. We then iterate the model, repeating the
elementary time steps until equilibrium is reached. We count the number of
currencies displayed by the overall economy, and calculate its mean over the
10, 000 simulations.

We plot the results for varying link densities p, together with the mean
number of connected components in the graphs (see �gure 3.1). Indeed, we see
that when p is close to 0, there still are 100 di�erent currencies in the economy:
this was to be expected as in this case, many agents have no neighbour at all.
They have consequently no other currency to adopt and keep their own each
time they are selected to update their situation.

When the graph cohesion is weak (ie for small values of p), we remark that
the number of its connected components remains signi�cantly below the average
number of currencies remaining at the end of the simulations. For p > 0.1, which
corresponds to an average number of 10 neighbours per agent, we can reliably
consider that there remains only one connected component and that an economy
of 100 agents succeeds in agreeing on a single currency as a mean of exchange
for all trades.

We also observe the evolution of social utility through these simulations.
Figure 3 shows this evolution in a typical simulation where each agent has on
average 5 neighbours (p = 0.05). At equilibrium, which was reached after 1, 398
time steps, social utility culminates at −182, which is quite far from the social
optimum 0. Indeed, in this simulation, there remains 14 di�erent currencies at
equilibrium, even if only a single connected component exists.

We ran the same 10, 000 simulations with two slightly di�erent dynamics.
Instead of randomly picking the agents one by one, the second dynamics con-
sisted in computing the optimal choice of each agent in a given state of the
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(a) (b) (c)

Figure 4: Some examples of two-communities graphs with pintra = 0.3, for
weak [pinter = 0.01, �gure (a)], medium [pinter = 0.05, �gure (b)] and strong
[pinter = 0.2, �gure (c)] interconnection.

economy and then updating their currency choice simultaneously; in the third
case, we still picked the agents one by one, but always in the same order. All
these variants yielded comparable results.

3.2 Two communities

Using the same general framework, we now study the case where two di�erent
communities composed of N

2 agents are trading. We consider as a community
some pre-de�ned set of agents sharing a strong intra-connection, while agents
belonging to di�erent communities share weaker links. Formally, for an economy
consisting of N agents, with pinter and pintra being respectively the probabilities
of internal and external links (pinter < pintra), we select all pairs of agents (i, j)
and create a link with probability pinter if they belong to the same community
and with probability pintra otherwise. The mean link density of the overall
graph is, for large N ,

pav =
2

N(N − 1)

(
2×

N
2 (N2 − 1)

2
pintra +

(
N

2

)2

pinter

)
≈ 1

2
(pintra + pinter),

which might be useful to determine the in�uence of the precise topology on
the outcome. In the speci�c case where pinter = 0, there exist two separated
communities without intra links; conversely, if pintra = pinter, we actually �nd
the previous case of a single community set on a random graph with uniform link
probability pintra. Figure 4 shows some examples of such graphs for pintra = 0.3,
from weak inter-connection to strong inter-connection.

Two di�erent cases can be studied: as in the previous one-community case,
every agent can begin with its own currency, or each community could be already
uni�ed � which means that its agents all share the same currency.
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We begin with the case where each agent is initially given its own cur-
rency. Just as in the one community case, the question we are concerned with
is whether, and on what conditions, the economy as a whole adopts a single
currency or if, on the contrary, each community adopts its own currency, lead-
ing to a changing cost when trading across them. The result can be expected
to depend on the precise system history. If an agent of the �rst community
adopts a currency of the second community and starts spreading its use among
its neighbours, the two communities might end using the same currency. But as,
on average, an agent shares more links with agents from its own community, she
is more likely to adopt a currency from her own community, leading to distinct
currencies.

We test the model with N = 100 and pintra = 0.3. As this is far from the
convergence threshold exhibited by experiments with one community, we can
�gure out what will happen for extreme values of pinter. If pinter = 0, each
community will end with its own currency, as our choice for pintra ensures that
a convergence will take place inside each community, and the absence of external
links makes impossible the adoption of a currency from the other community.
Instead, if pinter = 0.3 = pintra, we fall back on the one community case, so
that a single currency will spread in the whole economy.

In order to see how the transition takes place, we run 10, 000 simulations
for several values of pinter and plot the probability that a single currency is
adopted in the whole economy at equilibrium. For each simulation, we draw
a new random graph as before. The results are represented by the circles on
�gure 5. The curves agree with our predictions: for low values of pinter, each
community uses a di�erent currency; but as pinter increases, the economy tends
to adopt a single currency. Here again, we explore what happens when all the
agents update their choice simultaneously instead of one by one (represented by
the squares in �gure 5), but the two curves are almost identical.

However, this result must be compared to the one-community case studied
before: even for pinter = 0, the link density of the overall graph is still 1

2pintra =
0.15. For an equivalent link density, we saw in section 3.1 that when the graph
was purely random, with such a mean link density the economy almost always
united on a single currency.

We now turn to the case where each community has already been uni�ed
on a single currency. The problem is then to know whether the attractiveness
of the other community is strong enough to counter the intra-communitarian
bonds.

We ran again 10, 000 simulations for an economy with N = 100 and pintra =
0.3, and plotted the results for varying pinter (represented by the triangles on
�gure 5). As was to be expected, the transition from two to one currency needs
a much higher value of pinter to happen. Indeed, the the intra-communitarian
bonds are already e�ective when agents are o�ered to switch currency; whereas
in the previous case, the bonds required to be activated by the � possible �
adoption of a community-dependent currency to become real constraints, and
hence was left open the possibility that the agents chose a currency used in both
communities.
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Figure 5: Probability that a single currency ermerges on a two-communities
graph with N = 100 and pintra = 0.3. The circles (one agent randomly picked
each time step) and the squares (all agents changing their choice simultaneously)
represent the case when each agent begins with its own currency as in the one-
community case. The triangles shows the transition when each community had
previously been uni�ed on a single currency.

4 Exact results for two large pre-uni�ed commu-

nities

We now show rigorously that for two very large communities (pinter < pintra, N →
∞), a transition to a single currency never happens. Intuitively, the transition
may be triggered by a single agent having more external than internal neighbors,
which is unlikely but not impossible when pinter < pintra, because of random
�uctuations. One expects that �uctuations in the links' distributions become
smaller as N increases, leading to a more stable advantage of inner links. How-
ever, since the number of nodes increases, the probability that at least one node
has more external than internal links may also increase, leading to a cascade.
Our calculations prove that the decrease in the �uctuations is stronger than the
increase in the number of nodes. More precisely, if PN is the probability that,
for a given two-community graph with N agents, there exists a single-currency
equilibrium, we demonstrate that, when pinter > pintra, PN → 0 as N →∞.

An obvious necessary condition for the existence of such an equilibrium is
that there exists at least one agent which might change its currency. We thus
assume pinter < pintra and begin by studying the probability, for a given agent,
to have less neighbours in its own community than in the other.

For a given N , we randomly choose one of the agents and de�ne Xa,N as its
number of intracommunitarian links andXr,N as its number of intercommunitarian
links. For random graphs, Xa,N and Xr,N are two independent random vari-
ables following binomial laws with N number of trials and respective parameters
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pintra and pinter. Let φ
N
a and φNr respectively denote their cumulative distribu-

tion function.
We thus study the probability

P (Xa,N ≤ Xr,N ) =

∞∑
k=0

P (Xr,N = k and Xa,N ≤ k)

=

∞∑
k=0

P (Xr,N = k)P (Xa,N ≤ k)

=

∞∑
k=0

P (Xr,N = k)φNa (k).

Let pav = pintra+pinter

2 ; as pinter < pintra, then pinter < pav < pintra. For
each N , we de�ne kN = bpavNc the �oor of pavN . We obtain:

P (Xa,N ≤ Xr,N ) =

kN∑
k=0

P (Xr,N = k) φNa (k)

≤φN
a (kN )

+
∞∑

k=kN

P (Xr,N = k)φNa (k)

≤1

≤ φNa (kN )

kN∑
k=0

P (Xr,N = k) +

∞∑
k=kN

P (Xr,N = k)

≤ φNa (kN ) + (1− φNr (kN )) (2)

We will now show that


φNa (kN ) −→

N→+∞
0

and
1− φNr (kN ) −→

N→+∞
0

, and show that these limits

follow at least a geometrical decay.
By de�nition:

φNa (kN ) =

kN∑
k=0

(
N

k

)
pk(1− p)N−k,

where we use p instead of pintra to simplify notations. Moreover, if k ≤ pavN ,(
N
k

)
= N

N−k
(
N−1
k

)
≤ 1

1−pav

(
N−1
k

)
. Hence:

φNa (kN ) ≤
kN∑
k=0

1

1− pav

(
N − 1

k

)
pk(1− p)N−k

≤ ...

≤
kN∑
k=0

(
1

1− pav

)N−kN (kN
k

)
pk(1− p)N−k

=

(
1− p

1− pav

)N−kN kN∑
k=0

(
kN
k

)
pk(1− p)kN−k

=1

≤ ρNa (3)
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where ρa =
(

1−pintra

1−pav

)1−pav

< 1.

Similarly, if we now use p for pinter, we get:

1− φNr (kN ) = 1−
kN∑
k=0

(
N

k

)
pk(1− p)N−k

=

N∑
k=kN+1

(
N

k

)
pk(1− p)N−k

=

N−kN−1∑
k′=0

(
N

k′

)
pN−k

′
(1− p)k

′

Moreover, if k ≤ N − kN − 1 = N − bpavNc − 1, then k ≤ (1 − pav)N and(
N
k

)
≤ 1

pav

(
N−1
k

)
. From this point,

1− φNr (kN ) ≤
N−kN−1∑
k′=0

(
1

pav

)kN+1(
N − kN − 1

k′

)
pN−k

′
(1− p)k

′

=

(
p

pav

)kN+1 N−kN−1∑
k′=0

(
N − kN − 1

k′

)
pN−kN−1−k

′
(1− p)k

′

≤ ρNr (4)

where ρr =
(
pinter

pav

)pav

< 1.

Putting equations (2), (3) and (4) together, we get

P (Xa,N ≤ Xr,N ) ≤ ρNa + ρNr , (5)

which means that the probability for a single agent to have more neighbours in
the other community than in its own geometrically decreases to 0 as N tends
to in�nity.

For i = 1, ..., N , let us now call X
(i)
a,N and X

(i)
r,N the random variables repre-

senting, respectively, the number of intracommunitarian and of intercommuni-
tarian neighbours of agent i. Recall that PN is the probability that, for a given
two-community graph with N agents, there exists a single-currency equilibrium.
A necessary condition is that there exists some agent in the initial con�guration
which may change its currency. Using equation (5), we can then write:

PN ≤ P
(
X

(1)
a,N ≤ X

(1)
r,N or ... or X

(N)
a,N ≤ X

(N)
r,N

)
≤ P

(
X

(1)
a,N ≤ X

(1)
r,N

)
+ ...+ P

(
X

(N)
a,N ≤ X

(N)
r,N

)
= NP (Xa,N ≤ Xr,N )

≤ N
(
ρNa + ρNr

)
which shows that PN −→

N→∞
0.
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5 Agents heterogeneity

Until now, we have supposed that every agent has the same in�uence on its
neighbours: the loss due to using di�erent currencies is 1. We now relax this
assumption by introducing heterogeneity among the agents. We assume that
each agent j has a weight ρj ; when an agent i trades with j using a currency
si 6= sj , it now has to a�ord a trading cost ρj , so that we can de�ne a new
individual utility function for the agent i:

Ũi = −
∑
j∈V(i)

ρj(1− δsjsi )

We �rst set ρi = deg(i) where deg(i) is the degree of agent i in the graph
of commercial links. We then run the same simulations as before (for one com-
munity, and for two communities either uni�ed or not) and �nd no qualitative
di�erence in the transition curve. However, introducing weights has an im-
portant impact on which currency will eventually be chosen: is the case when
each agent begins with its own currency, the average degree (hence the average
weight) of the agent whose currency will be adopted is much higher than when
the agents are unweighted.

We then attribute randomly the ρi, independently of agent's degree, but
keeping the same Poisson distribution as in the random graph. We obtain the
same results: the transition curves for currency adoption remain unchanged, but
the average weight of the �rst owner of the adopted currency is much higher
than the average weight.

6 Conclusion

We have studied a simplistic model showing coexistence of several currencies,
even in presence of increasing returns to adoption. Agents exchange only with
a limited number of neighbors, through local exogenous commercial links, and
seek to minimize their transaction costs by adopting the most common currency
among these. The main interest of our work is to provide a model that is at
the same time very simple in its structure (exchange network and transaction
mechanism) but is able to recover as possible equilibria both the existence of a
single currency or several of them, while most previous models only found the
single currency equilibrium [3, 5, 6, 8, 10, 11, 12, 13]. This last point reminds
work by Brian Arthur [19], where increasing returns lead to the existence of
multiple equilibria. In further explorations, it would be interesting to investigate
to which extent these fractionalized stationary states are robust to noise in the
decision process, for example by introducing a trembling hand, the possibility
for an agent to choose, with a small probability a currency that is not the most
common among his neighbors.
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