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Abstract

We present a detailed study of some number fields and Galois groups occurring in two
dimensional models built from Wess-Zumino-Novikov-Witten (WZNW) and Z/NZ theo-
ries. The observed structures may be relevant for the classification of rational conformal
theories (RCFT) and for the understanding of links and three manifolds invariants.

More precisely we look at M , the number field generated by the modular matrix
elements Sij [1], [2] and at L, the subfield generated by the quotients Sij/Sρj , introduced
in ref. [3], following [4] and even, for Z/NZ theories [5], at the field generated by Moore
and Seiberg data.

Résumé

Nous étudions l’action galoisienne de certains corps de nombres apparaissant dans les
théories conformes des champs dites rationelles en approfondissant les théorèmes de [3] ,
[4], [5]. cette étude est illustrée par les exemples des modèles de Wess-Zumino-Novikov-
Witten et des théories Z/NZ. Ces structures présentent un interêt pour la classification
des théories conformes bidimensionnelles rationnelles et la compréhension des invariants
topologiques d’entrelacs et de variétés tridimensionnelles que l’on en déduit.
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Introduction

Since the development of Conformal Field Theory the modular aspects of Rational Conformal
Field Theories (RCFT) have become an important aspect of the subject. For example, Cardy
showed in [1] how to use modular properties of genus one characters to obtain the operator
content of the theory. In particular he noticed the importance of the genus one S and T
matrices which also play a central role in the present paper.

These considerations were systematized by Moore and Seiberg in 1988 [6, 7] who intro-
duced a finite number of matrices, called Moore and Seiberg’s data, which satisfy the so-called
Moore and Seiberg’s polynomial equations. These data represent the modular properties of
conformal blocks for the following values of the genus g and number of punctures n: (0, 3),
(0, 4) and (1, 0), (1, 1). They also examined the modular invariance problem and formulated
the “naturality argument” which gives the form of the genus one partition function in terms
of characters relative to the maximal symmetry algebra of the RCFT. This result has also
been obtained independently by R. Dijkgraaf and E. Verlinde [8].

Starting from first principles, A. Cappelli, C. Itzykson and J. B. Zuber [2], followed by A.
Kato [9], T. Gannon and Q. Ho Kim [10], Ph. Ruelle, E. Thiran, J. Weyers [11] , impressively
succeeded in classifying the genus one physical modular invariants built from Kac Moody
algebras associated with su(2) and su(3) and the corresponding coset models.

Later, the modular aspects of 2D RCFTs were connected to three dimensional topological
field theories by E. Witten in his paper on the Jones polynomial [12]. Various constructions
of three dimensional topological field theories were produced, either from the representation
theory of some quasi-Hopf algebras [13, 14] or from solutions to Moore and Seiberg’s equations
[15, 16]. It finally appeared that, from any solution to Moore and Seiberg’s equations, one
can construct a topological field theory in three dimensions.

An interesting question is then to understand the structure of this set of invariants. This
is a kind of preliminary to the classification of RCFTs. It may help understanding how
powerful the invariants are for solving problems in knot/link or three-manifold theory. A
possible strategy is to find some kind of “symmetry” which relates various invariants.

In fact, a proposal in this direction has been made in [5, 17] using the Galois group
Gal(Q/Q). The basic idea dates back to Grothendieck [18] and is the following: let us consider
the system of all modular multiplicities Mg,n together with a few fundamental operations such
as the “sewing of surfaces”, the “forgetting of marked points” and so on. These operations
should have a counterpart in the system of all fundamental groupoids3 T̂g,n in the sense of
algebraic geometry, which we will not define here. Moreover, there is a natural action of
Gal(Q/Q) on this tower of groupoids. Then, conjecturing that RCFTs provide projective
representations of the T̂g,n’s, one is naturally led to conjecture the existence of an action
of Gal(Q/Q) on these representations, or on solutions to Moore and Seiberg’s equations, or
on 3D topological theories. One may also think of reconstructing as much as possible of a
rational theory from some algebraic (collections of number fields) or geometric data.

In [3], this action was shown to be responsible of the so called “parity rule” (or “arith-
metical symmetry” ) recently discovered among torus partition functions. In [17], it is also

3With respect to suitable families of base points.
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conjectured that for a certain class of RCFTs, this Galois action is nothing but the usual Ga-
lois action (Galois acting on algebraic numbers) on Moore and Seiberg’s matrices (coefficient
by coefficient).

These reasons motivated the study of some particular examples. It also appeared that
the analysis was simpler on the “genus one data”, that is to say the S matrix, the phases
(exp (2πihj))j and exp (2πic/8). In the case of the S matrix, one can show that all matrix
elements belong to some cyclotomic extension of Q [4] and that the Galois action transforms
one matrix element of S into another one, up to a sign [3]. The aim of this paper is to
illustrate these facts on a few examples.

In the first section, we recall the general facts concerning the Galois action on S. We also
discuss the structure of Gal(Q(Siג)i,ג)/Q) and compare it with Gal(Q(λ(ג)

i )i,ג)/Q) where the
λ

(j)
i ’s are the fusion eigenvalues. In section 2, we shall consider the case of WZW models

and give a complete list of the number fields generated by S’s matrix elements in the case of
su(2) and su(3) models at any level as well as some deep relationship between these number
fields and the polynomial presentations of the Pasquier-Verlinde algebra.

We shall also discuss the Z/NZ theories. The genus one data have been computed in [19]
and we shall explicitly compute the Galois action on them. Since the partition function of
any boundaryless compact oriented three-manifold without any decoration4 can be computed
in terms of these data, we will discuss the Galois effect on these invariants (see sections 3 and
4). Let us mention that they can be computed using some Gauss sums.

1 Galois action on rational theories

For convenience of the reader, let us recall in this first section some notations and results of
ref. [3, 4].

The Hilbert space H of a RCFT admits a decomposition into a finite number of blocks:

H =
⊕

a,b∈B

NabV̄a ⊗I Vb (1)

Let us denote by a = ρ the index of the identity block, corresponding to the unit of
the fusion ring. We exclude here the heterotic case and assume Vb and V̄a are irreducible
representations of isomorphic algebras A, Ā; (⊗I means that central extension parts of A and
Ā are identified). B is the finite set of such representations occuring in (1). Nab is the non
negative integral matrix encoding multiplicities of isotypic blocks. The partition function on
modulus τ torus reads:

Z(τ) =
∑

a,b∈B

χ∗a Nab χb (2)

The SL(2, Z) modular invariance of Z(τ) requires commutation of N with the unitary
symmetric S and T matrices satisfying

4No graph embedded in it.
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S2 = (ST )3 = C, C2 = I (3)

where C is called the conjugation involution.
In [4], De Boer and Goeree have discovered a lot of deep properties satisfied by RCFT’s.

In their Appendix B they consider the Galois group [20] of the number field L generated by
the quotients of S matrix elements (Saj/Sρj)a,j∈B. They proved that this group is abelian
and these quotients are sums of roots of unity with integer coefficients. Furthermore, for a
fixed, these quotients are the eigenvalues of the left regular representation of the fusion ring,
ie roots of the characteristic polynomial det(λ−Na), where Na is the fusion matrix between
A-primary fields:

(Na)c
b = N c

ab , ΦaΦb =
∑

c

N c
ab Φc (4)

A striking result stemming out of [4] and pointed out in [3], is that one has a group morphism
from Galois automorphisms σ of the number field M generated by the modular matrix ele-
ments Sij to permutations j → jσ of B and for each such σ a collection of signs εσ(i) = ±1
such that

σ(Sij) = εσ(j)Si,jσ = εσ(i)Siσ ,j (5)

Commutativity of Gal(M/Q) has also been proved. Equation (5) immediately implies the
cocycle relation:

εσσ′(i) = εσ(i) εσ′(iσ) = εσ′(i) εσ(iσ
′
) (6)

1.1 Galois symmetry of torus matrix

Since N has integer elements, applying any automorphism σ to (SN )ik = (NS)ik leads to∑
j

Nij εσ(j) Sjσ k = εσ(i)
∑
j

Siσ j Njk

= εσ(i)
∑
j

Niσ j Sjk

= εσ(i)
∑
j

Niσ jσ Sjσ k

Invertibility of S brings the conclusion:

Niσ jσ = εσ(i)εσ(j)Nij (7)

which is a very powerful selection rule, recently discovered and exploited in [10, 11].

1.2 Symmetry of fusion rules

As a start, apply any σ to Verlinde’s formula:

Saj

Sρj

Sbj

Sρj
=
∑
c∈B

N c
ab

Scj

Sρj
(8)
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Image of the l.h.s. is:

εσ(a)εσ(b)
Saσ jSbσ j

(Sρσ j)2
= εσ(a)εσ(b)

∑
c

N c
aσ bσ

Scj

Sρj
(

Sρj

Sρσj
)2

= εσ(a)εσ(b)
∑

c

N cσ

aσ bσ

Scσ j

Sρj
(

Sρj

Sρσj
)2

whereas image of the r.h.s. is:

∑
c

N c
ab

εσ(c)
εσ(ρ)

Scσ j

Sρσ j

Equating these two images gives

∑
c

(
εσ(c)εσ(ρ)
εσ(a)εσ(b)

N c
ab

Sρσ j

Sρj
−N cσ

aσbσ ) Scσ j = 0 (9)

Contract finally with (S−1)j dσ in order to obtain the interesting rule:

Ndσ

aσbσ =
∑
c,j

εσ(c)εσ(ρ)
εσ(a)εσ(b)

N c
ab Scσ j

Sρσ j

Sρj
(S−1)j dσ

=
∑
c∈B

εσ(c)εσ(ρ)
εσ(a)εσ(b)

N c
ab Ndσ

cσ ρσ (10)

Setting

(Gσ) c
b = εσ(b) δ c

bσ (11)

we get:

G1 = I , Gσσ′ = GσGσ′ (12)

which tells us that we have a representation of Gal(M/Q) defined over Q. Setting a = ρσ−1
,

one sees that Nρσ is invertible (and its inverse has integral matrix elements). Furthermore if
one sets

Mσ,a = εσ(a)εσ(ρ)Naσ (Nρσ)−1 (13)

Equation (10) is equivalent to

Mσ,a = (Gσ)−1 NaGσ (14)

so that Φa −→ Mσ,a is a set of Q−representations of the fusion algebra equivalent to the
regular representation.

When ρσ = ρ,

Φa −→ εσ(a)εσ(ρ)Φaσ (15)

is an algebraic automorphism of the fusion algebra.
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1.3 Lines of study

Let us describe some tracks one may follow if one were to study any rational conformal field
theory where the Verlinde formula holds :

1. Start for instance from the fusion ring Fus generated by the matrices Na , look at their
characteristic and minimal polynomials (over Q ). As shown by Di Francesco and Zuber
[21], if one of the Na , say N1, is non degenerate, the fusion algebra (that is to say Fus
considered as a vector space over the field Q ) is generated by N1.

2. The arithmetic field L = Q((λ(ג)
a )) is then the splitting field of these minimal polynomials.

One may determine its Galois group Gal(L/Q) (which is abelian ) and its faithful image
into the permutation group Perm(B) determined by

σ(λ(j)
a ) = λ(jσ)

a (16)

where the λj
a ’s are the eigenvalues of Na, adequately ordered.

3. Of course the existence and unicity (up to a global permutation) of this ordering comes
from the existence of the invertible modular S matrix, such that

λ(j)
a = Saj /Sρj (17)

so that when one explicitly knows S one may as well start from (17).

4. Sρρ is then the real positive constant such that the symmetric matrix

Saj =
λ

(j)
a

λ
(ρ)
j

Sρρ (18)

is unitary. Or, taking into account the symmetry of S:

Sρρ =

√√√√ 1∑
j |λ

(j)
a /λ

(ρ)
j |2

(19)

valid for any a ∈ B.

5. In view of (18) and (19) M = L((Saj)a,j) = L(Sρρ) is at most a

quadratic extension of L.

6. The signs εσ(ρ), σ ∈ Gal(M/Q) are determined by

σ(Sρρ) = εσ(ρ) Sρσ ρ (20)

7. From which all the εσ(a)’s can be obtained by

εσ(a) = εσ(ρ)
Sa ρσ

Sρ aσ
(21)

More generally, for any j

εσ(a) λ
(j)
aσ = εσ(ρ) λ(jσ)

a λ
(j)

ρσ (22)
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8. When M is a quadratic extension of L one has the group isomorphism

Gal(M/Q) ∼ µ2 ./η Gal(L/Q)
σ −→ (εσ(ρ) , σ|L) (23)

with the group law

σσ′ ∼ (ε , σ|L) ∗η (ε′ , σ′|L) = (εε′ ησσ′ , σσ′|L) (24)

ησσ′ =
εσ(ρσ′)
εσ(ρ)

=
εσσ′(ρ)

εσ(ρ) εσ′(ρ)
(25)

In order to study this extension, one can ask whether it is split, i.e. does there exists a
group morphism

γ : Gal(L/Q) −→ Gal(M/Q)

which is a right inverse of the restriction , i.e. γ(g)|L = g for all g ∈ Gal(L/Q).

Since M = L(Sρρ) and [M : L] = 2 , σ = γ(g) is uniquely determined by a choice of
sign εg(ρ) = εσ(ρ) defining σ(Sρρ) = εσ(ρ)Sρ g(ρ) (we will use notation g(ρ) instead of
ρg, which will be more pleasant when iterating). Therefore Gal(M/Q) is split if one can
choose consistently the signs εg(ρ) for all g ∈ Gal(L/Q).

But this abelian Galois group is isomorphic to a direct product of cyclic groups:

Gal(L/Q) ' µm1 × · · · × µml (26)

Let (gi)i=1,...,l be a choice of generators corresponding to this factorization. Since

σ σ′(Sρρ) = εg(ρ) εg′(ρ)
Sg(ρ) g′(ρ) = σ′ σ(Sρρ)

commutativity is satisfied and we can consider each cyclic factor independently . For
such a factor the only condition is to insure that the image σi of gi satisfies (σi)mi = IdM

. This is equivalent to :

εσi(ρ) εσi(gi(ρ)) · · · εσi(g
mi−1
i (ρ)) = 1 (27)

Since

εσ(gk(ρ)) = εσ(ρ)
Sg(ρ) gk(ρ)

Sρ gk+1(ρ)

= εσ(ρ) λ
gk(ρ)
g(ρ)

Sρ gk(ρ)

Sρ gk+1(ρ)

it is also equivalent to :

(εσi(ρ))mi

mi−1∏
k=0

λ
(gk

i (ρ))

gi(ρ) = 1 (28)

Therefore this extension is not a direct product if and only if there exists such an
even mi with

mi−1∏
k=0

λ
(gk

i (ρ))

gi(ρ) = −1. (29)
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On the contrary, when such a splitting holds, we can define τ = σ γ(σ|L)−1 ∈ Gal(M/L)
so that since the groups are abelian one has the direct product factorization

σ −→ (τ, σ|L)
Gal(M/Q) ' Gal(M/L)×Gal(L/Q) ' µ2 ×Gal(L/Q) (30)

and the cocycle (25) is a coboundary.

A more efficient criterion is

Gal(M/Q) is split if and only if there exists α such that
α2 ∈ Q and M = L(α) (31)

If this holds, any element of M is uniquely written x + yα with x, y ∈ L and

σ(x + yα) = σ|L(x) + σ|L(y)ησ α , ησ = ±1 (32)

so that

σ −→ (ησ , σ|L)
Gal(M/Q) −→ µ2 ×Gal(L/Q)

is a group isomorphism. Conversely, if there exists a section γ : Gal(L/Q) −→ Gal(M/Q)
set

M ′ = {x ∈ M/γ(σ)(x) = x for all σ ∈ Gal(L/Q)} (33)

Then Galois fundamental theorem gives

Gal(M/M′) = γ(Gal(L/Q)) (34)

which implies [M : M ′] = [L : Q] and

[M ′ : Q] =
[M : Q]
[M : M′]

= [M : L] = 2 (35)

insuring the existence of α ∈ M ′ such that

M ′ = Q(α) , α2 ∈ Q (36)

But α does not belong to L , because otherwise if one had M ′ included into L, the re-
strictions to L of elements of Gal(M/M′) would cover only Gal(L/M′), which contradicts
(34) ; this ends the proof of (31).

This criterion can even be expressed in terms of S%%. Write S%% = r +αs with r, s ∈ L.
Since De Boer and Goeree have proved that S2

%% = r2 + α2s2 + 2αrs ∈ L and since α
and S%% do not belong to L, one has necessarily r = 0, i.e.

Gal(M/Q) is split if and only if there exists s ∈ L and an integer a
such that a is not a square and S%% =

√
a s (37)
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9. One may also think of using this Galois structure at best for building modular invariants
of the form (2) , for instance by using [G + G−1, S] = 0 (G defined in (11)), as noticed
independently in [24]. We will rather here, as a first step, try to get some insights into
classical situations.

10. One may even look at bigger number fields, such as the one generated by diagonal
elements Tj of the modular T matrix. Their Galois action may bring us outside the
category of usually considered rational theories. Nevertheless the transformed data
can still be used to define topological invariants. We will adopt this broader point of
view when presenting the examples of topological Z/NZ three dimensional theories.
Following [17], the relevant field in this context is the extension K generated by the Sij

elements, the (exp(2iπhj) )j and exp(2iπc/8). We will call such data

(Sij , exp(2iπhj), exp (2πic/8) ) solution of (ST )3 = C, S4 = I (38)

“Moore and Seiberg” data and will consider in section 3 the orbits of Galois action on
such collections of algebraic numbers.

2 Kac Moody situation

Let us consider the case of a WZNW model based on a compact simple Lie algebra G.

2.1 General case

As pointed out by Gepner [25], the formal Weyl character formula [26] allows one to express
the S matrix elements (which we index by shifted weights p = λ + ρ) in terms of values of
characters for the related compact Lie group:

Sp p′ =
i|∆+|

nr/2
√
|RV |

∑
w∈W

ε(w) exp
(−2iπw(p) · p′

n

)
(39)

=
2|∆+|

nr/2
√
|RV |

∏
α∈∆+

sin
(π

n
α(Hp′)

)
chλ

(
exp (−

2iπ Hp′

n

)
(40)

= Sρ p′ chλ

(
exp−

2iπ Hp′

n

)
(41)

where ∆+ is the set of positive roots, ρ = 1
2

∑
α∈∆+

, r is the rank, |RV | = |RV ∗/RV | is the
determinant of the coroot lattice, n = k + hV , hV dual Coxeter number. Hp′ is the matrix
in the Cartan subalgebra of G such that λ · p′ = λ(Hp′) for any weight λ. We normalize the
scalar product as in Bourbaki and Humphreys [26].

If we express any root in terms of the simple roots αi as

α =
r∑

i=1

ai αi (42)

we have

Sρρ =
2|∆+|

nr/2
√
|RV |

∏
α∈∆+

sin
( π

∑r
i=1 ai (αi · αi)

2n

)
(43)
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2.2 su(N) case

For these algebras the matrices corresponding to the fundamental weights are

Hµj =
j∑

m=1

δm − j

N

N∑
m=1

δm (44)

where δm is the diagonal matrix with only 1 at element m × m. Furthermore n = k +
N ,

√
|RV | =

√
N , |∆+| = N(N − 1)/2. Rather than writing redundant formulae, let us

look directly at the lowest rank algebras :

2.3 ŝu(2)k case

Horizontal parts of integrable ŝu(2)k integrable highest weights are Λ = Λ1µ1 where Λ1 =
2j ∈ {0, 1, · · · , k} is the number of boxes in the corresponding Young tableau (Λ1 = 0 being
the trivial su(2) representation), j is the spin of the representation, µ1 is the fundamental
weight. Let us set p = Λ1 + 1.

The relevant finite Fourier transform matrix is

Spq =
i√
2n

(e−iπpq/n − eiπpq/n)

=
√

2
n

sin
(πpq

n

)
(45)

It satisfies S2 = In−1.

Identification of the number fields L, M

L = Q
(( Spq

S1q

))
= Q

(
cos

( π

n

))
= Q2n ∩ R (46)

This is due to the fact that cos(π/n) = S2 1/2S1 1 ∈ L and these quotients can be expressed
in terms of Chebyshev polynomials T and U which have integer coefficients:

sin(pqθ)/ sin(qθ) = Up−1(cos(qθ)) = Up−1(Tq(cos(θ)). (47)

This field is well known, its Galois group consists of the ϕ(2n)/2 automorphisms gl for 1 ≤
l ≤ n− 1 and l coprime with 2n such that

gl

(
cos

(π

n

))
= cos

( lπ

n

)
. (48)

Notice that ϕ(2n)/2 equals ϕ(n) when n is even and ϕ(n)/2 when n is odd, ϕ(n) being the
number of integers between 1 and n, coprime with n (1 being coprime with anything !). This
group is isomorphic to ( (Z/2nZ)∗ , ×) / ({1,−1},×). It is clearly cyclic when n is prime.

It is straightforward to check directly that L is normal: since

Un−1(x) = 2n−1
n−1∏
j=1

(
x− cos

(jπ

n

))
(49)
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has rational coefficients, any Q-automorphism sends cos(π/n) into a cos(lπ/n) = Tl(cos(π/n)) ∈
L.

Let us now study

M = Q
(

cos
( π

n

)
,

√
2
n

sin
( π

n

) )
. (50)

In fact, let us prove that

n = 2m is even implies M = L (51)

In this case,

sin
(π

n

)
= sin

( π

2
− (m− 1)π

2m

)
= cos

((m− 1)π
2m

)
= Tm−1

(
cos

(π

n

))
(52)

So that in this case equation (50) simplifies into

M = Q
(

cos
( π

n

)
,
√

m
)

= L(
√

m)

Let p be a prime divisor of m :

• If p = 2, n is a multiple of 4 and

1√
2

= cos
(πn/4

n

)
= Tn/4

(
cos

(π

n

))
∈ L

• If p ≡ 1 (mod 4) we have the following Gauss sum formula [28]:

√
p =

p−1∑
j=1

( j

p

)
exp

(2iπj

p

)
(53)

= 2
(p−1)/4∑

j=1

( j

p

)
cos

(2jπ

p

)
− 2

(−2
p

) (p−5)/4∑
j=0

(2j + 1
p

)
cos

((2j + 1)π
p

)

where
(

j
p

)
is the Legendre symbol, equal to ±1.

(
−2
p

)
= +1 if p ≡ 1 (mod 8), and

= −1 if p ≡ 5 (mod 8). Equation (53) implies that

√
p ∈ Qp

⋂
R ⊂ Q2n

⋂
R = Q

(
cos

( π

n

))
• If p ≡ 3 (mod 4) one has similarly5

5For practical use, let us also mention
√

p = 2
∑(p−3)/4

j=1

(
j
p

)
sin
(

2jπ
p

)
+ 2
(
−2
p

) ∑(p−3)/4

j=0

(
2j+1

p

)
sin
(

(2j+1)π
p

)
(
−2
p

)
= 1 if p ≡ 3 mod 8 and = −1 if p ≡ 7 mod 8

for instance
√

7 = 2
(

sin
(

2π
7

)
+ sin

(
3π
7

)
− sin

(
π
7

) )
.
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√
p = 2

(p−1)/2∑
j=1

( j

p

)
sin
(2πj

p

)
(54)

and sin
(

2πj
p

)
= cos

(
π(p−4)j

2p

)
belongs to Q4p

⋂
R which is included into

Q2n
⋂

R = Q
(

cos
( π

n

))
.

This ends the proof of proposition (51).

The converse is true, i.e.

n is odd implies [M : L] = 2 (55)

To prove this, let us use some results on cyclotomic fields detailed in Appendix B: For n odd,
we have:

Qn = Q2n = Q
(

cos
( π

n

)
, i sin

( π

n

) )
Q4n = Q

(
cos

( π

n

)
, sin

( π

n

)
, i

)
Q8n = Q

(
cos

( π

n

)
, sin

( π

n

)
,
√

2 , i
)

(56)

Using [Ql : Q ] = ϕ(l), one shows that for n odd i doesn’t belong to Qn and
√

2 doesn’t
belong to Q4n. On the other hand Gauss’ sum formulae seen above show that either

√
n or

i
√

n ∈ Qn. Therefore
√

n and sin
(

π
n

)
do belong to Q4n.

Now, if we had M = L, i.e.
√

2
n sin

(
π
n

)
∈ L ⊂ Qn, this would imply

√
2 ∈ Q4n. This

ends the proof of (55).

As seen above, our Galois group can, for n odd, be identified with the extension

Gal(M/Q) −→ µ2 ./ Gal(L/Q)
σ −→ (εσ , σl ) (57)

with group law

(ε, σl) · (ε′, σl′) = (ε ε′sign
(

sin
( ll′ π

n

) )
, σl σl′) (58)

The splitting criterion (37) reads here for n odd:

S%% =
√

2
n

sin
(π

n

)
=
√

a s

with s ∈ Q(cos(π/n)) = Q(exp(2iπ/2n))∩R and a a positive integer which is not a square.
This condition is equivalent to the existence of a positive integer m such that 2nm is not a
square and √

m sin(π/n) ∈ Q(exp (2iπ/2n)) = Q(exp (2iπ/n))

11



But since i sin(π/n) ∈ Q(exp (2iπ/n)), for su(2) one has the equivalent criterion:

Gal(M/Q) is split if and only if there exists a positive integer m
such that 2nm is not a square and i

√
m ∈ Q(exp(2iπ/n)) (59)

As a consequence

When n has at least one prime factor p ≡ 3 (mod 4) ,

Gal(M/Q) ' µ2 ×Gal(L/Q) (60)

As a counterexample, note that in the case n = 5, studied in details in [3], Gal(M/Q) ' µ4
is not split, in agreement with (29)!

12



One can sum up some of these facts in the following table:

k n = k + 2 L = Q({Siג/Sρג}) M = Q({Siג}) Gal(M/Q) K

1 3 Q Q(
√

2) µ2 Q8

2 4 Q(
√

2) Q(
√

2) µ2 Q8

3 5 Q(
√

5) Q(
√

5−
√

5) µ4 Q40

4 6 Q(
√

3) Q(
√

3) µ2 Q12

6 8 Q(
√

2−
√

2) Q(
√

2−
√

2) µ4 Q16

10 12 Q(
√

2,
√

3) Q(
√

2,
√

3) µ2 × µ2 Q24

16 18 Q(cos(π/18)) Q(cos(π/18)) µ6 Q36

28 30 Q(cos(π/30)) Q(cos(π/30)) µ4 × µ2 Q60

2m− 2 2m Q(cos(π/(2m))) Q(cos(π/(2m))) (Z/4mZ)∗

{±1} Q4m
see

2m− 1 2m + 1 Q(cos(π/(2m + 1))) L(
√

2
n sin(π

n)) text Q16m+8

Table 1: Fields L, M, Galois group of M, some cyclotomic field K containing M. µm

denotes the multiplicative cyclic group of order m.
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Fusion rules for ŝu(2)k The fusion rules are:

Φp Φq =
n−1−|n−p−q|∑

r=|p−q|+1

Φr

=
p+q−1−2η(p+q−n)∑

r=|p−q|+1

Φr (61)

where p, q, r ∈ B = {1, · · · , n− 1}, n = k + 2, the sum is only on r ≡ p− q + 1 mod 2 and{
η = 0 if p + q < n

η = 1 if 2n > p + q ≥ n
(62)

As shown in [21], the fusion algebra is isomorphic to Q[x]/Un−1(x/2) , Un−1 being a
Chebyshev polynomial. For completeness, let us give the factorized form of these polynomials
Pn(x) = Un−1(x/2) for ̂su(2)n−2. Their interpretation will be discussed after deriving similar
expressions for ̂su(3)n−3.

14



P3 = (x− 1) (x + 1)

P4 = x
(
x2 − 2

)
P5 =

(
x2 + x− 1

) (
x2 − x− 1

)
P6 = x (x− 1) (x + 1) (x2 − 3)
P7 = (x3 − x2 − 2 x + 1)(x3 + x2 − 2 x− 1)

P8 = x
(
x2 − 2

) (
x4 − 4 x2 + 2

)
P9 = (x− 1)(x + 1)(x3 − 3x + 1)(x3 − 3x− 1)

P10 = x(x2 + x + 1)(x2 − x− 1)(x4 − 5x2 + 5)
P11 = (x5 − x4 − 4x3 + 3x2 + 3x− 1) ·

(x5 + x4 − 4x3 − 3x2 + 3x + 1)
P12 = x (x− 1) (x + 1) (x2 − 2)(x2 − 3)(x4 − 4 x2 + 1)
P18 = x(x− 1)(x + 1)(x2 − 3) ·

(x3 − 3x + 1)(x3 − 3x− 1)(x6 − 6 x4 + 9 x2 − 3)
P30 = x (x− 1) (x + 1) (x2 − 3)(x2 − x− 1)(x2 + x− 1) ·(

x4 − 5 x2 + 5
) (

x4 + x3 − 4 x2 − 4 x + 1
) (

x4 − x3 − 4 x2 + 4 x + 1
)
·(

x8 − 7 x6 + 14 x4 − 8 x2 + 1
)

Table 2 : The characteristic polynomials of the fundamental generator x = Φ2 of the fusion
algebra.

2.4 ŝu(3)k case

The diagonal matrix corresponding to a shifted weight

p = p1µ1 + p2µ2 , p1 + p2 ≤ n− 1 (63)

is Hp =
1
3

diag
(
2p1 + p2, p2 − p1, −(p1 + 2p2)

)
(64)

One also has

Sρρ =
4
√

3
3n

(
1− cos

(2π

n

))
sin
(2π

n

)
(65)

The character of the fundamental representation p = µ1 being simply the trace, the eigenval-
ues of Nf are:

λ
(p)
f = λ

(p1,p2)
f = ζ−2p1−p2 + ζp1−p2 + ζp1+2p2 , with ζ = exp

(2iπ

3n

)
(66)

Since

cos
(2π

n

)
=

λ
(ρ)
f − 1

2
∈ L = Q((λ(p)

f )) (67)
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we have:

M = L(Sρρ) = L
(√

3 sin
(2π

n

))
(68)

Furthermore,

i
√

3 ∈ L. (69)

because if we set p3 = n− p1 − p2, we have

λ
(p3, p1)
f = exp

(2iπ

3

)
λ

(p1, p2)
f . (70)

In particular exp
(

2iπ
3

)
= λ

(n−2,1)
f /λ

(1,1)
f . Thus, if we set c = cos

(
2π
n

)
and s = sin

(
2π
n

)
, (68)

is equivalent to

M = L( i s ) (71)

But for n ≥ 6 , we can consider6

λ
(1,4)
f = ζ−6 + ζ−3 + ζ9 = 4c3 + 2c2 − 2c− 1 + 2i s (2c + 1)(c− 1) (72)

which shows that is ∈ L. We have thus proved: ζ3 = c + is ∈ L and Q
(

exp
(

2iπ
n

))
⊂ L =

M ⊂ Q
(

exp
(

2iπ
3n

))
.

But ζ = λ
(1,3)
f / (ζ−6 + ζ−3 + ζ6 ) ∈ L showing that

for n ≥ 6 L = M = Q
(

exp
(2iπ

3n

))
(73)

6The idea of this proof is due to T. Gannon , whom we warmly thank.

16



Fusion rules for ŝu(3)k In a very dense paper [25], Gepner has shown that Fus is isomor-
phic to the polynomial algebra in two variables x, y which satisfy relations

∂Vn

∂x
=

∂Vn

∂y
= 0 (74)

where

Vn =
1
n

(
qn
1 + qn

2 +
1

qn
1 qn

2

)
(75)

is reexpressed in terms of the characters

x = q1 + q2 +
1

q1q2
y = q1q2 +

1
q1

+
1
q2

(76)

Another theorem, due to Di Francesco, Zuber and Bauer [21], asserts that Fus is isomorphic
to Q[x]/Pn(x) where Pn(x) is the characteristic polynomial of Nf , of degree (n−1)(n−2)/2,
whose roots are the λ

(p)
µ1 ’s.

We have checked for n ≤ 12 using the Gröbner bases package available on Maple algebraic
system (see the program below) that the ideal of Q[x, y] generated by ∂Vn

∂x and ∂Vn
∂y is equal

to the ideal generated by Pn(x) and an element of the form y−Y (x) , which form a “Gröbner
basis” [27] of it. For instance at n = 7 the following polynomial lies in this ideal:

46228 y − 59833 x2 − 157075 x5

+120859 x8 − 30564 x11 + 1865 x14

This seems to us a striking property of these polynomial algebras !
One can even prove:

Pn(x) is of the form P (x3) or xP (x3) or x2P (x3) (77)

This is because multiplication in SU(3) by the center element jId (j = exp(2iπ/3)) corre-
sponds to the transformation x 7→ x′ = jx, y 7→ y′ = j2y, and Vn(x′, y′ ) = jn Vn(x, y).

Therefore ∂Vn
∂x = ∂Vn

∂y = 0 implies

∂Vn

∂x
(jx, j2y) =

∂Vn

∂y
(jx, j2y) = 0

and

Pn(jx) = 0 in Q[x]/Pn(x) . (78)

Similarly

Pn(j2x) = 0 . (79)

Writing Pn(x) = P
(0)
n (x3)+xP

(1)
n (x3)+x2P

(2)
n (x3) , linear combinations of Pn = 0 , (78) and

(79) give
P (0)

n = xP (1)
n = x2P (2)

n = 0 in Q[x]/Pn(x)

But if two of these three polynomials were non zero their greatest common divisor would be
a generator of degree smaller than Pn(x), which ends the proof of (77).
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Example: ŝu(3)2 The characteristic polynomial of Nf is

P5(x) = x6 − 4x3 − 1 = (x2 − x− 1)(x4 + x3 + 2x2 − x + 1) (80)

For ζ = exp (2iπ/15), it is a funny exercise to check by use of the cyclotomic polynomials
Φ15(ζ) = ζ8 − ζ7 + ζ5 − ζ4 + ζ3 − ζ + 1 = 0
and Φ5(t) (t = ζ3 here ), that λ

(2,1)
f = ζ−5 + ζ + ζ4 (and therefore its Galois conjugates), are

roots of x4 + x3 + 2x2 − x + 1. Since the roots of x6 − 4x3 − 1 are

x = exp(2iπl/3)
(1±

√
5

2

)
(81)

one can identify easily L = Q(
√

5, i
√

3), and

M = Q(exp(2iπ/15) ) = Q
(√

5, i
√

3,
√

3
√

5−
√

5
)
. (82)
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For the lowest values of n, let us list the characteristic polynomials Pn(x) of Nf .

P4 = x3 − 1 = (x2 + x + 1) (x− 1)
P5 = x6 − 4x3 − 1 = (x4 + x3 + 2x2 − x + 1) (x2 − x− 1)
P6 = x10 − 9x7 + 9x4 − 8x

= (x6 − x3 + 1) (x2 + 2x + 4) (x− 2) x

P7 = x15 − 16 x12 + 59 x9 − 67 x6 − 37 x3 + 8
=

(
x2 + x + 2

) (
x3 − 2 x2 − x + 1

) (
x6 + 2 x5 + 5 x4 + 3 x2 + x + 1

)
·(

x4 − x3 − x2 − 2 x + 4
)

P8 = x21 − 25 x18 + 191 x15 − 559 x12 + 531 x9 − 507 x6 + 341 x3 + 27
= (x− 1)

(
x2 + x + 1

) (
x2 + 2 x + 3

) (
x2 + 1

) (
x2 − 2 x− 1

)
·(

x4 − x2 + 1
) (

x4 + 2 x3 + 5 x2 − 2 x + 1
) (

x4 − 2 x3 + x2 − 6 x + 9
)

P9 = x28 − 36 x25 + 459 x22 − 2655 x19 + 7290 x16 − 9801
x13 + 3429 x10 + 6075 x7 − 1458 x4 + 729 x

= x
(
x3 − 3 x2 + 3

) (
x6 + 3 x5 + 9 x4 + 6 x3 + 9 x2 + 9

)
·(

x18 − 18 x15 + 108 x12 − 252 x9 + 324 x6 − 81 x3 + 27
)

P10 = x36 − 49 x33 + 929 x30 − 8865 x27 + 46315 x24 − 136058 x21 + 219202 x18

−198802 x15 + 189535 x12 − 152085 x9 + 62341 x6 + 20851 x3 − 1331
=

(
x2 − x− 1

) (
x2 − 3 x + 1

) (
x4 − x3 + x2 − x + 1

) (
x4 + 4 x3 + 11 x2 + 14 x + 11

)
·(

x4 + 3 x3 + 8 x2 + 3 x + 1
) (

x4 + x3 + 2 x2 − x + 1
)
·(

x8 + x7 − x5 − x4 − x3 + x + 1
)
·(

x8 − 4 x7 + 5 x6 − 16 x5 + 54 x4 − 66 x3 + 75 x2 − 154 x + 121
)
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P11 = x45 − 64 x42 + 1679 x39 − 23699 x36 + 198636 x33 − 1031272 x30 + 3360456 x27

−6855112 x24 + 8542281 x21 − 5062167 x18 − 1959023 x15 + 4912958 x12

−1335971 x9 + 1092507 x6 − 375746 x3 − 12167
=

(
x5 − 4 x4 + 2 x3 + 5 x2 − 2 x− 1

)
·(

x10 + 4 x9 + 14 x8 + 18 x7 + 26 x6 + 7 x5 + 25 x4 + 6 x3 + 9 x2 − 2 x + 1
)
·(

x10 + 3 x9 + 9 x8 + 5 x7 + 4 x6 − 21 x5 + 3 x4 − 2 x3 + 38 x2 + 4 x + 23
)
·

(x20 − 3 x19 − 17 x17 + 62 x16 + 58 x14 − 405 x13 + 44 x12 + 26 x11 + 1088 x10

−41 x9 − 352 x8 − 1721 x7 + 158 x6 + 583 x5 + 1383 x4

−244 x3 − 858 x2 − 92 x + 529)
P12 = x55 − 81 x52 + 2799 x49 − 54447 x46 + 662742 x43 − 5311422 x40 + 28737907 x37

−106030035 x34 + 266507370 x31 − 451720778 x28 + 518828787 x25

−462789387 x22 + 436171797 x19 − 357754725 x16 + 197274672 x13

−12009616 x10 − 55706688 x7 + 4315968 x4 − 1124864 x

= x (x− 1) (x− 2)
(
x2 + 2 x + 4

) (
x2 + x + 1

) (
x2 − 2 x− 2

) (
x2 + 2 x + 2

)
·(

x4 − 2 x3 + 2 x2 − 4 x + 4
) (

x4 + 2 x3 + 6 x2 − 4 x + 4
)
·(

x6 − x3 + 1
) (

x6 + x3 + 1
)

(
x12 − 34 x9 + 381 x6 − 1564 x3 + 2197

) (
x12 − 14 x9 + 53 x6 − 4 x3 + 1

)
Table 3 : For the lowest values of n, characteristic polynomials Pn(x) of Nf with their

decomposition into irreducible polynomials over the rationals.
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These polynomials have been obtained with help of the following Maple program:

with(grobner);
w(1,x,y) := x;
w(2,x,y) := x^{2}-2*y;
w(3,x,y) := x^{3}-3*x*y+3;
for n from 4 to 12 do
w(n,x,y) := simplify(x*w(n-1,x,y)-y*w(n-2,x,y)+w(n-3,x,y));
vx(n,x,y) := simplify( simplify(diff(w(n,x,y),x))/n);
vy(n,x,y) := simplify( simplify(diff(w(n,x,y),y))/n);
gb(n) := gbasis([vx(n,x,y),vy(n,x,y)], [y,x],plex);
p(n ,x) := sort(simplify(gb(n)[2]));
pf(n,x) :=factor(");
solve({ vx(n,x,y)=0,vy(n,x,y)=0},{x,y});
od;
latex({p(7,x),pf(7,x),...}, ‘grobnerf.tex‘ );

There is a one to one correspondence between the irreducible factors of these polynomials
and the orbits of B under Gal(L/Q) : Let O be such an orbit and jo ∈ O . By definition
j ∈ O if and only if there exists a σ ∈ Gal(L/Q) such that j = jσ

o in the sense of (16).
Consider the polynomials

Pa,O,n(x) =
∏
j∈O

(x− λ(j)
a ) (83)

For any σ , j → jσ induces a permutation of O , so that∏
j∈O

(
x− σ(λ(j)

a )
)

=
∏
j∈O

(
x− λ(jσ)

a

)
= Pa,O,n(x)

which implies that Pa,O,n(x) has rational coefficients.
Using the non degeneracy of its roots λ

(j)
f , let us show that Pf,O,n is irreducible: a factor-

ization Pf,O,n = P (1) P (2) in Q[x] would correspond to a splitting of its complex roots into
two disjoint subsets, O = O1

⋃
O2 separately stable under Galois morphisms. For any σ and

j ∈ O1 , jσ , determined by σ(λ(j)
f ) = λ

(jσ)
f would belong to O1 i.e. O1 would be an orbit

in itself, which is absurd.

Furthermore one can consider the subfield corresponding to any orbit O

LO = Q
(

(λ(ג)
f O∋ג(

)
' Q[x]

Pf,O,n(x)
(84)

Since any λ
(j)
a is a polynomial in λ

(j)
f , they generate L. By the chinese remainder theorem,

the direct product of these fields is isomorphic to the fusion algebra (alternatively Fus is iso-
morphic to a block diagonal matrix algebra, each block being isomorphic to the corresponding
field LO ) :

Fus ' Q[x]
Pf,n(x)

' ×O LO (85)
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The stabilizer of the orbit O clearly equals the relative Galois group:

HO = {σ ∈ Gal(L/Q)/ג = σforג ג ∈ O} = Gal(L/LO) (86)

(note that since Gal(L/Q) is abelian, if j = jσ holds for one j ∈ O, it holds for all of them).
The order [L : Q] is a multiple of the greatest common multiple of the degrees [LO : Q] =

deg(Pf,O,n).
To our knowledge the idea to consider the factorization of these polynomials first appeared

in [29].

k n = k + 3 L = Q({Siג/Sρג}) M = Q({Siג}) Gal(M/Q) K

1 4 Q
(
i
√

3
)

Q(
√

3, i) µ2 × µ2 = M

2 5 Q(
√

5, i
√

3) Q
(

exp
(

2iπ
15

))
µ2 × µ4 = M

3 6 Q
(

exp
(

iπ
9

))
= L µ6 = L

4 7 Q
(

exp
(

2iπ
21

))
= L µ2 × µ6 = L

5 8 Q
(

exp
(

iπ
12

))
= L µ2 × µ2 × µ2 = L

6 9 Q
(

exp
(

2iπ
27

))
= L µ18 = L

7 10 Q
(

exp
(

iπ
15

))
= L µ2 × µ4 = L

8 11 Q
(

exp
(

2iπ
33

))
= L µ2 × µ10 = L

9 12 Q
(

exp
(

iπ
18

))
= L µ2 × µ6 = L

n− 3 n Q
(

exp
(

2iπ
3n

))
= L (Z/3nZ)∗ = L

Table 4: Fields L, M, Galois group of M, some cyclotomic field K containing M for su(3)k.
µm denotes the multiplicative cyclic group of order m.
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3 Z/NZ theories

We shall now compute the Galois action on S, (exp (2πihj))j and exp (2πic/8) of RCFTs with
fusion rules of Z/NZ type. These data have been determined in [19] and we recall here the
results7. Primary fields are labelled by an element of Z/NZ and the S matrix is determined
by the residue mod N of an integer a coprime with N and we have:

Sn m =
1√
N

exp
(
−2πia

nm

N

)
(87)

This matrix is denoted by S(a). In the case of (exp (2πihj))j and exp (2πic/8), two cases
must be distinguished according to N ’s parity:

• When N is even, a is odd. In this case, we should fix a modulo 2N and we have:exp (2πihk) = exp (2πiak2/2N)
exp (2πic(a)/8) = 1√

2
S2N (a)

(88)

The Gauss sum SN (a) is defined by equation (122) in Appendix A.

• When N is odd, a must be taken even and we write a = 2b where b ∧ N = 1, b being
taken modulo N and we have:{

exp (2πihk) = exp (2πibk2/N)
exp (2πic(b)/8) = SN (b)

(89)

As advocated in [17], and as we will recall in section 4, these numbers completely determine
partition functions of boundaryless three-manifolds without any decoration in the topological
theory deduced from a solution to Moore and Seiberg’s equations.

3.1 Determination of the number fields

In this section, we shall determine the number field generated by all matrix elements of S,
the (exp (2πihj))j and exp (2πic/8). Let us denote by K the field generated by S’s matrix
elements, the (exp (2πihj))j and exp (2πic/8). We have the following table:

N K
N ≡ 0 (mod 4) Q2N
N ≡ 1 (mod 4) QN
N ≡ 2 (mod 4) Q4N
N ≡ 3 (mod 4) Q4N

(90)

7In fact, in [19], the equations solved were S2 = C and (ST )3 = 1. It is easy to infer from that the solution
to S2 = (ST )3 = C.
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3.2 Explicit Galois action

The aim of this section is to prove the following result:


When N ≡ 0, 1 (mod 4), there exist exactly two orbits
of Z/NZ data.
When N ≡ 2, 3 (mod 4) there is only one such orbit.

(91)

In order to prove it, we shall examine both cases by giving explicit formulae for the
Galois action on all these numbers. As we have seen before, the S matrix, (exp (2πihj))j

and exp (2πic/8) are determined by the a or b parameter appearing in formulae (88) and
(89). In all cases, the Galois action on Sn m/S0 0 is determined through the cyclotomic
character χN : Gal(QN/Q) → (Z/NZ)∗. There exists a sign εN,a(σ) = ±1 such that, for all
σ ∈ Gal(Q/Q) one has

σ(S(a)) = εN (σ)S(aχN (σ)) (92)

In all cases the (exp (2πihn))n are N -th or 2N -th roots of unity. The Galois action on them
is therefore defined by χ2N . For exp (2πic/8) we will use explicit expressions of Gauss’ sums.
Let us go into the details of each case:

Case N ≡ 0 (mod 4) The Galois action on the (exp (2iπhj))j is completely determined by
the cyclotomic character χ2N . The central charge c(a) (mod 8) depends on a mod 2N and
therefore using the fact that (ST )3 = C has integer coefficients, we show that exp (2πic/8)
transforms as

exp (2πic(a)/8)−→εN (σ) exp (2πic(χ2N (σ)a)/8) (93)

Of course, εN (σ) is such that:
√

N−→εN (σ)
√

N (94)

Let us introduce the following notation: N = 2ν2(N)N ′ where N ′ is odd as well as E(x) defined
in (128) in Appendix A. Then, one has:

exp
(

2πi
c(a)
8

)
=
E(N ′a)
E(N ′)

(−1
a

) (
21+ν2(N)

a

) (
a

N ′

)
ξ8 (95)

The explicit expression for εN (σ) can be found using formulae (93), (131) and

E(N ′χ4(σ))
E(N ′)

ξ
χ8(σ)−1
8 = (−1)(χ

2
8−1)/8(−1)

N′−1
2

× (χ4−1)

2

εN (σ) =
(

χN (σ)
N ′

)
exp

(
iπ

(
N ′ − 1

2
χ4(σ)− 1

2
+ ν2(N)

χ8(σ)2 − 1
8

))
(96)

Here, 2N ≡ 0 (mod 8) and therefore, χ2N (σ) specifies χ8(σ) by reduction modulo 8. Hence-
forth, the sign εN (σ) is completely determined. Therefore, there are two orbits through the
Galois action on Moore-Seiberg data. Representatives of each orbit are found by fixing a and
simultaneously changing S0 0 and exp (2πic/8) into their opposite.
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Case N ≡ 1 (mod 4) This is the simplest case since

exp (2πic(b)/8) =
(

b

N

)
exp (2πihn) = exp (2πi

b

N
n2) (97)

In this case, we immediately get:

exp (2πibn2/N) −→ exp (2πib χN (σ)n2/N)
exp (2πic(b)/8) −→ exp (2πic(b)/8) ∈ Q√

N −→ εN (σ)×
√

N (98)

where

εN (σ) =
(

χN (σ)
N

)
(99)

According to this equation, there are exactly two orbits for the Galois action. Representatives
of each orbit are easily found by fixing b and simultaneously changing S0 0 and exp (2πic/8)
into their opposite.

Case N ≡ 3 (mod 4) This case is as simple as the N ≡ 1 (mod 4) case since

exp (2πic/8) = i

(
b

N

)
exp (2πihn) = exp (2πi

b

N
n2) (100)

and therefore:

exp (2πibn2/N) −→ exp (2πibχN (σ)n2/N)
exp (2πic(b)/8) −→ εN (σ) exp (2πic(χN (σ)b)/8)√

N −→ εN (σ)
√

N (101)

with

εN (σ) = (−1)(χ4(σ)−1)/2
(

χN (σ)
N

)
(102)

Let us show that there is only one Galois orbit: let (b, b′) be two invertible elements of the ring
Z/NZ and (α, α′) ∈ {±1}2, there exists a unique χN ∈ (Z/NZ)∗ and a unique χ4 ∈ (Z/4Z)∗

such that

b′ ≡ b χN (mod N) α′ = α (−1)(χ4−1)/2 (103)

Bezout’s theorem shows that (χN , χ4) arises from a unique χ4N ∈ (Z/4NZ)∗ by reduction
modulo N and 4 respectively. Moreover, there exists a unique σ ∈ Gal(Q4N/Q) satisfying
χ4N (σ) = χ4N and this proves that we have only one orbit under the Galois action.

Case N ≡ 2 (mod 4) In this case, since
√

N ∈ Q4N, the Galois action is defined through
the cyclotomic character χ4N , or equivalently χ2N and χ8. The transformation laws are:

exp (2πian2/2N) −→ exp (2πiaχ2N (σ)n2/2N)
exp (2πic(a)/8) −→ εN (σ) exp (2πic(χ2N (σ)a)/8)√

N −→ εN (σ)
√

N (104)

where εN (σ) is given by formula (99) with ν2(N) = 1. The method used in the previous case
– N ≡ 3 (mod 4) – shows that there is exactly one orbit under the Galois action: since N ≡ 2
(mod 4), 8 does not divide 2N . Henceforth, fixing χ2N (σ) does not fix χ8(σ). This concludes
our proof of (91).
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4 On Z/NZ topological invariants

In this section, we shall see how the Galois action on S and T matrices deduced from Z/NZ
fusion rules enables us to relate various topological invariants of a boundaryless three-manifold
M without any decoration. We shall compare them to the ones described by Kohno in [34].
We shall see that these invariants only depend on the a (or b parameter) introduced in section
3 and of a sign. Such an invariant will be denoted by Z±,a (or Z±,b). As explained by theorem
91, at fixed a (or b) parameter, the sign distinguishes between the two orbits under the Galois
action.

We shall show the following relation between Z+,a and Z−,a:

Z+,a[M ]
Z−,a[M ]

= (−1)1+dim(H1(M,Z)) (105)

which shows that the quotient Z+,a/Z−,a is a Galois invariant and is also related to the
“classical” topological invariant dim(H1(M, Z)).

Notations: Here, we follow the notations of [15]. Let M be an oriented boundaryless
compact oriented three-manifold without any decoration. In this paragraph, we shall use
surgery presentations for computing Z[M ], a complex valued topological invariant of M . Let
L be a framed oriented link in S3, ](L) denotes the number of components of L. The Gauss
linking number of two components Li and Lj of L is denoted by 〈Li, Lj〉:

〈Li, Lj〉 =
1
4π

∫
Li

∫
Lj

dx ∧ dy ∧ (x− y)
‖x− y‖3

(106)

The framing of the i-th component is noted ni. Let AL be the intersection matrix of L, i.e.:

∀(i, j) ∈ {1, · · · , ](L)}2, (i 6= j ⇒ (AL)i,j = 〈Li, Lj〉) and (AL)i,i = ni (107)

It is a symmetric matrix and σL is the signature (number of positive minus number of negative
eigenvalues) of the associated quadratic form. It can be degenerated and we call ker (AL) its
kernel.

A coloring of L is completely specified by J = (j1, . . . j](L)) ∈ (Z/NZ)](L) and LJ denotes
the link L colored by J .

Explicit expressions for Z[M ] Here, we shall give explicit expressions for Z[M ] using
the S matrix, the (exp (2πihj))j and exp (2πic/8) computed in [19]. In particular, we have
S00 > 0. As we have recalled in section 3, these matrices depend on one parameter denoted
by a.

Let L be a framed link in S3 such that [S3, L] is a surgery presentation for M , the partition
function of M can be computed using the algorithm given in [15]. First of all, using

Z[M ] = exp
(
−2πi

cσL

8

) ∑
J∈(Z/NZ)](L)

](L)∏
l=1

S0jl

Z[S3, LJ ] (108)
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one brings the computation of Z[M ] to the computation of Z[S3, LJ ], which is the topological
invariant8 associated with the sphere S3 decorated by a framed link L.

Then, let L be colored by J ∈ (Z/NZ)](L), we have

Za,+[S3, LJ ] = S00 × exp
(

2πi
a

2N
tJ.AL. J

)
(109)

This result is obvious for ](L) = 0 and for the unknotted circle with framing n. It can be
proved by induction on ](L). Let us assume that it has been proved for any L such that
](L) ≤ n where n ∈ N. Now, let L be a link with n + 1 components. In order to compute
Z[S3, L] we shall choose a regular projection plane. We assume the framing of the link to be
normal to this projection plane9. The basic idea is to use a kind of “skein relation” and a
formula due to Kauffman for computing in a combinatorial way the linking number of two
oriented knots.

Let us consider two oriented knots L and L′ in S3 and a regular projection with respect to
the link (L,L′). Let us denote by α(L) and α(L′) the projections of L and L′ on the projection
plane. In the neighbourhood of each intersection point p ∈ α(L) ∩ α(L′), the situation looks
like10:

�
�

�
��@

@

@
@R

or

�
�

@
@

@
@R

�
��

where the arrows indicate the orientations of each curve. We now associate with each inter-
section a weight:

w


�

�
�

��@
@

@
@R

 = −1 w


�

�

@
@

@
@R

�
��
 = +1 (110)

Passing from a type + intersection to a type − one will be called a shift. Then, the intersection
number 〈L,L′〉 is given by [30, Page 14]:

〈L,L′〉 =
1
2

∑
p∈α(L)∩α(L′)

w(p) (111)

Following Witten, we have obtained in [15] :

Z[S3,
�

�
��@@

@@Rj

j′

] = Z[S3,
��

@
@

@R

���

j

j′

]×
(

Sjj′

S00

)
(112)

This is a kind of skein relation without any right hand side! Let us now consider Ln+1 the
n+1-th component of L. By a finite sequence of elementary shifts and isotopy deformations,
we can pass from L to L′, the n + 1-th component of which can be isolated from all others
components by cutting along a two-sphere S2. In particular, this component is not linked to
the other ones. We call ∆+(k) and ∆−(k) the variations in the number of type + (respectively

8In the framework of Chern-Simons theory, this is nothing but the expectation value of regularized Wilson
loops.

9This can always be achieved.
10Up to a rotation.
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type −) crossings between components n + 1 and k in this operation. Formula (112) shows
that

Z[S3, L] = Z[S3, L
′]×

n∏
k=1

(
Sjn+1jk

S00

)(∆+(k)−∆−(k))/2

(113)

Cutting along S2 gives

Z[S3, L
′] =

Z[S3, L
′ \ L′n+1]× Z[S3, L

′
n+1]

S00
(114)

Using (111), we have(
Sjn+1 jk

S00

)(∆+(k)−∆−(k))/2

= exp
(

2πi
2ajkjn+1

N
〈Ln+1, Lk〉

)
and in the end, applying the recurrence hypothesis to L′ \ L′n+1, we obtain formula (109).

The partition function for a boundaryless oriented three-manifold without any decoration
is therefore:

Za,+[M ] = exp
(
−2πi

c(a)
8

σL

)
(S00)](L)+1

∑
J∈(Z/NZ)](L)

exp
(

2πi
a

2N
tJ.AL. J

)
(115)

It is an interesting exercise to prove invariance under Kirby’s moves directly. Let us recall
Kirby’s theorem [31, 32]:

Theorem 1 Let L and L′ be two oriented framed links in S3, the three-manifolds ML and
ML′ obtained by surgery along L and L′ are isomorphic if and only if, one can pass from L
to L′ by a finite number of the following moves:

• Isotopy in S3.

• Retiring an unknotted and unlinked component of framing ±1 to L. This is called an
O∞ move.

• For some i 6= j, replace Li by L′i which is a band-connected sum of Li and a parallel
curve to Lj. The framing of L′i is 〈L1 + Lj , Li + Lj〉. This is called an O∈ move.

Let us now check the invariance of expression (115) under these moves. As we shall see,
invariance under O∈ moves is obvious whereas in the general framework of [15] it was not11.

• Since the intersection matrix AL is an isotopy invariant, the r.h.s. of equation (115) is
an isotopy invariant of L.

• Let us check the invariance under the O∞ moves. Let L be an n-component oriented
framed link and Cε be an unknotted oriented framed knot of framing ε = ±1 which can
be isolated from L by a two sphere in S3. We have

AL,C =


0

AL
...
0

0 . . . 0 ε


11One had to use the Fenn and Rourke moves.
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and therefore σL,C = σL + ε, and ](L,C) = ](L) + 1. Henceforth,

∑
J∈(Z/NZ)](L,C)

exp
(

2πi
a

2N
tJ.AL,C . J

)

factorizes as ∑
J∈(Z/NZ)](L)

exp
(

2πi
a

2N
tJ.AL. J

)×

 ∑
x∈Z/NZ

exp
(

2πi
a

2N
x2ε

)
The main point is that the change of σL compensates the second term in this product.
Henceforth, the r.h.s of equation (115) is O∞-invariant.

• Invariance under the O∈ moves is obvious. Let us asume that in such a move, component
Li is transformed into L1]Lj and has framing 〈Li +Lj , Li +Lj〉. Let QL be a quadratic
form in R]L represented by AL in the canonical basis (ek)1≤k≤](L) of R]L. Let also be
QL′ be represented by AL′ and u ∈ GL](L)(R) be defined by{

∀k 6= i, u(ek) = ek

u(ei) = ei + ej

(116)

then one trivially has:

QL′ = QL ◦ u (117)

The key point is that u is invertible as a ring homomorphism of Z-modules. Henceforth

∑
J∈(Z/NZ)](L)

exp
(

2πi
a

2N
QL(J)

)
=

∑
J∈(Z/NZ)](L)

exp
(

2πi
a

2N
QL′(J)

)

Since σL′ = σL and ](L′) = ](L), the O∈ invariance of the r.h.s of equation (115) follows.

Let us identify these invariants with Kohno’s ones:

N odd In this case, a = 2b where b ∈ (Z/NZ)∗. Using equation (89), one immediately
recovers Kohno’s invariant (see Theorem 3.6 of [34]).

N even In this case, a is odd and considered modulo 2N . We remark that shifting a into
a + N changes the exponential in (115):

exp
(

2πi
a + N

2N
tJ.AL. J

)
= exp

(
2πi

a

2N
tJ.AL. J

)
× (−1)

∑
j

nj J2
j

(118)

This shift a 7→ a + N explains why Kohno has written down two invariants when N is
even (see page 348 of [34]). Equation (115) captures them both.

Of course, instead of using the data of reference [19], we could have relaxed the S00 >
0 condition, and get “new” invariants. Turning S(a) into −S(a) and exp (2πic(a)/8) into
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− exp (2πic(a)/8) produces an invariant denoted by Za,−. Then, equation (105) simply follows
from equation (115) since

Z−,a[M ] = Z+,a[M ]× (−1)](L)−σ(L)+1

and (see [36, Remark 1.8]):

](L)− σ(L) ≡ dim(ker (AL)) (mod 2)
dim(ker (AL)) = dim(H1(M, Z))

equation (105) is proved.

4.0.1 Explicit evaluation for prime numbers

The case N = 2 has in fact been considered in details by Kirby and Melvin [33]. The invariant
computed by these authors is

τ3[M ] = 2−n/2
(

1− i√
2

)σL ∑
S⊂L

iS.S (119)

where the sum is over all sublinks S of L and S. S denotes
∑

(i,j)∈π0(S)2 〈Si, Sj〉. It is clear
that

Z−1,+[M ] =
τ3[M ]√

2
(120)

This identity is not a surprise since the SU(2)k=1 WZW model, which should give τ3(M),
has Z/2Z fusion rules!

Let us now assume that N is an odd prime number p. In this case, for a framed oriented
link L in S3, let A

(p)
L denote the reduction modulo p of L’s intersection form. Here, L will

be a surgery presentation for M . Using the classification theorem for quadratic forms over
finite fields [37], we can compute explicitely Za,+[M ] in terms of data relative to A

(p)
L . A non

degenerate quadratic form Q on Fp is equivalent to

Q(x1, . . . , xn) = x2
1 + . . . + x2

n−1 + α x2
n

where α is not zero and taken modulo squares in Fp. Henceforth, up to an equivalence, the
quadratic form represented by A

(p)
L is classified by dim(ker A(p)

L ) and an element α ∈ F∗p /(F2
p ).

In this case, let us denote by rp(L) and σL the rank modulo p of AL and the signature of AL.
We can easily show that

Za,+[M ] =
(

α

p

)
p(](L)−rp(L)−1)/2

(
Sp(1)

(
b

p

))rp(L)−σL

(121)

A About Gauss sums

In this paper, we need to evaluate the following Gauss sum

SN (a) =
1√
N

N−1∑
n=0

exp

(
2πi

ak2

N

)
(122)
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where a ∧N = 1. We shall only recall the basic results but not their proofs. The interested
reader may consult [35]. First of all, we need to recall some basic facts about Legendre and
Jacobi symbols:

Definition 1 Let p be an odd prime number, x ∈ Z/pZ, we define the Legendre symbol as:(
x

p

)
=
{

1 if x is a square modulo p
−1 if not

(123)

The Jacobi symbol is defined by:

Definition 2 Let N =
∏

p pνp(N) be an odd number, x ∈ Z/NZ, we define the Jabobi symbol
as: (

x

N

)
=
∏
p

(
x

p

)νp(N)

(124)

It is straightforward to show the following properties of these symbols:(
x

NM

)
=
(

x

N

) (
x

M

)
and

(
x y
N

)
=
(

x
M

) (
y
M

)
(125)

The strategy for computing SN (a) consists in evaluating SN (a)/SN (1), and then computing
SN (1). If N is an odd number coprime with a, we have

SN (a) =
(

a

N

)
SN (1). (126)

When N is even, the result is slightly more complicated: first of all, let us write N = 2ν2(N)N ′

where N ′ is odd. Then, we have:

SN (a) =
(

a

N ′

) (−1
a

)(
2ν2(N)

a

)
E(aN ′)
E(N ′)

SN (1) (127)

where {
E(x) = 1 when x ≡ 1 (mod 4)
E(x) = i when x ≡ −1 (mod 4)

(128)

This quantity satisfies:

E(xy) = (−1)(x−1)(y−1)/4 E(x)E(y) (129)

and:

σ(E(x)) = (−1)(x−1)(χ4(σ)−1)/4 E(x). (130)

We also recall that for N an odd integer, we have:(−1
N

)
= (−1)(N−1)/2 and

(
2
N

)
= (−1)(N

2−1)/2 (131)

The evaluation of SN (1) has been performed by Gauss:

SN (1) =
∑

k∈Z/NZ

ξk2

N√
N

=
1 + i

2
(1 + (−i)N ) (132)
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B Useful results on cyclotomic fields

In this appendix, we discuss to which number field
√

n belongs for n ∈ N. We shall set
ξn = exp (2iπ/n), and denote by Qn the extension Q(ξn). It is a finite normal extension of
Q. First of all, let us recall a basic lemma:

Lemma : Let k and l be two non zero integers, then

Q(ξk, ξl) = Qk^l (133)

where k ^ l denotes the smallest common multiple of k and l.

This Lemma trivially follows from Bezout’s theorem. It shows that if n is an odd integer,
Q2n = Qn since Q2 = Q.

Let us recall that the action of any element σ ∈ Gal(Q/Q) is determined by the cyclotomic
chraracter χn : Gal(Q/Q) → (Z/nZ)∗. These characters satisfy the obvious compatibility
relations that enable defining the profinite character χ : σ 7→ (χn)n∈N∗ ∈ Ẑ∗.

In order to determine to which number field
√

n belongs, we shall use the expression (132)
for the Gauss sum which already shows that

√
n belongs to some cyclotomic extension of Q.

The discussion is performed according to the different values of n (mod 4). The results are
the following:

n field
n ≡ 0 (mod 4) Qn
n ≡ 1 (mod 4) Qn
n ≡ 2 (mod 4) Q4n
n ≡ 3 (mod 4) Q4n

(134)

In some cases, we can find the minimal α ∈ N such that
√

n ∈ Q2αm where m is odd.
More precisely, let us show that the power of 2 given in the above table is minimal for n ≡ 2, 3
(mod 4).

• Case n ≡ 2 (mod 4):
√

n ∈ Q4n. Let us assume that
√

n belongs to Q2n, we write
n = 2n′ where n′ is odd – henceforth n′ ∧ 8 = 1 – and since i ∈ Q2n and S2n(1) = 1+ i,
we would get

√
2n ∈ Q2n and therefore

√
2 ∈ Q2n. Thus

ξ8 =
√

2
(i + 1)

2
∈ Q2n.

Using Lemma B and 8∧n′ = 1 we would get ξ4n ∈ Q2n. This contradiction shows that√
n cannot belong to Q2n.

• Case n ≡ 3 (mod 4): let us assume that
√

n ∈ Q2n, then since Sn(1) = i, this would
imply that i ∈ Q2n, which is impossible since 4 does not divide 2n. Therefore,

√
n ∈

Q4n only.

When n ≡ 0, 1 (mod 4), the power of two is clearly not minimal since n can be the square
of an integer! For the same reason, the power of any other prime divisor is not minimal.
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