
Commun. Math. Phys. 127, 71-99 (1990)

Physics
© Springer-Verlag 1990

Z/iVZ Conformal Field Theories

P. Degiovanni
LPTENS, 24 rue Lhomond, F-75OO5 Paris, France*

Abstract. We compute the modular properties of the possible genus-one
characters of some Rational Conformal Field Theories starting from their fusion
rules. We show that the possible choices of S matrices are indexed by some
automorphisms of the fusion algebra. We also classify the modular invariant
partition functions of these theories. This gives the complete list of modular
invariant partition functions of Rational Conformal Field Theories with respect
to the Aff level one algebra.

Introduction

Since the important work of Belavin, Polyakov and Zamolodchikov [1], it has
become clear that Conformal Field Theory (CFT) has exceptional properties in
two dimensions. In particular, the symmetry of these theories is so huge that the
hope of a possible classification has emerged. The main idea is to classify the states
of a CFT using representations of the symmetry algebra of the theory.

Rational Conformal Field Theories, where only a finite number of represent-
ations appear, provide the simplest situation. Recently the application of these
ideas through a detailed study of modular invariance on any surface (punctured
or not punctured and in any genus) has produced remarkable results [2,3,4,5].
One of the most amazing facts is the appearance of an unexpected relationship
between the fusion rules of a RCFT and the modular properties of genus-one
characters tr(<?Lo). This relationship, due to Verlinde [6], leads to a new method
of investigation of RCFTs: one can try to classify RCFTs starting from their fusion
rules. This paper is an attempt at giving a few illustrations of this method.

In this approach, the first step is of course to find some fusion rules to work
with. It appears that (finite) group theory provides us such material quite
spontaneously. Verlinde's work enables us to recover the modular properties of
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the characters on the torus. We recall a few basic facts in Sect. 1 and we show that
the different choices of the matrix representing the modular transformation
τ -> — 1/τ are related by certain automorphisms of the fusion rules. We explain
how to carry this program for a finite abelian group. This program is completely
achieved in the more pedagogical case of a cyclic group Z/NZ in Sect. 2. We also
mention some examples of RCFTs which have precisely these properties. In order
to understand the structure of the theories considered in Sect. 2, we classify all
their modular invariant partition functions in Sect. 3: namely, we find that there
is exactly one modular invariant partition function associated with each divisor
oϊNiϊN is odd (respectively N/2 iϊNis even). In Sect. 4, we collect a few interesting
properties of these modular invariants.

This work has been motivated by our attempt to get familiar with Verlinde's
work and by a recent work of C. Itzykson on A^ level 1 theories [7]. He formulated
a conjecture on the possible modular invariants which we prove in Sect. 3: the
modular invariant partition functions are indexed by divisors of N when JV is odd
and divisors of N/2 when N is even. The reader interested in this proof can pass
directly to Sect. 3.

1. Conformal Field Theory from Group Theory

Last year, an unexpected connection between the fusion rules and the modular
properties of the characters has been discovered by E. Verlinde [6]. Our idea is
to use Verlinde's theorem to reconstruct as much as possible a rational conformal
theory from its fusion rules.

1.1 Verlinde's Theorem. Let us recall some basic facts about Verlinde's work. We
will not give any proof but only give the main results. The main tool is the fusion
algebra. Before going into details, let us state a few facts.

In a conformal field theory, the Hubert space of states is a representation of
the tensor product of two Virasoro algebras constructed from the analytic and
the anti-analytic components of the energy momentum tensor T(z) and T(z)
respectively. Generally, this representation is reducible and each irreducible
component corresponds to a primary field. In some cases, the Hubert space is a
finite sum of such representations. These theories have been classified by Cappelli,
Itzykson and Zuber [8]. But it is well known that there exist many other conformal
theories. The most natural case to consider is the case of Rational Conformal Field
Theories (RCFTs). We say that a conformal theory is rational when there exist
two operator algebras AL and AR consisting of analytic (respectively, anti-analytic)
fields containing T(z) (respectively, ?(z)), and 1 such that the Hubert space of the
theory is a finite sum of irreducible highest weight representations of AL®AR. An
example of this is provided by the WZW models (where the Sugawara construction
holds). We will see other examples later. In the following, we will write φt for an
irreducible highest weight representation of an extended algebra (such as AL or AR).

The building blocks of a conformal field theory are the chiral vertex operators.
We refer the reader to the works of Moore and Seiberg [5], Tsuchiya and Kanie
(in the context of affine algebras) [9] and also Frenkel, Lepowsky et al. [10] for
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a precise definition. Let us consider three irredicible highest weight representations
of the chiral algebra A with associated vectors spaces Vi9 Vj and Vk. The chiral
vertex operators of type i, j, k are fields of linear operators which map Vt (x) Vj into
Vk in a way which is coherent with the action of A on states defined as contour
integral of holomorphic fields in A. The chiral vertex operators of type i, j, k form

a vector space, noted , the dimension of which is used to define the fusion rules:

Definition 1. The fusion rules are the Nkij =

Before recalling Verlinde's result, we must introduce other tools. Given a
representation of an extended algebra we can define the associated character. Let
Vι be such a representation, it is graded by the Lo operator:

V. = 0 γf\ Lo = (^ + n) 1 on F|">,

where ht is the eigenvalue of Lo associated with the highest weight state of Vt.
Then we define:

πeN

We shall assume that these formal series are convergent in the unit disc with 0
deleted. Let q be equal to exp (2πrτ), the modular properties of the characters are
described by:

χt{τ + 1) = exp(iπiίh, - ^ ) W ) = Σ T{χfc\ C 1)

Zι(-l/τ) = Σ S kj(τ) . (2)
j

We also suppose that any representation φt of A has a conjugate representation
φΓ with the same character but such that the operator product expansion of a
representation and its conjugate contains the identity operator. This defines the
matrix C{ = δ\ which is an involution. Let us recall some properties of the fusion
rules, one sees that:

NiJtk — NJj is symmetric in i, j, and k,

where 0 denotes the identity operator. We are now ready to recall Verlinde's
result [6].

Theorem 1 (E. Verlinde). The N^Js are the structure constants of a commutative and
associative algebra (called the fusion algebra) and S diagonalizes all the N^s with
Ni = (Nk

ίJ):

where (A^ = δ)λψ and λψ = S{/Sj

0.
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We finally obtain Verlinde's formula:

n ^o

Now, we would like to see to what extent the fusion rules determine the theory.
For example, one can try to reconstruct the S matrix from these fusion rules. As
soon as we have a set JV£ of matrices the entries of which are the structure constants
of a commutative and associative algebra with involution i -> f, we can diagonalize
them simultaneously with a unitary matrix S. We can also choose this matrix such
that all SQ'S are real positive numbers. As C is an automorphism of the fusion
algebra, we have λ^ = λψ* (complex conjugate) thus giving CS = S*. The
important point is that it is precisely the modular transformation matrix of the
characters which does the job. This implies that S2 ==C and as was shown by
Verlinde and Dijkgraaf, S is symmetric. We stress that this condition is absolutely
necessary if we want this matrix to represent the modular properties of some
characters!

Then, one can try to solve the equation (ST)3 = 1 in order to find the central
charge and the dimensions that appear in this theory. We must stress that it is
not clear whether there really exists a conformal field theory associated with these
numbers. Moreover, the preceding equation, as we shall see later, does not
determine uniquely the central charge and the dimensions. The asymptotic
behaviour of the characters and factorization conditions restrict them further.

1.2 Possible S-Matrices and Automorphisms of the Fusion Rules. Given matrices
Nt defining a fusion algebra and a possible S-matrix, one can try to find all other
possible S-matrices.

Definition 2. We define a possible S-matrix to be a symmetric unitary matrix which
diagonalizes all N^s and obeys CS = SC = S* and S^ > Sg > 0 for all Γs.

This last assumption is justified in the case of a unitary theory. Below, we shall
restrict ourselves to that case.

We have the following lemma:

Lemma. Let w'ij) and w"0) be two eigenbasesfor the N?s then there exist a permutation
σ and non-zero complex numbers ηt such that:

Proof We know that the iV£'s are simultaneously diagonalizable. Let us choose

Ef an eigenspace of each matrix Nt and let us show that dim ( f] Ef I < 2. This

will show that if w'U) is an eigenbasis for all Nt% then each w' ω has to belong to
a one-dimensional vector space. This will prove the lemma.

Let El be the eigenspaces of Nt and define:

Clearly £ [ α ] n £ [ α Ί = {0} when [α] φ [α']. We also have:
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We denote by Ea the non-zero spaces, they are mutually orthogonal. We know
that there exists an orthonormal eigenbasis (wo))y for the JV/s. If Ea contains a
two-dimensional subspace, then there exists lφ j such that (w{l\wU))eEa. Hence,
wU) and w(0 are associated with the same eigenvalues of JV, for any L Therefore,
the columns j , I of any matrix S diagonalizing all JV/s are proportional thanks to
λψ = Si/Sj

0. This is clearly absurd. Finally all £α's are one-dimensional and the
lemma is proved.

If we consider now S and S' two possible S-matrices, we know by unitarity
that wU) = (S{)i and w'U) = (£'/); are two orthonormal eigenbases for the Nf's. By
applying the lemma, there exist a permutation σ and complex numbers of unit
modulus (by orthonormality) ηt such that:

for all i, j . The positivity of Sj

0 and S# implies that ηs = 1 for all j . The symmetry
of S and S" implies that S? = Sj

σ{i) for all i, . We now use CS = SC = S* and
CS' = S'C = S'* to show that σ(j) = σθ). Finally, w(σ(0)) = (Sf(0))f = (5J0), has real
positive coordinates, therefore the scalar product of w(<r(0)) and w(0) is strictly positive
and as (wU))j is an orthonormal basis, σ(0) = 0. Finally, we can use Verlinde's
formula:

We have shown that σ defines an automorphism of the fusion algebra.

Definition 3. A permutation of the fields is called an automorphism of the fusion
algebra if and only if it verifies:

Nσ(i)Mj)Mk) = NiJΛ, σ(0) = 0, σ(f) = ί(ϊ).

Conversely, let σ be a permutation of the fields which defines an automorphism
of the fusion algebra which verifies: Sfj) = Sj

σ{iy We thus define S'/ = Sfj). It is very
easy to check that this matrix is a possible S-matrix. Finally, we have proved the
following result:

Theorem 2. Let S be a possible S-matrix for a given fusion algebra, then any other
possible S-matrix is of the form

where σ defines an automorphism of the fusion algebra and verifies

All such automorphisms define all possible S-matrices.
The condition Sj

σ{i) = 5f0) ensures the symmetry of S'. We can also address in
full generality what we call the equivalence problem. Let us suppose that we have
a fusion algebra and a possible S-matrix associated with it, we would like to find,
among other possible S-matrices, those which differ from S by a permutation of
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the representations. Then, one such matrix S' is defined by S^ = S^9 where Σ
is a permutation. In this case, it is clear that if T is a matrix defined in (1) and
associated with S ((ST)3 = 1), then 7 V = Γ f $ verifies (ST)3 = 1 and can be
considered as a T matrix associated with the fields φΣ(i). We shall say that the
two theories are equivalent (at the level of S and Γ). Notice that Sf is symmetric.
We then easily see that Σ must be an automorphism of the fusion algebra.

Conversely, we check that if Σ defines an automorphism of the fusion algebra,
S'J = Sf $ is a possible S-matrix.

We shall now characterize the automorphisms σ such that the possible
associated S-matrix S\J = S?U) differs of S by a permutation of the fields. Let Σ be
an arbitrary permutation which defines an automorphism of the fusion algebra,
define w(^ =(Sj

Σ{ΐ)). Using the lemma, there exists a permutation Σ such that
w^} = wΣU). Finally, we have:

which could have been used to define Σ. With this language, remark that σ = σ in
Theorem 2. Using these relations and SC = CS = S* we see that Σ defines
an automorphism of the fusion algebra. Moreover, the map Σ -• Σ verifies
Σx Σ2 = Σ2Σx3indΣ-1 = Σ-1. We have S f $ = SfΣ{j) and therefore:

Proposition 1. // S 7 = Sf01 is a possible S-matrix which is equivalent to S by a
permutation Σ of the fields, then Σ defines an automorphism of the fusion algebra
such that σ = ΣΣ.

We shall see some illustrations of this result later. Remark the similarity between
the correspondence Σ -> Σ and matrix transposition. This will become clear in the
analysis of RCFTs associated with abelian groups.

13 Conformal Field Theory and Group Theory. In order to carry out this program,
one has to find some "nice" fusion rules. There exists a very natural way to generate
some fusion rules: we can use finite group theory [11]. Let us consider G a finite
group, it has a finite number of inequivalent irreducible representations which we
denote by π£. Any tensor product of them can be decomposed into irreducible
representations:

where N*j is the multiplicity of the πk representation. Thanks to the associativity
and commutativity of the tensor product, the iV/s define a representation
of a commutative and associative algebra. Let πΓ be the complex conjugate
representation of πh then it is clear that JV^ is symmetric in i, j and k because
it is the multiplicity of the trivial representation of G in the tensor product
τ^i®^j®τtk' Finally, if π 0 is the trivial representation, then Nj

oi = δ{. Therefore
these N*fj verify all hypotheses of Verlinde's theorem. In the corresponding field
theory, with each irreducible representation of G, we associate a "primary field"
such that the N^j of finite group theory give us the fusion algebra of the underlying
field theory. Naturally, the trivial representation of G is associated with the identity
operator and two conjugate irreducible representations of G are associated with
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conjugate fields. We have not yet completed the analysis of this program,1 and
therefore we shall restrict ourselves to the case of finite abelian groups where things
are simpler.

It is well known that every finite abelian group is a direct product of cyclic
groups:

We shall use the following notation for group elements:

geG, g = (gl9...,gn)9

where g{ is an integer mod Nt and we will use the additive notation. The irreducible
representations of G are one-dimensional and are labelled by elements of G. To
be more precise, define:

V(0,gr')eG2, <g,ϊ> = gιgιΛ/Nt (modi).

For a given geG the representation associated with g is defined by

It is thus clear that:

The eigenvalues of Ng are the exp(2πi <#,#'>) for g' in G. Henceforth, for all geG,
there exists a bijection σg of G such that λ%f) = exp(2πi(g9σg(g')y) and we must
look for a symmetric matrix S which satisfies:

We easily find that:

with \G\ standing for the cardinal of G. In order to characterize more precisely σg,
we introduce the following vector of C'G |:

and the hermitian product on C'G |:

=τiτΣ«Λ
I * 7 ! geG

1 Not every non-abelian finite group can be used for this purpose, we are still investigating this
question. The main obstruction is the symmetry of the S matrix



78 P. Degiovanni

Verlinde's relation (3) is in this case equivalent to:

for all g,g\g" in G. But (ωg)geG is an orthonormal basis of C | G | and thus ωgωg, is
collinear to ωg+g> and by comparing the first component of these vectors,
ωgωgf = ωg+gf' Using this property and the symmetry of S ((ωg)g> = (ωg>)g), we find
that:

Sζ =
I Gift

where KUj is of the form B^KNi A NJ) with BUJ defined mod Nt A NJ and symmetric.
Consequently, we have:

( >\ ί r τs Λ // / α\ * Λ
σ ^ ( ^ ) = \ L Ki.j9j > \\9> σg(β )> 1 S n o t e d

which defines an automorphism σg (independent of g) of G as was shown before.
We shall now briefly indicate how to find the dimensions of primary fields and

the central charge. For the sake of simplicity, we give here the method and carry
out the detailed computation for G = Z/iVZ in the next section. We have to solve
(ST)3 = 1. This equation can be rewritten in the form:

e2nic/s e χ p ^ _ 2 π ι ( ^ _|_ hg> + χ ( ^ ? ^ ) ) ) = _ ^ ^ ^ e x p (2πϊ'(Λfc + K(g + gf', k))).

v l G l k e G

(4)

We also impose that h0 = 0 and that h_g = hg. We obtain 2 ^ — IC(<7,̂ ) = 0 (mod 1).
We choose some representatives for the BUj coefficients, and let us define ψg by
exp(2πihg) = ψgexp(iπK(g,g)). Indeed any change of representatives for the BUj

can be compensated by a change of φg. More precisely, suppose that we change
BUj -> Bij + WUj{Ni A Nj), where Wuj are integers, then exp (2πihg) is multiplied by
a factor exp^Tr^VFij^g,) which is 1 or — 1. We shall therefore choose some
representatives which are easy to handle. For example, we impose that BUj = Bjt

not only in Z/(Nf Λ N3)Z but also in Z. With this choice, (4) is equivalent to:

+ g')). (5)

In order to solve this equation, one needs to perform some shifting of indices. Let
u = ((XiNi) a representative of the trivial element in G, then:

K(g + u,g + u) = K{g, g) + 2K(g9 u) + K(u, u)

and

«, u) = Σ B^aj ^ + \
i<j iVj Λ JMj I i

So, everything can be done safely if and only if Bu is even when Nt is odd:
K(g + u,g + u) = K(g,g) (mod2). We can always consider this case by shifting Bu
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of Nt when necessary. With this choice, we find that φ^g = φg and φg+u = φg.
Specializing φ0 = 1 in Eq. (5); we find that φg+g> = ΦgΦg>, and therefore g^>φg is
a morphism of G into { — 1,1}. It is thus determined by its value on the generators
of G. In our example, the generators are the g{j) = (δfii of order Nt. This constraints
φgU) = 1 if Nt is odd, in the other cases φgU) = ± 1. At this point, we see that the
central charge is determined mod 8 and the dimensions mod 1 (because we can
multiply any solution T of (ST)3 = 1 by exp(2πi/3)). Here, let us analyze the
previously mentioned equivalence problem. S and S' are equivalent in this sense if
and only if there exists Σ permutation of G such that K(Σ(g\Σ{g')) = K'(g,g')
modulo integers, and as we have seen before Σ is an automorphism of G. Therefore,
as proved more generally in 1.2, Σ defines an automorphism of the fusion rules
hence of the group G. The condition on S means that K(g9g') = K(Σ(g),Σ(g'))
modulo integers. We can find the equivalence classes of K matrices in some
interesting cases:

Case G = (Z/pZ)n, p odd prime. In this case, Nt = p for all i. Σ is defined by its
action on the n generators and can be represented by a n x n matrix with entries
in the finite field Z/pZ. B is also a n xn matrix with entries in the same set.
Translating the previous conditions into this language, we find that ΣιBΣ = B,
where Σ* is the transposed matrix of Σ. We are reduced to classifying non-
degenerate (B defines an automorphism of G) quadratic forms on the n dimensional
vector space over the field Z/pZ. This problem has been solved a long time ago.
Let us recall the result [12]:

Theorem 3. Any non degenerate quadratic form defined on Fn where F is a finite
field with odd characteristic is equivalent to:

Λ o ... o
0 1 0

o i o
0 ... 0 a

a not zero and defined modulo a square.

We only have two cases. The matrix B is diagonal. We are thus led to the case
G cyclic which is the subject of the next section. In this case, we shall be able to
compute the Gaussian sums which give the central charge mod 8.

2. Dimensions and Central Charges in Z/NZ Theories

2.1 Determination ofS and T. In this section, we shall focus on theories associated
with a cyclic group. More precisely, all the representations of the symmetry algebra
of the theory are indexed by an integer mod N and the fusion rules are:

In this case, as we have seen in the previous section, we can compute the S matrix
and we find that there exists an automorphism σ of the fusion rules, hence of the
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group Z/NZ such that:

In the Z/NZ case, the automorphisms are rather trivial: they are given by an
integer a invertible mod N and map x to ax. We thus have to solve (ST)3 = 1 with
S«,m = N~1/2 Qxp(2πianm/N) and we also impose that h0 = 0 and hN-n = hn. As we
have seen in the previous section:

/ an2\
exp (2πihn) = ̂ w exp ( 2πi — 1, ^w = ± 1

with φo = l and φN-n = (—l)Naφn. As explained in the general case, we must
distinguish two cases according to ΛΓs parity. When N is even, a is defined mod N
and if ΛΓ is odd α is defined mod 2N and is assumed to be even. This enables n-*φn

to define a group homomorphism from Z/NZ into {1,-1}. Therefore, we find:

N even. In this case, a is odd. In this case, φx = ± 1 and both possibilities can be
realized,

φk=l e2πic!*=-j=S2N(a\

We explain how to compute the Gaussian sum S2N{a) in appendix 1 and the reader
will check that we find real central charges for the theories considered here. Finally,
we check that {ST)3 = 1 is satisfied by our solutions. This solves the problem of
finding all dimensions and central charges in this case.

iVodd. Here, a is defined mod2iV and is even. We also have φi = l and therefore,
we only have one solution which is given by:

This completely solves our problem.

2.2 Dimensions and Central Charges, Discussion of some Examples. We have
obtained the complete set of dimensions mod 1 and central charges mod 8. It is
interesting to compare the different lists of dimensions mod 1 for different α's. We
have already analyzed this equivalence problem in some more complicated cases.
Here, a and a' give the same list if and only if a/a! is a square in Z/NZ. In Appendix
B, we identify the group U(Z/NZ)/U(Z/NZ)i2\ where U(Z/NZ) is the group of
invertible elements in the ring Z/NZ and U(Z/NZ){2) is the set of invertible elements
which are squares. We refer the reader to Appendix B for detailed results. A surprise
is that U(Z/NZ)/U(Z/NZ)(2) in general has more than two elements. In fact, we
already know some examples of Z/NZ theories.
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The rational gaussian model is the simplest example. We consider a free boson
X compactified on a circle of radius R and with action:

4π

The Hubert space of this theory decomposes into irreducible representations of
the "l/(l)L x (7(1)R current algebra" generated by dX,dX.

The highest weight states relatively to the 1/(1) current algebra are created by
chiral vertex operators exp(φXL(z)). The dimension of this field is given by
hp = p2/2. The quantum number associated with U(l) is p.

In the case of the gaussian model, the allowed values of (p, p) belong to a
two-dimensional even self dual Lorentzian lattice as a consequence of modular
invariance. Therefore, this theory is not trivially rational. We need to enlarge the
symmetry by imposing that there exists a U(1)L x U(1)R primary field which has
h = 0. This condition constrains the radius, we find that:

R2

/ L

In this case, we obtain a spin pq conserved current. The extended algebra has
already been written down by Moore and Seiberg [4]. They have also written the
generalized characters. These are indexed by an integer mod N = 2pq and have the
following transformation law under a modular transformation:

Therefore, using Verlinde's formula, we find that in this model:

We note that the highest weight states of the irreducible representations of the
extended algebra are created by vertex operators, the operator product expansion
of which is known to be additive. These theories correspond to the case α = l,iV
even and ψn = l.

Another example has been recently exhibited by C. Itzykson [7]. He showed
that the Aft* level 1 theories have Z/NZ fusion rules. In this case, N can be even
or odd, a is equal to N — 1 and ψn=l. We refer the reader to his paper for more
details on the computation of the S and T matrices.

E. Verlinde pointed out to us that the E^ level one theories have Z/3Z fusion
rules and the Eψ level one theories correspond to Z/2Z. The dimensions and the
central charges can be computed using our formulas with a— 1 and φn = (— l)n

for EΊ and a = 1 for E6.
These are clearly not the only possibilities! Let us take for example N prime

different from 2 and 3, Z/NZ is a simple group and therefore, we cannot decompose
our theory into pieces. The only example we know is given by SU(N) at level
one, but here U(Z/NZ)/U(Z/NZ){2) = Z/2Z. There is one extra possibility. See
Appendix B for a complete list. The important question is to know whether the
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other cases can be realized by conformal field theories. We don't have any answer
to this reconstruction problem.

3 Classification of Modular Invariants for Z/JVZ Theories

3.1 Notation and Methods. In this section, we consider a set of JV characters χλ

which transform under the modular group as:

£ι(-l/τ)= Σ SwχΛτ)
λ'eZ/NZ

Zi(τ+1)= Σ TλΛ,χλ,(τ),
λ'eZ/NZ

where the S matrix via Verlinde's theorem gives Z/NZ fusion rules. In this case,
we know S and Thave the following expressions:

where a is an integer mod 2JV, a and N are coprime and a is even when N is odd.
We are looking for modular invariant partition functions of the form Z = ΣN^χ^jj
with multiplicities JV^eN.

In fact, characters of adjoint representations are equal and we impose not only
modular invariance of the partition function but of the operator content of the
theory. This remark leads to the following equations:

S^NS = JV, TrJVΓ = JV. (7)

The phase exρ( — 2πic/24) which appears in T doesn't play any role in equation
(7), and we shall forget it in the following. We shall proceed in two steps: we first
solve equation (7) with NeMN(C) and then we impose the integrality and positivity
conditions on JV. Finally we shall find that solutions are labelled by divisors of JV
when JV is odd and by divisors of JV/2 when JV is even. The set of matrices satisfying
(7) will be called the commutant in the following and noted Ca.

3.2 Finding the Commutant. Cappelli, Itzykson and Zuber (denoted by CIZ below)
have introduced a suitable basis of MN(C): (PkQι)k,ι with (fe,/)e(Z/JVZ)2 and
Pλλ, — <5A λ, + x and Qλλ> = δλλ, exp (2πiλ/N). Then an easy computation shows that:

S^PS = QΓ\ T^PT = exp(-2πia/2N)PQ-\

Therefore if we let_β = βα, the following relations hold:

S^PS = Q~\ T^PT = exp ( - 2πia/2N)PQ~ \ (8)
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β, F, exp (Iπia/N) define a representation of the Heisenberg group similar to the
one used by CIZ [8] and Gepner and Qiu [13]. Moreover, a A N = 1 shows that
(PkQι) with fc, / (mod N) is a basis of MN(C). Equations (8) enable us to prove that:

(a l\pkQι = expίlπi^-iabk2 + cdk2 + 2bckt))pάk+δlQBk+31. (9)
\c dj \ 2N )

Only Γ2N ^ SL2(Z/2NZ) acts non-trivially. Consequently, a generating family of
the commutant can be obtained by averaging the PkQι under this finite group. A
basis is found by restricting fc, I to lie in a fundamental domain of (Z/iVZ)2 under
the action of ΓN provided that we only consider fc, / such that the average of PkQι

under the modular group is not zero.
There exists a very natural morphism of rings from Z/2NZ onto Z/NZ defined

by the restriction modΛf. This morphism lifts to a group morphism on special
linear groups defined on these rings and we call its kernel H. CIZ have shown
that in the case where N is even this restricts fc, / to be even if we want the average
of PkQι to be non-zero under H (and then under Γ2N). It is easy to analyze the
same problem in the case N odd. The group H then has 6 elements and is isomorphic
to Σ3. Moreover, we check that PkQι is //-invariant, which shows that a basis of
the commutant is given by:

I i IAeΓ 2 N

- L Σ AQ\ δ\n, for N odd,
| i \AeΓN

where n = N if N is odd, and n = JV/2 for N even below.
For our purpose, it will be convenient to obtain a second basis of Ca consisting

of matrices with integer entries. We consider the matrices Ω{δ\ δ\n introduced by
CIZ. Let δ be a divisor of n and define α = δ A n/δ. Then, there exist (a\b')eZ2

such that άn/δoί — b'δ/oL = 1 and we define ω(δ) = a'n/δ(x + b'δ/oc (mod N/a2). We
thus define the following matrices:

{0 if λ or 1 is not zero mod α / < Λ X

ξeZ/ocZ

Indeed in the case N odd, the number ω(δ) changes by a multiple of 2N/oc2 when
one changes a' and b' preserving a'n/δoc — b'δ/a = 1 but in the definition of the
matrix Ω(δ\ we only need ω(δ)modN/ot2. Let us discuss the two cases successively:

N even. We extend here the results found by CIZ by taking account of the

occurrences of a Φ 1 in the expressions of S and T. It is clear that β j$ =

βgrf. Let S^=oxp(2πiλJ/N)/y/N9 then CIZ showed that S(1)Ω(δ) = Ω(δ)S(1) and

that the Ω(δ)'s form a free family. We have:
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and then SΩiδ) = Ω{δ)S. In the same way:

Ω{$ϊ0=>λ2-λ2 = 0 (mod2JV)

shows that TΩ(δ) = Ωiδ)T. Then Ω(δ)eCa; but dim Ca = Nb of divisors ofn and this
shows that {Ω(δ))δ\n is a basis of Ca.

N odd. This case has not been considered by CIZ and thus we describe in more
detail how to find the commutant. Let us introduce the following matrices for each
divisor δ of JV:

i V (x,y)s(Z/N/δZ)2

Partitioning (Z/(N/δ)Z)2 using k = x Ay A (N/δ) shows that:

where Mkδ denotes the average of Qkδ. Therefore Ωf(δ)eCa. An elementary
computation shows that:

Vμ,I)e(Z/iVZ)2, Ωfτ = Ω'§

Consequently the Ω$n form a basis of the commutant.
At this stage, we have found a basis of the commutant consisting of matrices

with integers coefficients.

Theorem 4. (Ω(δ))δ]n is a basic ofCa.
Consequently, all Cα's are equal, we shall denote them by C in the following.

3.3 Imposing Integrality and Positiυity: General Results. We shall now impose the
integrality and positivity condition.

δ\n

We also impose unicity of the vacuum which is the λ = 1 = 0 operator: Noo =
Σ cδ= 1. The idea is to write a subset of conditions which implies that all the cδ

δ\n

are non-negative integers. Our idea is to look for the indices for which only a
small number of ί2(<5)'s have non-zero entries. Hence, it is convenient to fix δ and
to analyze what happens in the row λ = α((5) of the matrix N: this row is the first
apart from the row λ = 0 where Ω{δ) has non-zero entries. More precisely, we shall
show in Subsect. 3.4 that when N is odd or when N and n/a(δ)2 are even (see
Subsect. 3.5), the row λ — oc(δ) of N contains at least one coefficient equal to cδ and
thus cόeN. In the cases where N is even and n/oc(δ)2 is odd, there exist two divisors
δ+ and <5_ such that cδ + cδ+, cδ + cδ_ appear as entries in the row λ = α(<5) and all
other coefficients in this row are either 0 or are greater than the two preceding
ones. In Subsect. 3.6, we shall see how to solve the integrality and positivity
condition with this result. Let us state the final result:

Theorem 5. The modular invariant partition functions satisfying the integrality and
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positivity requirements and the unicity of the vacuum are given by.

Za(τ)= Σ β$ZAMftW, δ\n.
(λ,λ)e(Z/NZ)2

We shall first prove a few general lemmas and then, by a detailed counting of
coefficients of different types in the appropriate rows, prove the announced result
and conclude. The aim of this subsection is to show that we only need to look at
a limited number of divisors δf to find isolated coefficients cδ in row α(<5)
(Proposition 3).

In the following, we shall note for δ and δ' two divisors of n\

Pδ = {φ)ω(δ) + Nξ/φ)/ξeZ/φ)Z}9

P*'MS> = {Φ)ω{δf) + Nξ/φ')/ξeZ/a(δf)Z},

where a(δ')\oί(δ). We shall note α for α(<5) when no ambiguity is present. Pδ is the
set of column numbers λ for which Ω^\ Φ 0 and Pδ, a is the set of column numbers
such that Ω^J ΦQ.

We will use intensively the following lemmas:

Lemma 1. // oc(δ) = α(<5'), then

PδnPδ, Φ0oPδ = Pδ,oΩ{δ) = Ω{δl)oδ = δ'oω{δ) = ω(δ') (modN/φ)2).

Lemma 2. // α(δ')|α(δ), then

PS^PS'MS) * M M ί ) c Pδoω(δ') = ω(δ) (modN/φ)2).

Lemma 3. // a(δ') = α(<5/r) = α' is a divisor of a(δ\ then

Ps"M5)π ^',α ( 5 ) # 0 0 ^ ) = P5'M5)θΦΊ Ξ ω(5") (mod N/a(δ)aί).

Lemma 4 //α^Jlα^ ' ) and oc(δ')\ot(δl then

Pδ'MδΊ ^ pδ a n d Pδ'Mδ) ^Pδ=>Pδ"Mδ) <= Pδ-

Proof. We shall only prove Lemma 2, the method being similar for the others. It
is clear that Pδ'Mδ) a Pδ leads to ω(δ') = ω(δ) (mod N/ot(δ)2) and that the converse
is also true. Suppose now that PδnPδ.a(δ)Φ0 then there exists £eZ/αZ such
that <xω(δ') + Nξ/<x(δ') = aω(δ) (modN/a(δ)); but <*(δf)\x(δ) so aω(δ') = <χω(δ)
(mod N/a(δ)). This proves Lemma 2.

We now prove that any Pδ,fU lies inside a Pδ:

Proposition 2. Given a such that a2\n and δ'\n with α(δ')|α, there exists δ\n such

that α(<5) = α Λnd P^%α cz P δ .
We need a lemma:

We consider the vector subspace of the commutant defined by:

Cα = {MeC/λ Φ 0 (mod α) or X Φ 0 (modα)^>MΛ > r = 0}.

Then the following lemma holds:

Lemma. Cα = ^

Proof. Clearly Ω(δ) for α|α(^) belongs to Cα; we also know that (Ω(δ))δ]n is a basis
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of C and thus let us decompose an element M of Cα over this basis,

δ\n

We take δ0 such that cδoφ0 and such that α(<50) is minimal. Due to
Lemma 1, the coefficients cδ for different δ's such that α(<5) = α(<50) in row α((50)
appear in different columns. No divisor having α(<5) Φ α(<50) can contribute in this
row because α(<50) is minimal. Consequently ot\ot(δ0) if MeCa. By recurrence the
lemma is now clear.

Proof. Define for α21 n Gα by:

Gα = {ωeZ/(JV/α2)Z/ω2 = 1 (modiV/α2)}, AT odd

respG α = {ωeZ/(N/a2)Z/ω2 = 1 (mod2ΛΓ/α2)}, iV even.

Then consider α',α two divisors of n such that α'|α. We can define for ω'eGα,,

ίθ if α doesn't divide λ or λ'
Z J ^λ'.ω'λ + Nξ/α'

ξeZ/α'Z

and clearly ί2 ( ω ' 'α )eCα. So if α(<5')|α then ω^OeG^^. But Ωia*δΊ'Λ)eC* and we have
from the expressions of the different matrices:

We then decompose the latter matrix on the basis found for Cα in the lemma and
this shows that Pδ, α, i.e. the column indices of non-zero elements of Ω(δΊ in the
row α are in the union of the P/s for δ such that oc(δ)\oc and oc\<x(δ) hence oc(δ) = α.
Proposition 1 then follows from Lemma 2.

Proposition 3. Let α be such that a2 \ n:

U JV.= U ( U Prλ (ID
^';α(ό')|α pprime,p\<x \δ';oc(δ') = <x.lp /

Proof. Consder any δ' such that α(<5')|α and α(δ')#α, then there exists a prime
number p verifying oc(δ')\(oc/p). Then we use Proposition 3 to find δ" such that
α((5") = OL/P and Pδ\aip

 c ^V; then Lemma 4 shows that Pδ> a a Pδ., α and this proves
Proposition 3.

This proposition show that it is sufficient to look at a small number of divisors
to study what happens in row α. We only need to compute the cardinal of the
second set appearing in Proposition 3 and compare it to α = \Pδ\. Before getting
to this point, we need a last result:

Proposition 4. // ωeGα(α 2 |n) there exists a unique divisor δofn such that α(<5) = α
and ω(δ) = ω.

Proof The unicity is quite obvious because two divisors having the same ω and
α would define the same matrix ί2(<5)'s and thus must be equal by linear independence
of the Ωiδ). Consider now the existence problem and take ωeGα. There exists (p,p\
pp = N/oc2 (respectively 2N/oc2) if N is odd (respectively if N is even) and (x,y)eZ2
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such that:

ω — 1 = xp, ω + l=yp. (12)

For N odd, p and p are odd and therefore by shifting ω of N/a2 if necessary, one
can choose x and y to be even. We then introduce δ = ap. By rewriting Eq. (12)
one finds:

xδ yN( ΛN\ Λ yN xδω = + { m θ ά } 1=

which gives the result.

In the case N even, the same kind of method can be used but with more care
because of parity problems. If p and p are even, then we define δ = αp/2 and we
have β/2 = n/δoc. If p is odd, we choose δ = ocρ/4 which is an integer. Finally, we
have ω = ω(δ) and α = α(<5).

3.4 Combinatorics with N odd. According to Proposition 3, our problem is to

compute the number Xδ = U for a given δ such that α(<5) = α.
p\a \δ'/(z(δ') = <z/p

In the following, we shall note ω for ω(<5). If in the above expression, Pδ>>anPδ Φ 0,
then we know that ω(δ') = ω (modN/a2) and ω(δ')2 = 1 (mod ΛΓp2/α2). Proposition 4
tells us that given ω'eGajp there exists a unique δ' such that ω(δ') = ω' (mod JVp2/α2),
a(δ') = oc/p. Therefore, we are led to solve the following equations:

ω' 2 = 1 (mod Np2/α2), ω' = ω (mod N/oc2). (13)

Moreover, according to Lemma 3, we only care for solutions ω' modiVp/α2. Let
us fix a representative of ω in Z and introduce ω2 — 1 = iVr/α2, then we obtain:

N
-jx2 + 2ωx + Γ Ξ O (modp2), (14)
oc

where ω' = ω + xN/oc2 and x is defined modp 2 . We must analyze two cases
separately.

p divides N/a2. Then, the reduction of this equation modp has a unique solution
x0 because it is a regular first degree equation. Any solution of (14) is of the form
x = xo + py, where yeZ/pZ; and we have:

2ωy + - ί -yXo + 2ωx0 + r I = 0 (modp).

Finally (14) has exactly one solution modp 2 .

p does not divide N/oc2. The reduction mod p of Eq. (14) is a second degree equation
and as Z/pZ is a finite field, we can solve it by usual techniques. Let us note
(N/oc2)'1 the inverse of N/oc2 in (Z/pZ)*; then the solutions are:

xf

±=(N/oc2)-H-ω±l).
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Any solution of (14) is of the form x = x'±+y±p with y defined mod p. We obtain
the following equation for y:

± 2y± +-(-jx2

± + 2ωx+ + r \ = 0 (modp).

Equation (14) thus exactly admits two solutions mod/?2 which are already different
modp.

All this shows that:

If p

If

N
(15)

(16)
OL(δ')=OLlp

and: Pδ'+AnPδ>_,α = 0 because ω+ φω'_ (modpiV/α2).
Let α = Y\ pf be the decomposition of α into prime factors. We introduce

j=l k

Sj = 0 if Pj\(N/a2) and ε = ± if p/(Λί/α2) and Pjε = Pδ> α. Then we have:

i

ro=l

But:

because PJ>ε's for fixed and different ε's are disjoint. We have to find f] (PJnpB )
m== 1

The elements of the set considered here are trivially in one-to-one correspondence
with solutions of the following linear system:

V(r,5)e<l,/>2; -{pjrξjr~Pjsξjs. fjr,εjr) ~~ ω ( ^ } s ' βj s)) = 0 (mod ΛΓ)

with ξjSZ/(oί/pj)Z. This system is equivalent to:

N
VmG<l,/—1> 2 ; — ( p , f. — p , ̂ ^ . ^,) + o

Let us consider the following morphism of groups:

' / Z

-
UjJ) = 0

(modN) (17)

(^Jm)me<l,/>h^(Pjm^Jm ~ Pjm + 1 ^jm + l)m6<l,/- 1> '

Thanks to Bezout's theorem, this morphism is surjective and its kernel can easily
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be found:

ker φ ~ .

π
m = l

This shows that the system (17) has exactly α / Π Pjm solutions. Then we have:

α
^ = Σ ( - i ) i + 1 Σ Σ —

1 1 *Jrn
m = 1

But we are interested in Nδ = α — Xδ. If we introduce θj the number of values taken
by εj9 we can rewrite Nδ under the amusing form:

I
l

fl 1

We have seen that θj = 1 or 2, thus Nδ is a strictly positive integer. Consequently,
we know that there exists at least one element of Pδ which does not belong to any
Pδ, for δ' such that oc(δ') is a strict divisor of oc(δ). Therefore in row α = oc(δ) appears
at least one isolated cδ coefficient which by integrality and positivity is a
non-negative integer. The unicity of the vacuum forces any physical modular
invariant partition function to be of the following form (which is already a solution
of our problem):

\ ) — / ) TΛA\ )JLA\ ) '

(A,A)e(Z/NZ)2

Therefore, Theorem 5 is proved in this case.

3.5 Combinatorics for N even. In this subsection, we shall consider the case where
N is even using the same strategy than in Subsect. 3.4. However, as we shall see,
the discussion is slightly different and the case n/a2 odd will be discussed in 3.6.
In this case; we know that the set Gα for α21 n is defined by

Ga = {ωeZ/(N/(x2)Z/ω2 = 1 (mod2JV/α2)}.

For this reason, in order to find all divisors δ' of n such that Pδ>a c Pδ9 oc(δf) = oc/p,
where δ is a fixed divisor of n and p is a prime divisor of α, we are led to the
following equation:

-jX2 + 2ωx + 2s = 0 (mod2p2), x e - ^ - , (18)
α p Z

where ω2 — 1 = 2iVs/α2. We obtain this exactly as in Subsect. 3.4 by writing that
ω' = ω 4- xN/cc2 and writing down explicitly the condition ω'eGa/p. By the different
results proved before, we thus define a unique divisor δ' of n such that α((5') = oc/p;
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ω(δ') = ω'. Equation (18) can be rewritten in the form:

^x2 + ωx + s = 0 (modp2). (19)

We first consider the case: p Φ 2. The preceding discussion can be adapted
without any surprise and we find that:

If p\N/oc2; U (Pδ,,anPδ) = Pδ^, (20)

If p/JV/α2; U (P i . . π P a ) = P4.+^uP4._ i β, (21)
a(δ') = &/p

because Eq. (19) has precisely one (respectively two) solutions modp 2 .
When p = 2; things are slightly more subtle. Let us reduce Eq. (19) mod 2;

we find:

- j + 1 U + s = 0 (mod 2),

where we have used ω = 1 (mod 2), x2 = x (mod 2).
This equation has exactly one solution when n/a2 is even and in this case, we

can lift it back to a unique solution mod 4. This case is therefore not a problem.
On the other hand, the case n/oc2 odd is at the heart of the trouble. This can

only occur when n = 22ίm, ίeZ, m even, and for δ such that δ/ct, n/δa are odd. This
implies that, given two integers α,b such that an/δa — bδ/oc = \ia = b-\-\ (mod2).
But ω2 = 1 — Aabn/a2 and therefore 5 = 0 (mod 2). Consequently, Eq. (19) has two
solutions mod 2 and the reader will check that it has exactly two solutions mod 4.
This shows the existence of two divisors δ'+ and δ'_ of n that satisfy Pδ>^ c Pδ,
oc(δf) = α/2, and again P^nP^a = 0.

If, as in Subsect. 3.4, we compute the number of elements in the set

P*\ U (JV
α(«5')|α

we find:

τίrΠ(P-βp). (22)
1 I P pi*
p\a

which is a positive integer but is strictly positive only when n/α(<5)2 is even. We
arrive at the following result:

Partial Theorem 5. Let δ be any divisor ofn such that n/oc2 is even then if ΣcδΩ(δ)
has only positive integer entries then:

3.6 End of the Proof for N even, n/a2 odd. Ler us have a closer look at the case
n/oc2 odd. In this case, it is clear that:
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We would like to prove that in row α, there exist entries of the form cδ + cb> and
cδ + cδ>_. For this purpose, we shall compute:

U
") Φ α,α/2

Consider any δ" such that α(δ")|α and α(<5") φ α,α/2, then either there exists p Φ 2
a prime divisor of α and α(<5")|(α/p), or α(<5") = α/2k with a suitable fe.

We consider directly the most complicated case where α/2 is even. In this case,
we look for all divisors δ" verifying:

because we can check that Pδ>^cPδ, or Pδ»tΛcPδ> . This is equivalent to search
all ω" mod 32n/α2 which satisfy

d = ω'+ (mod 8rc/α2), ω' 2 = 1 (mod 64n/α2),

and we are only interested in solutions ω" mod 32n/α2. It is easy to check that we
obtain a regular first degree equation in x where ω" = ω'+ + Snx/oc2, Thus there
exists a unique £" with α((5") = α/4 and P̂ « α cz Pδ, . We shall now compute

p\a εp

The usual technique gives us:

[n the same way, we compute

We have found:

PyΛ

α

Ψ

\u
ρ\a

PΦ2

CC

2Πj

U(P ΘP)-
P\CL

pΦ2

\J(Pδ z^Pd",**)
εp

:Π<P-Λ)
p|α

PΦ2

and, with:

J J
P\Λ εp

pΦ2

V
P\Λ εp

pΦ2

(23)

(24)

,,J

p\a εp

PΦ2
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we find using expressions (23) and (24):

U W'^p'^>)) =ΪTΠ; Π (P-ΘP) (25)
p\a

This is a strictly positive integer.
The proof can be adapted in the case α/2 is odd. It is even simpler because for

any divisor satisfying α(<5')|α and oc(δ') φ α, α/2, there exists some odd prime divisor
of α divising α(<5'). Consequently, we only have to compute:

Λ-U(P-ΘPI (26)

pΦ2 P\<*

and this is again a strictly positive integer. We have therefore proved the following
lemma:

Lemma 5. // δ verifies n/(x(δ)2 odd; then there exist two divisors δ'± with

α(<5 + ) = α((5)/2, cδ4- cδ> are matrix elements of Y^cδΩ
{δ).

Let us now conclude our study of the case N even.
Lemma 5 states that we can associate with any δ such that n/oc(δ)2 is odd, two

divisors δ'± where cδ 4- cδ>± are positive integers and by partial theorem 5, c+ are
non-negative integers. Moreover, two different <5's will give different δ'±.

We thus introduce:

p i (mod2)|, B = {δ/δ\n}\[J^{δ,δ'+9δ'-}.

We remark that we can rewrite

y-ι i \* ( _ι_ \ I

^δ 2-ι δ 2-a V δ ' ^δ'+) ' ^<5'_
δ\n feB δeA

ϋ + cs', (27)
eB δeA

where all terms are positive integers.

Case 1. 3δ"eB, cδ» Φθ. In this case, we have by Lemma 5:

VδeA, cδ>± = cδ + cδ>±=0,

and by partial theorem 5:

VδeB\{δ"}9 cδ = 0.

Therefore, the JV matrix is one of the Ω(δ) and clearly satisfies positivity, integrality
and vacuum unicity requirements. This gives the desired result.

Case 2. V<5eB, cδ = 0. Then, there exists a unique <50 in A such that cδo 4- cδ'Q + +
cδ>o_ = 1 a n d

V 5 φ δ09 cδ = cδ>+ = cδ>_ = 0.
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We therefore have three possibilities:

but the last two cases are eliminated because NOtN/a = — 1. Just like before, we find
that the N matrix is one of the Ω{δ\

We have thus proved Theorem 5.

4. Some Amusing Properties of Z//VZ Partition Functions

4.1 Modular Invariants and Automorphisms of the Fusion Rules. Recently, Dijkgraaf
and Verlinde have shown that for any modular invariant partition function of the
form [14]:

iel

where (Xi)ieI is a set of characters of an extended algebra and Σ is a bijection of
I,Σ is an automorphism of the fusion rules (id est Σ verifies: N^tj = NΣ^ΣOV
Σ(ΐ) = 1, Σ(ί) = Σ(ι)% and ht — hΣ(i)eZ and ΣΣ = 1 to ensure modular invariance
under T (respectively S). In our case the automorphisms of the fusion rules are
precisely automorphisms of the additive group Z/NZ. These are indexed by u
invertible modΛΓ and map x to ux. The condition hι — hΣ{i)GZ is equivalent to
u2 = 1 (mod 2N) if N is even and u2 = 1 (mod N) if N is odd. The partition function
associated with such an automorphism must be:

Λ Γ - 1

Given u fulfilling the conditions above, we can find a unique δ divisor of n such
that oc(δ) = 1, ω(δ) = u and therefore:

z*= Σ huixai= Σ ^SZA»-
(λ,λ)e(Z/nZ)2 (λ,λ)e(Z/nZ)2

This partition function is modular invariant. This shows the converse of Dijkgraaf-
Verlinde's theorem in this particular context, namely ω{δ) defines the automorphism
of the fusion algebra.

4.2 Extended Diagonal Z/NZ Theories. Some other interesting objects are the
extended diagonal modular invariants. These invariants can be written as a sum
of squared moduli of sums of characters. A very natural idea is to consider these
sums of characters as characters of an extended algebra. Then, it is interesting to
find the fusion rules of this algebra. In our example, the most general invariant
can be written as:

Z~ LL Lu Xkoc(δ)Xk<x(δ)ω(δ) + ξN/a>
/ceZ/(N/α((5))Z ξeZ/φ)Z
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and if this is a sum of moduli squared, for any k mod JV/α, there will exist ξ mod α
such that:

k(l-ω{δ)) = ̂ ξ (modN/oc).

Therefore, using the definition of ω(δ), it is easy to show that n/δoc = 1 and hence
that ω(δ) = 1. Let us find the divisors δ of n such that n/δoc = 1, we see that α = n/δ
is equivalent to (n/δ)\δ, i.e. n\δ2 (δ = n for example, corresponds to the diagonal
invariant). Conversely, if this condition is fulfilled, then ω(δ) = 1. Then, we have:

ξeZ/<x(δ)Z
Xa(δ)k + Nξ/<x(δ)

ξeZ/φ)Z ξ'eZ/a(δ)Z

Finally, we obtain with n/δ standing for α:

Σ
keZ/(δ2N/n2)Z

Z_j Xnkfδ + Nδξ/n
ξeZ/(n/δ)Z

2

= Σ
(λ,λ)e(Z/NZ)2

The extended diagonal theories are associated with divisor such that n\oc2. The
extended characters are given by:

Xk = Z Λ Xnk/δ + Nδξ/n>
ξeZ/(n/δ)Z

where k is defined mod δ2N/n2. An easy computation gives us the S matrix for
these characters and we find:

L exp (^πi^y N' = Nδ2/n\ (28)

This is exactly a finite Fourier transform of the type considered in 3.1. Notice that
a and Nδ/n2 are coprime. This phenomenon expands to any Zδ. Let us write:

keZ/(N/<x)Z
ξeZ/αZ

fceZ/(N/α2)Z (ξltξ2)e(Z/aZ)2

If we introduce for keZ/(N/oc2)Z,

Xk~ 2-J Xka + ξN/ai
ξeZ/(N/a)Z

then

^δ~ ZJ XkXkω
fceZ/(N/α2)Z

with ω 2 = 1 (mod2iV/α2) when iV is even and ω2 = 1 (modN/oc2) when AT is odd.
Then, there exists δ' divisor oϊN/oc2 such that oc(δf) = 1 and ω(δf) = ω, thus showing
that Z<5 is of the type considered in Subsect. 4.1. The χk's are the characters with
respect to the maximally extended chiral algebra of the model. The reader will
easily check that the S matrix of those χfc's is given by (30) with ΛΓ = N/oc2. In fact,
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there is a kind of stability of the fusion rules in this case which was not present
for example in the Aγ] case.

Finally, we can rewrite the partition function of the rational Gaussian model
considered in Subsect. 2.2 in the form of a Zδ. Let us consider the case of a free
boson compactified on a circle of radius R with R2/2 = p/q, we define:

These operators define a subalgebra of the maximally extended chiral algebra of
the theory. We can organize the Hubert space of the model with respect to the
representation theory of this algebra. In our case, the theory is still rational. The
characters of the irreducible representations are indexed by an integer n mod 2pqb2

and are given by:

The partition function of the rational Gaussian model is given by:

1
y V^ fl(Pn "*" Q111) /4-PQ (j(Pn + Qm) /4-PQ

which can easily be rewritten as:

Zp,q — ΣJ %kb Xωkb + Ipqlb •>
keZ/2pqb2Z

leZ/bZ

where ω is defined as in (12) with N = 2pq and δ = p. Therefore, there exists a
unique δ divisor of 2pqb2 such that α(<5) = b and ω(δ) = ω. This shows that Zp>q

can be rewritten as a Zδ. When one takes b = 1, i.e. when one considers the
maximally extended chiral algebra of the theory, the partition function is of the
type considered in Subsect. 4.1 as was shown in [4] in full generality and just
above in our cases.

43 An Amusing Identity. In a recent work [7], C. Itzykson has shown that the
Z/NZ fusion rules are realized in terms of A^] level 1 theories. In this case, the
parameter a was N — 1. The rational gaussian model provides a realisation of these
fusion rules for N even and a = ί. Thus, our study of modular invariants classifies
all modular invariant partition functions of rational gaussian models and of v4̂ 1}

level 1 models. Notice that as soon as N is a square there exists a unique partition
function which is a modulus squared. C. Itzykson showed how to recover the cubic
root of the modular form j(τ) from the N = 9, δ = 3 invariant [7], the reader can
also easily check using SU(25) level 1 invariants that:

(29)

5. Conclusion

Finally, we have completely determined the modular properties of the characters
and the modular invariants in the case where G is a cyclic group. This case gives
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an illustration of the general facts we mentioned in Sect. 1, namely that given a
particular fusion algebra, the different possibilities for the S matrix are labelled
by permutations σ of the fields which define automorphisms satisfying Sj

σ(i) = Sfj)

of the fusion algebra. Concerning the modular properties, we have obtained some
partial information in the case of an arbitrary abelian group. There remains to
solve explicitly the equivalence problem mentioned in Sect. 1 and find all modular
invariants in the general case. Another interesting problem is the study of the case
where G is not abelian. In this case the symmetry of S implies some constraint on
the group G.

However, it seems much more important to address the reconstruction problem.
In our approach, we determine different properties of the RCFT from its fusion
rules but it is not clear when there is really a conformal theory with these properties.
For example, we can construct some finite dimensional representations of SL2(Z)
using this method but it is not clear that these representations can be realized
using characters, i.e. functions with only positive integers in their ^-development.
Furthermore one has to find the chiral algebra the representation theory of which
would give us these functions as characters.

A. Gaussian Sums

Here, we recall how to compute some special sums known as Gaussian sums [15].
Let us define:

1 / ak2

SN(a) = —— £ exp 2πi —
/N keZ/NZ \ N

We restrict ourselves to a invertible mod N; the other cases can trivially be reduced
to this case. We refer the reader to the literature for details and proofs. We can
first of all restrict the computation to the case where AT is a power of a prime.

Proposition A.l. Let a, b, c three integers with no common divisor. Then
Sab(c) = Sa(bc)Sb(ac).

We are reduced to computing Sp*(a\ where a and p are coprime. This can be
achieved quite easily when p is odd, only p = 2 is more tricky. We only give the
final results:

Proposition A.2. Let p be an odd prime number and a an invertible modp, then:

Proposition A.3. Let a be an odd integer, then:

where ε(a) = 1 (respectively ί) when a = 1 (mod 4) (respectively a = — 1 (mod 4)) and

p prime \P
p\y
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is the Jacobί symbol
Finally,

Proposition A.4. We have:

With these results, one can compute all Gaussian sums quite easily. For
example, we have:

S 4 B ( ± l ) = l ± i .

B. Quadratic Equations in Z/Λ'Z

In this appendix, we shall discuss in more detail the structure of the quotient group:

UjZ/NZ)

k

We first use the Chinese lemma. Let N = Y[ p*j be the decomposition of JV in

prime factors; there exists an isomorphism of rings:
7 k Ύ

Ύ j.jrw 1 1JVZ jΛ p f >Z

which associates with any integer mod JV its reductions modp"j. If all reductions
of an integer are squares, then it is clear that the integer itself is a square because
φ is a ring morphism. Reciprocally, if an integer is a square, then its reductions
are also squares using φ'1. Consequently:

I7(Z/JVZ) ^ * U(Z/pγZ)

U(Z/NZ)<2) M U(Z/P5'Z) ( 2 ) "

Henceforth we are led to analyze the case where N is a power of a prime p. We
shall distinguish two cases: p = 2,pΦ2.

Case N = p*,pφ2:
We want to determine if equation x2 = a (where a is a parameter) has solutions

in Z/pαZ. This trick is to reduce this equation modp and then to lift back the
solutions in Z/pαZ. Let us remark that if y2 = a (mod pβ% then (y + zpβ)2 ==y2 + 2zpβ

(mod pβ*1). Henceforth, we can choose z such that (y + zpa)2 = a (modpβ+1). This
shows that x is a square in Z/pαZ if and only if it is a square in Z/pZ. The
characterisation of the squares in the finite field Z/pZ has been solved a long time
ago. Let us recall a few facts about this: we define the Legendre symbol [12] by:
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Then, we have the following short exact sequence:

1 -> (Z/pZ*)<2> - Z/pZ* -M-> Z/2Z - 1 ,

where the second arrow is the canonical injection. In the case N = pa, we have:

U{Z/paZ)i2) = ker φ9 φ(x) = x(p ~1)/2 (mod p\

and φ is a morphism from U(Z/paZ) into Z/pZ*. The image of this morphism is
{-1,1}. Therefore:

t/(Z/p*Z) Z

U{Z/paZ){2) XL

Case N = 2α:

This case is slightly more subtle. For example, it is well known that

ί/(Z/2Z)=l/(Z/2Z) ( 2 ) = {l}.

By inspection, one finds that:

W4Z) ™

and

Let

with a

us now

little more work:

analyze the case

ίx + 2'

t/(Z/4Z)(2)

ί/(Z/8Z)

l/(Z/8Z)(2)

n = 2α, α ̂  ^

?-lz )2=χ2_

= (Z/2Z)2.

i. We have:

(32)

(33)

and consequently, if x 2 = a (mod 2*) with /? ̂  3; then there exists zeZ such that
(x + 2/?~1z)2 = a (mod2^ + 1 ) . Finally, a is a square in Z/2αZ if and only if it is a
square in Z/8Z. This shows that:

Vα>4, αeZ; — ^ ^- = (Z/2Z)2. (34)
U(Z/2aZ){2)

This concludes our study.
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