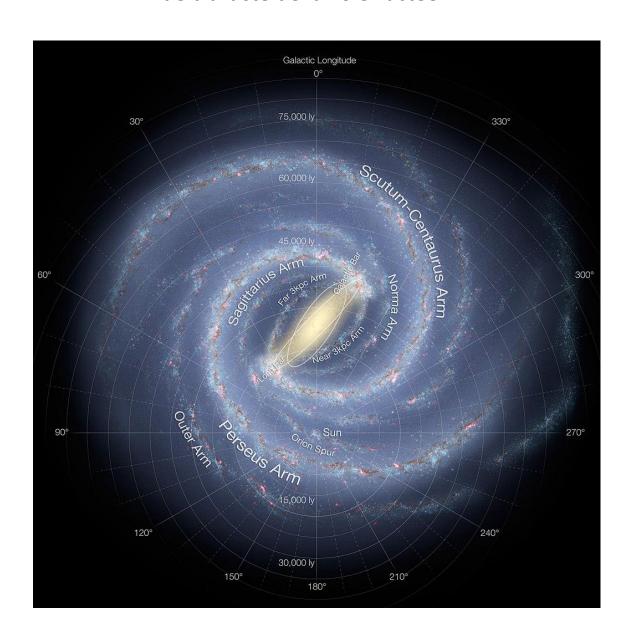
Observations et lois historiques

- Brumaghupta (VIIe siècle): « La terre est ronde et tous les corps chutent vers le centre de la Terre. »
- Kepler (XVIe siècle)
 - Loi des orbites « Les planètes du système solaire décrivent des trajectoires elliptiques, dont le Soleil occupe l'un des foyers »
 - Loi des périodes « Le rapport entre le demi grand axe de la trajectoire au cube avec le carré de la période est une constante du système solaire »
- Galilée (XVIIe siècle) Tout corps en chute libre a la même vitesse, donc indépendante de la masse.
- Newton (fin XVIIe siècle)
 - Principe fondamental de la dynamique
 - Principe des actions réciproques.

Ordres de grandeur

Vue d'artiste de la voie Lactée



$$\vec{R}.\vec{r} = (\vec{v} \times \vec{L}).\vec{r} - \vec{k}\vec{e}r.\vec{r}$$

$$= (\vec{v} \times (\vec{m} \vec{v} \times \vec{r})).\vec{r} - \vec{k}r$$

$$= (\vec{v} \times (\vec{m} \vec{v} \times \vec{r})).\vec{r} - \vec{k}r$$

$$= (\vec{v} \times (\vec{m} \vec{v} \times \vec{r})).\vec{r} - \vec{k}r$$

$$= (\vec{v} \times (\vec{m} \vec{v} \times \vec{r})).\vec{r} - \vec{k}r$$

$$= (\vec{v} \times (\vec{m} \vec{v} \times \vec{r})).\vec{r} - \vec{k}r$$

$$= (\vec{v} \times (\vec{m} \vec{v} \times \vec{r})).\vec{r} - \vec{k}r$$

$$= (\vec{v} \times (\vec{m} \vec{v} \times \vec{r})).\vec{r} - \vec{k}r$$

$$= (\vec{v} \times (\vec{m} \vec{v} \times \vec{r})).\vec{r} - \vec{k}r$$

$$= (\vec{v} \times (\vec{m} \vec{v} \times \vec{r})).\vec{r} - \vec{k}r$$

$$= (\vec{v} \times (\vec{m} \vec{v} \times \vec{r})).\vec{r} - \vec{k}r$$

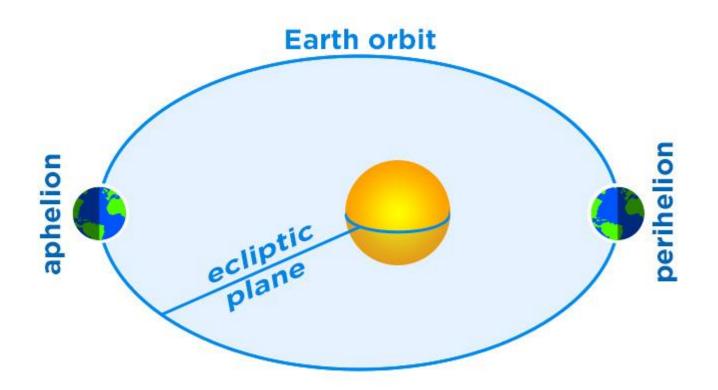
$$= (\vec{v} \times (\vec{m} \vec{v} \times \vec{r})).\vec{r} - \vec{k}r$$

Trajectoire conique
$$r = \frac{f}{1 + e \cos \theta}$$

$$e = \frac{R}{K}$$
, $p = \frac{L^2}{mR} = \frac{L^2}{G_T m^2 H}$

$$\frac{Application}{p = 1.5.10" m}$$

orbite de la Terre autour du Soleil



Potential gravitationnel

On remarque
$$\frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} = -\sqrt{r} \operatorname{od}_{\vec{r}} \left(\frac{1}{|\vec{r} - \vec{r}'|} \right)$$

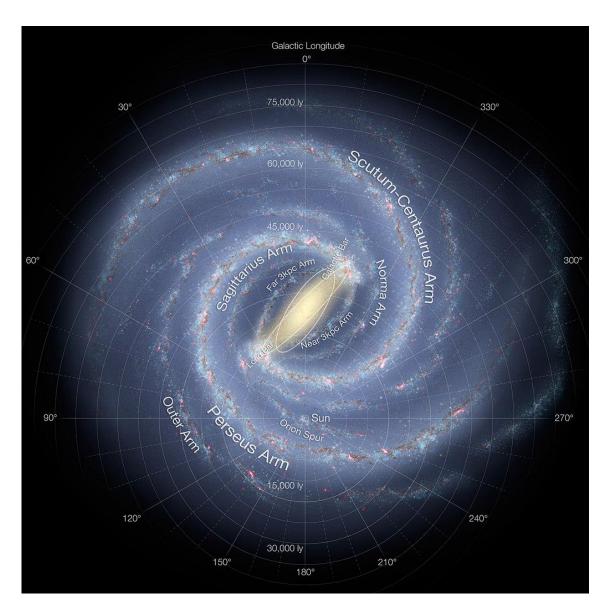
done
$$\vec{G}(\vec{r}) = + G \iiint_{V} d\vec{r}' e(\vec{r}') \underbrace{g \vec{r} \vec{d} \vec{r}}_{r} \left(\frac{r}{|\vec{r} - \vec{r}'|} \right)$$

$$\vec{G}(\vec{r}) = \vec{q} \vec{r} \vec{d} \vec{r} \left(\vec{G} \right) \left(\vec{r} \cdot \vec{$$

p(F) potentiel growitationul

	Electrostatique	Gravitation	
Charge du champ	q	m	
Champ	$ar{E}$	$ar{G}$	
Force	$qec{E}$	$mec{G}$	
Constante	$\frac{1}{4\pi\varepsilon_0} = 8.9 \times 10^9 \text{F} \cdot \text{m}^{-1}$	$-\mathcal{G} = -6,67 \times 10^{-11} \text{m}^3 \text{kg}^{-1} \text{s}^{-2}$	
Relation champ - potentiel	$\vec{E} = -\vec{\nabla}V$	$\vec{G} = -\vec{\nabla}\Phi$	
Equations locales	$\vec{\nabla} \times \vec{E} = 0$	$\vec{\nabla} \times \vec{G} = 0$	
	$\vec{ abla} \cdot \vec{E} = ho/arepsilon_0$	$\vec{\nabla} \cdot \vec{G} = -4\pi \mathcal{G} \rho$	
Théorème de Gauss	$\iint \vec{E} \cdot d\vec{S} = Q_{int}/\varepsilon_0$	$\iint \vec{G} \cdot d\vec{S} = -4\pi \mathcal{G} M_{int}$	
Equation de Poisson	$\Delta V = -\rho/\varepsilon_0$	$\Delta\Phi = 4\pi\mathcal{G}\rho$	

Vue d'artiste de la voie Lactée



Ordres de grandeur:

bulbe ~ 1 kpc

taille totale ~ 200000 a.l. ~ 60 kpc

masse $\sim 10^{10}$ masses solaires

epaisseur ~ 0.3 kpc

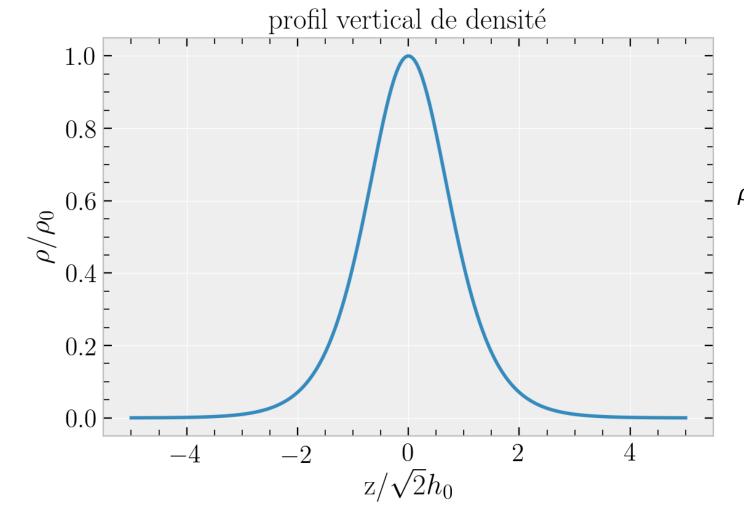
masse volumique

$$\rho_0 \sim 1.15 M_{\bigodot}/pc^3$$

Luminosité par unité de surface

$$l_0 \sim 10^{-6} W/m^2$$

$$l(r) = l_0 \exp\left(-\frac{r}{R_0}\right)$$

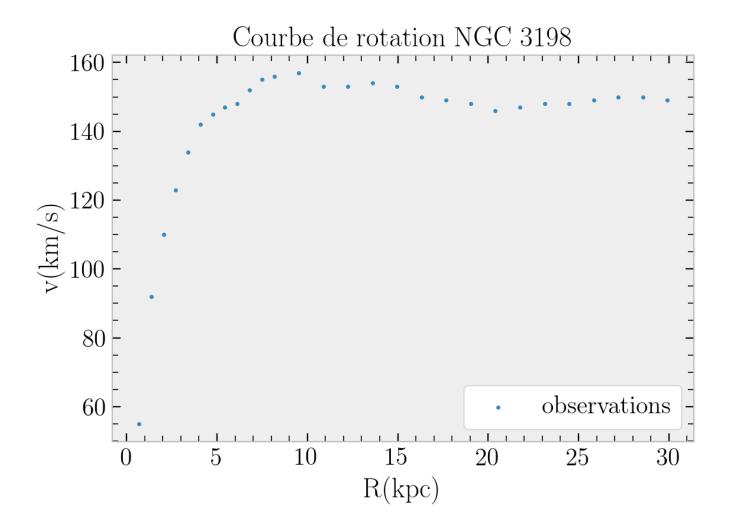


Ordres de grandeur

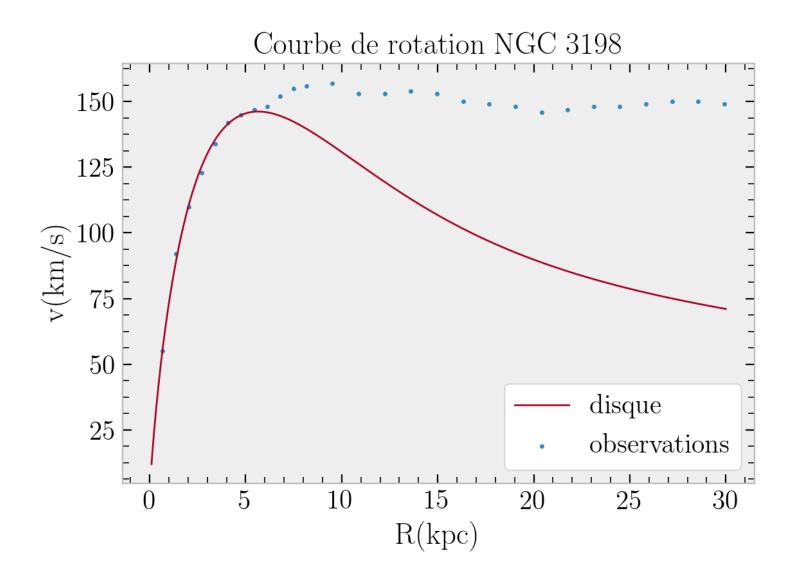
$$\rho_0 \sim 1.15 M_{\bigodot}/pc^3$$

$$h_0 \sim 300 \, pc$$

$$\sigma_z \sim 18 \text{ km/s}$$



Données: K. G. Begeman, "HI rotation curves of spiral galaxies"



Courbe de rotation NGC 3198 150 125 $\sqrt{\text{km/s}}$ fit 50 disque 25 matière noire observations 0 10 15 20 30 5 25 R(kpc)

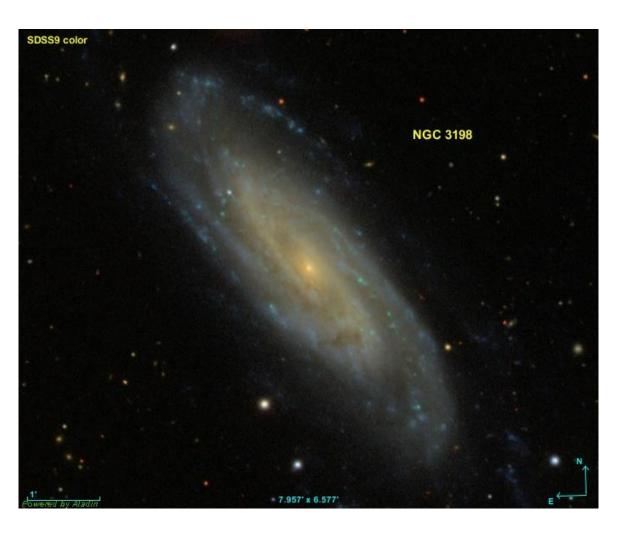
Halo sphérique de matière noire:

$$\rho(r) = \frac{\rho_0}{\left(1 + \frac{r}{R_c}\right)^2}$$

$$ho_0 \sim 24 \, M_{\bigodot}/kpc^3$$

 $R_c = 6.4 \, \mathrm{kpc}$

Galaxie spirale NGC 3198



Localisation : constallation de la Grande Ourse à environ 9.4 Mpc de la Terre

Rayon : $R_0 \sim 12 \text{ kpc}$

Luminosité par unité de surface : $l_0 \sim 10^{-4} W/m^2$

$$l(r) = l_0 \exp\left(-\frac{r}{R_0}\right)$$

Courles de rotation

$$\Pi(r) = \int_{\text{sym}} \sqrt{4\pi r^2} e(r') dr' \rightarrow e(r) = \frac{1}{4\pi r^2} \frac{d\Pi}{dr} a \frac{1}{r^2}$$

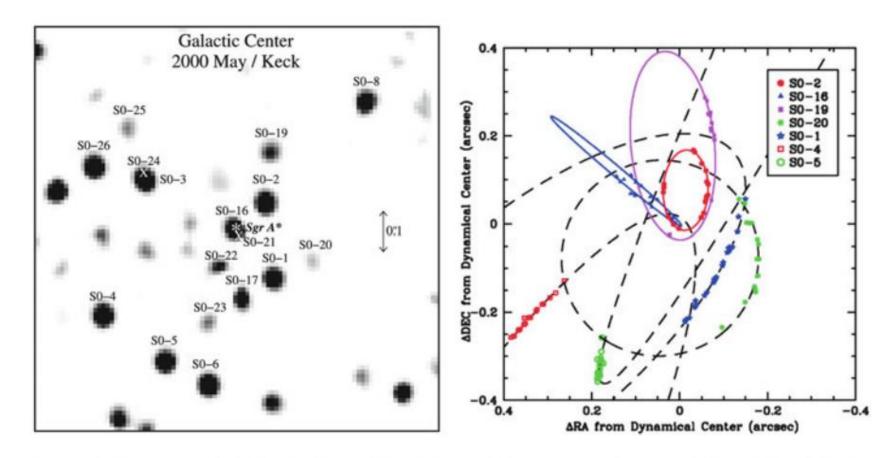
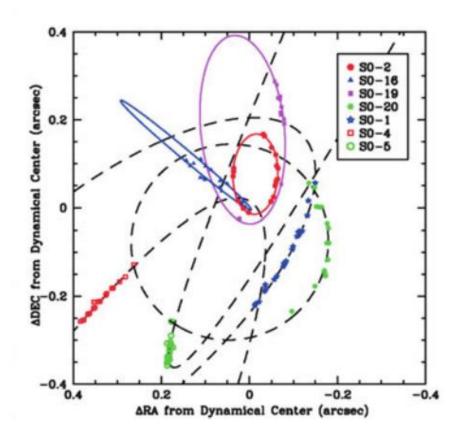


Fig. 3.3 Stars near the Galactic Center. The *left panel* shows a snapshot from May 2000, while the *right panel* shows some of the orbits traced over time (plotted on a different scale) (Credit: Ghez et al. [3]. Reproduced by permission of the AAS)



Numéro de l'étoile	Période T (an)	Demi-grand axe a (10 ¹⁴ m)
2	14.53	1.37
16	36	2.51
19	37.3	2.57

Loi de Kepler
$$\frac{T^2}{a^3} = \frac{4\pi^2}{GM}$$

$$\rightarrow M = 3.7 \times 10^6 M_{\odot}$$

C'est le trou noir supermassif Sagittarius A*