
Three ways to obtain flat rotation curves: A problem in undergraduate computational
physics
M. E. Bacon, and Amber Sharrar

Citation: American Journal of Physics 78, 708 (2010); doi: 10.1119/1.3381073
View online: https://doi.org/10.1119/1.3381073
View Table of Contents: https://aapt.scitation.org/toc/ajp/78/7
Published by the American Association of Physics Teachers

ARTICLES YOU MAY BE INTERESTED IN

Teaching physics with Hubble’s law and dark matter
American Journal of Physics 80, 382 (2012); https://doi.org/10.1119/1.3684469

Dark Matter
The Physics Teacher 51, 134 (2013); https://doi.org/10.1119/1.4792003

Modern cosmology: Interactive computer simulations that use recent observational surveys
American Journal of Physics 81, 414 (2013); https://doi.org/10.1119/1.4798490

A Ray of Light in a Sea of Dark Matter
American Journal of Physics 83, 191 (2015); https://doi.org/10.1119/1.4896585

 The geometry of relativity
American Journal of Physics 85, 683 (2017); https://doi.org/10.1119/1.4997027

The Expanding Universe: Dark Energy
The Physics Teacher 52, 337 (2014); https://doi.org/10.1119/1.4893086

https://images.scitation.org/redirect.spark?MID=176720&plid=1118597&setID=405125&channelID=0&CID=367296&banID=519856410&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=c5903c3a8ba0b65f51ac351554cfbc0eef60c7ed&location=
https://aapt.scitation.org/author/Bacon%2C+M+E
https://aapt.scitation.org/author/Sharrar%2C+Amber
/loi/ajp
https://doi.org/10.1119/1.3381073
https://aapt.scitation.org/toc/ajp/78/7
https://aapt.scitation.org/publisher/
https://aapt.scitation.org/doi/10.1119/1.3684469
https://doi.org/10.1119/1.3684469
https://aapt.scitation.org/doi/10.1119/1.4792003
https://doi.org/10.1119/1.4792003
https://aapt.scitation.org/doi/10.1119/1.4798490
https://doi.org/10.1119/1.4798490
https://aapt.scitation.org/doi/10.1119/1.4896585
https://doi.org/10.1119/1.4896585
https://aapt.scitation.org/doi/10.1119/1.4997027
https://doi.org/10.1119/1.4997027
https://aapt.scitation.org/doi/10.1119/1.4893086
https://doi.org/10.1119/1.4893086


Three ways to obtain flat rotation curves: A problem in undergraduate
computational physics
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We have addressed the need to introduce undergraduates to computational methods in physics by
making computation an integral part of our intermediate laboratory experience. We discuss an
example of a senior project that follows an introduction to a suite of computational tools in our
intermediate laboratory and focuses on a topic in astrophysics. We report on computations of flat
rotation curves for spiral galaxies using three models and compare the results to the available data
for the spiral galaxy NGC 3198. The models are the “standard” exponential disk+dark matter halo
model, the modified Newtonian dynamic model, and a general computational procedure that allows
for testing arbitrary nonstandard surface mass density distributions. The models can also be applied
to other spiral galaxies for which data are readily available. © 2010 American Association of Physics
Teachers.

�DOI: 10.1119/1.3381073�

I. INTRODUCTION

In the 1930s, Zwicky1 argued that clusters of galaxies
must hold enormous amounts of nonluminous matter to ex-
plain the dynamics of the member galaxies. Many astrono-
mers disregarded his argument, believing that he must have
made a mistake �see, for example, Refs. 2 and 3�. In the
1970s, following the measurements of galactic rotation
curves by Rubin et al.,4 it became increasingly apparent that
the visible matter in many galaxies was insufficient to ex-
plain their observed flat rotation curves.

It is now generally accepted that a mysterious form of
nonbaryonic matter �dark matter� pervades galaxies �see, for
example, Ref. 5� and that dark matter is necessary to explain
the flat rotation curves of visible matter about the center of
spiral galaxies. The best evidence for the existence of dark
matter, other than the flat rotation curves of many spiral gal-
axies, comes from observations of gravitational lensing by
the two colliding galaxy clusters that make up the Bullet
cluster.6 Measurements of gravitational lensing indicate that
the center of mass of the Bullet cluster occurs at a position
that does not coincide with the position of the center of mass
of the baryonic matter as determined from the distribution of
x-ray producing matter, which has arisen due to the violent
collision of the two clusters, and is believed to form the
major baryonic component of the two colliding galaxy clus-
ters.

It is believed that dark matter constitutes roughly 23% of
the matter-energy content of the universe, with 73% dark
energy, and only 4% of baryonic matter. However, as sug-
gested by several researchers,7 it is instructive to consider
alternative explanations for the observed flat rotation curves
of spiral galaxies.

The alternatives, except for those that propose a modifica-
tion of general relativity, provide an opportunity for the up-
per level undergraduates who have been exposed to some of
the basic tools of computational physics to gain insight into
one of the currently most active and exciting areas of physics
and astrophysics.

We have approached the need for undergraduates to be
introduced to the powerful computer software tools that are
available for computational physics by incorporating a sig-
nificant amount of computation into our intermediate experi-

mental physics course. There are a number of software pack-
ages to choose from and approaches to computational
physics vary from department to department.8 We have uti-
lized the scientific spreadsheet program PSIPLOT �Ref. 9� to
plot and fit data, the mathematics software package
MATHCAD,10 the systems modeling software package
STELLA,11 and more recently, VENSIM �Ref. 12� �because it is
free for faculty and student use�, which we use to solve com-
plex ordinary differential equations. We also use the partial
differential equation solver FLEX,13 the video capture and
analysis package VIDEOPOINT,14 and the data acquisition
package LOGGERPRO.15

In the following, we outline a computational physics
project that one of us �Sharrar� chose as a senior project. The
project utilized MATHCAD and PSIPLOT. The project involved
looking at three ways of obtaining flat rotation curves for
spiral galaxies. In particular, the project involved investigat-
ing the standard “exponential disk+dark matter halo model,”
the modified Newtonian dynamics model of Millgrom,16 and
a disk with a nonstandard �that is nonexponential� surface
mass density distribution. In each case the model was fitted
to the data for the spiral galaxy NGC 3198.17,18

Section II gives a summary of the relevant details of the
spiral galaxy NGC 3198. Section III covers the standard ex-
ponential disk+dark matter halo model, and Sec. IV applies
the modified Newtonian dynamics model to NGC 3198.
Section V develops a method for numerically treating a thin
disk with an arbitrary surface mass density. A discussion is
given in Sec. VI.

II. THE GALAXY NGC 3198

One of the best studied spiral galaxies is NGC 3198. A
black and white image of a color-composite picture of this
galaxy is shown in Fig. 1.19 For our purposes, we use the
readily available data of Begeman,17,18 who studied this gal-
axy using the Westerbork synthesis radio telescope by mea-
suring the Doppler shift of the neutral hydrogen �HI� 21 cm
line. If the hydrogen gas moves in circular orbits around the
center of the galaxy, the data yields an odd set of velocity
contours.17 The circular orbital velocity of the hydrogen gas
can be determined by knowing the inclination of NGC 3198
relative to the observer’s line of sight and using these veloc-
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ity contours. A tabulation of the circular orbital velocities as
a function of radius, as determined in Refs. 17 and 18, is
given in Table I.

Table I shows the experimental points to which each of the
models described in the following is fitted. R is in kpc �ki-
loparsecs� instead of arcminutes as in Refs. 17 and 18. The
conversion assumes that NGC is a distance of 9.4 Mpc
�megaparsecs� from Earth �1 arc min is equal to 2.73 kpc�.
References 17 and 18 assumed a Hubble constant of

75 km s−1 Mpc−1 to determine the NGC distance of 9.4
Mpc. This value is consistent with the latest value
�74.2�3.6 km s−1 Mpc−1� for the Hubble constant.20 An-
other useful conversion is 1 kpc=3.26�103 Ly �light-
years� or 3.084�1016 km. The radius of the visible extent of
NGC 3198 is �11.4 kpc or 3.72�104 Ly. A plot of Bege-
man’s data is shown in Fig. 2.

Note that the data in Table I and Fig. 2 go out to almost
30 kpc. In contrast, the luminous matter of the galaxy ex-
tends to only 10–11 kpc, or to a little past the peak in the
circular velocity curve. If all the matters were luminous, we
would expect the rotation curve to start decreasing beyond
the luminous extent of the galaxy �and by assumption, be-
yond the baryonic mass distribution also�. This behavior is
commonly referred to as a Keplerian decrease, and for NGC
3198, should start around 10–11 kpc. Such is not the case as
can be seen in Fig. 2.

III. STANDARD EXPONENTIAL DISK+DARK
MATTER HALO MODEL

Spiral galaxies consist of a central spheroid or bulge and a
disk of baryonic matter in the form of stars that emit light in
the visible, and baryonic neutral hydrogen emitting radiation
with a wavelength of 21 cm. These are features that can be
seen by the emission of various types of electromagnetic
radiation. There likely is also a contribution to the baryonic
mass from massive compact halo objects, which do not emit
visible radiation. All of these components can be modeled
and fitted to circular orbital velocity data where available.
NGC 3198 was chosen because it does not have a well-
defined bulge. The lack of a well-defined bulge is true for all
of the galaxies studied by Begeman,18 who chose these gal-
axies because of their apparent simplicity. We have not in-
cluded the hydrogen gas in our analysis in the following
because its mass is small,17 and we have neglected massive
compact halo objects because their contribution is unknown.
We note that including the gravitational effects of the hydro-
gen gas would be a useful extension to the models discussed
in this paper �see Figs. 13 and 15 in Ref. 17�.

In its simplest form, it is customary to explain the flat
rotation curve of spiral galaxies without spheroids or bulges
by combining a thin disk of constant mass to light ratio and
an isothermal spherically symmetric halo consisting of non-
radiating dark matter. The disk is assumed to have a surface
mass density of conventional baryonic matter, which is pro-
portional to the surface brightness and given by

��r� = �0e−r/RD, �1�

where r is the distance from the galactic center to the point
of interest and RD is the radial scale length of the disk. The
radial scale length is determined from the surface brightness.
The assumption is that the mass to light ratio is constant for
a particular spiral galaxy. This assumption is based on mea-
surements made in the local neighborhood of our own gal-
axy, the Milky Way. The scale length is the distance from the
galactic center to the point where the surface brightness
drops to 1 /e of its value at the galactic center. For NGC
3198, RD is 2.63 kpc.17,18 �0 is the surface mass density at
the center of the galaxy.

The dark matter halo �spherical in shape� is assumed to
have a volume density,

Fig. 1. A color-composite image of NGC 3198 taken at the Palomar Obser-
vatory �Ref. 19�.

Table I. Rotation curve data for NGC 3198 �Ref. 18�.

R
�kpc�

vc

�km/s�

0.68 55
1.36 92
2.04 110
2.72 123
3.4 134
4.08 142
4.76 145
5.44 147
6.12 148
6.8 152
7.48 155
8.16 156
9.52 157
10.88 153
12.24 153
13.6 154
14.96 153
16.32 150
17.68 149
19.04 148
20.4 146
21.76 147
23.12 148
24.48 148
25.84 149
27.2 150
28.56 150
29.92 149
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��r� =
�0

�1 + �r/rc�2�
, �2�

where rc is a halo scale length. The peak density occurs when
r is equal to zero and the density at r=rc is �0 /2. A plot of
��r� versus r for rc=6.414 kpc �see the fit of the model to
“maximum disk” given in the following� is shown in Fig. 3.
Note that the total halo mass obtained by integrating the
density over a spherical volume from zero to infinity leads to
an infinite mass of the dark matter. Hence, if Eq. �2� is cor-
rect, the halo must end at some radius to be physically ac-
ceptable. After that radius, there should be a Keplerian de-

crease. Such a decrease has not been observed. Students
could try halos with different halo densities and, in particu-
lar, ones that don’t lead to infinite masses as the radius tends
to infinity. The method would be essentially the same as that
outlined in the following.

The gravitational field due to the disk and halo is given by

g�r� = gdisk�r� + ghalo�r� , �3�

where gdisk�r� is given by �see Ref. 3, p. 77�
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Flat Rotation Curve for NGC 3198

Fig. 2. A plot of rotational speed �km/s� versus radial distance �kpc� for NGC 3198 using the data in Refs. 17 and 18.
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Fig. 3. Normalized dark matter halo density �Eq. �2�� with rc=6.414 kpc, corresponding to a “maximum disk” fitting to the circular orbital velocity for NGC
3198, plotted as a function of radius.
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gdisk�r� = 4�G�0�RD/r��y�2�I0�y�K0�y� − I1�y�K1�y�� .

�4�

In Eq. �4� G is the gravitational constant. I0�y� and I1�y� are
the modified Bessel functions of the first kind, and K0�y� and
K1�y� are the modified Bessel functions of the second kind
with y=r / �2RD�.

The gravitational field due to the halo can be obtained by
recalling that for a spherically symmetric matter distribution,
g�r�=GMinside /r2. We evaluated the integral
�4�G�0 /r2��0

r�s2 / �1+ �s /rc�2��ds. The well known result is

ghalo�r� = �4�G�0/r��rc
2 − �rc

3/r�arctan�r/rc�� . �5�

For circular orbits with circular orbital velocity vc, the accel-
eration of an object of mass m is vc

2 /r. Newton’s second law
then yields

g�r�m = mvc
2/r . �6�

Solving for vc
2 and substituting Eqs. �3�–�5� into Eq. �6�

yields

vc
2 = u0RD�y�2�I0�y�K0�y� − I1�y�K1�y��

+ u1�u2
2 − �u2

3/r�arctan�r/u2�� , �7�

where u0=4�G�0 ��km /s�2�1 /kpc��, u1=4�G�0

��km /s�2�1 /kpc�2�, and u2=rc �kpc�. These quantities are
used as adjustable parameters in a nonlinear fit of Eq. �7� to
the data for NGC 3198. We used the genfit function in
MATHCAD to do the fitting. Two possible best fits are shown
in Fig. 4.

The dot-dash curves are the best fit for a maximum disk
contribution with u0=35680 �km /s�2�1 /kpc�, u1

=619 �km /s�2�1 /kpc�2, and u2=6.414 kpc. Here, u0 is a
measure of the disk surface mass density �0 at the center of
the galaxy and u1 is a measure of the volume mass density �0

of the dark matter halo at the center of the galaxy. If masses
are measured in solar masses M�, distances are measured in
kpc, and speed is measured in km/s, G=4.306
�10−6 km2 kpc / �s2 M��, �0=6.594�108 M� /kpc2, and
�0=1.144�107 M� /kpc3. The dotted curves are for a mini-
mum disk contribution and yield u0
=14690 �km /s�2�1 /kpc�, u1=12980 �km /s�2�1 /kpc�2, and
u2=1.291 kpc. The corresponding values for �0 and �0 are
2.715�108 M� /kpc2 and 2.399�107 M� /kpc3, respec-
tively. Note that both sets of fitted parameters gave the same
fit to the data �solid curve�. Presumably, a variety of fitted
curves could be obtained by fixing the disk contribution
somewhere between the maximum and minimum and then
adjusting the halo parameters. A variety of dark matter halo
densities could also be tried. It should be clear that the exact
form of the dark matter contribution is far from established.
Note that the individual contributions from the disk and the
halo must be added in quadrature and the square root taken
to obtain the fitted curve.

The data for seven other spiral galaxies can be obtained
from Ref. 18 and the same fitting procedure could be done.
Such a fit would be a useful and interesting extension to the
calculations we have reported.

IV. MODIFIED NEWTONIAN DYNAMIC MODEL

An often studied alternative to a dark matter halo is the
modified Newtonian dynamic model.16 In its initial form,
Milgrom proposed a modification of Newton’s second law
for small accelerations. However, in the context of galactic
rotations with circular orbits, this modification can also be
interpreted as a modification of gravity, which leads to many
complications as far as Einstein’s general theory of relativity
is concerned. In this paper, we interpret the model as a modi-
fication of Newton’s second law for very small accelerations.
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Fig. 4. Circular orbital velocities versus radius for NGC 3198. Solid dots are data points Refs. 17 and 18. Dot-dash lines are the best fit to the data with
maximum disk surface mass density and minimum dark matter halo volume density. Dashed lines are for minimum disk surface mass density and maximum
dark matter halo volume density. The solid curve is the sum �in quadrature� of disk+halo for both maximum and minimum disk situations.
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Given that the true gravitational acceleration is g, the
model assumes that there is a deviation from Newton’s sec-
ond law for g�a0, where a0 is small. For g�a0, g is re-
duced to the Newtonian value gN. A relation that does this is

g =
gN

��x�
, �8�

where

��x� =
x

�1 + x2�1/2 �9�

and

x =
g

a0
. �10�

We substitute this form of ��x� into Eq. �8� and obtain an
equation for g given by

g4 − gN
2 g2 − gN

2 a0
2 = 0. �11�

For g�a0, we see that g=gN, and in the limit g�a0, we
have

g = �gNa0. �12�

For circular orbits, g=vc
2 /r. For large r, where g is much less

than a0, we have from Eq. �12�, a0=vc
4 / �r2gN�. We can obtain

a value for a0 by using this expression. From the experimen-
tal data in Table I, we see that at r�30 kpc �9.25
�1017 km� and vc�150 km s−1. The Newtonian gravita-
tional field gN�r� at r=30 kpc can be found from Eq. �4�
with 4�G�0=35680 �km /s�2�1 /kpc�, corresponding to the
case where the visible baryonic matter makes a maximum
contribution to the gravitational field. The results are
gN�30�=4.97�10−15 km /s2 and a0=1.2�10−13 km /s2.
Once a0 is obtained, Eq. �11� can be solved for g as a func-
tion of r. A value for vc= �gr�1/2 can then be found for com-
parison with the data. The results of this procedure for NGC

3198 are shown in Fig. 5. A small adjustment of the value of
a0 can lead to an even better fit.

A similar procedure could be applied to the other spiral
galaxies studied in Ref. 18 and the values of a0 compared.
Although we have not calculated a0 for these other galaxies,
we anticipate that the value of a0 would be almost constant
and is independent of the galaxy studied, in accordance with
the more involved procedure generally used �see, for ex-
ample, Ref. 7� As in the case of the computations in Sec. V,
this calculation would be an informative problem for stu-
dents because it would indicate that a0 might be a universal
constant, albeit fortuitously.

V. A DISK WITH ARBITRARY SURFACE MASS
DENSITY

In this section we set up the formalism that will allow us
to calculate the rotational velocity for circular orbits in the
plane of a thin disk with arbitrary surface mass density. Us-
ing this formalism and trial and error will allow us to find
surface mass densities that yield flat rotation curves. The
validity of our numerical technique can be tested by using an
exponential surface mass density for which an analytic solu-
tion exists �see Eq. �4��.

Consider a coordinate system with its origin fixed at the
center of the galaxy and with the x and y axes in the plane of
the galaxy, as shown in Fig. 6. Also consider an arbitrary
point P as shown. The magnitude of the gravitational field
produced at point P by an element of mass dm on an annulus
of radius u at a distance R from dm is given by Newton’s law
of universal gravitation and can be written as

�dg� � = Gdm/R2, �13�

where

dm = 	�u�udud
 �14�

with 	�u� as the surface mass density. We also have
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Fig. 5. Modified Newtonian dynamics fit to the data �Refs. 17 and 18� for NGC 3198.
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R = ��2 + z2�1/2 �15�

and

�2 = u2 + r2 − 2ur cos 
 . �16�

The substitution of Eqs. �14�–�16� into Eq. �13� yields

�dg� � =
G	�u�udud


�u2 + r2 + z2 − 2ur cos 
�
. �17�

From symmetry, the component of g� in the y direction must
be zero and we can therefore ignore dgy. Consider the com-
ponents of dg� in the z and x directions. In the z direction,

dgz = − �dg� �cos � . �18�

Substituting for �dg� � and cos � yields

dgz = −
G	�u�udud
z

�u2 + r2 + z2 − 2ur cos 
�3/2 . �19�

In the x direction �equivalent to the radial direction for z=0�,

dgx = − �dg� �sin � cos � �20�

=−
G	�u�udud
� cos �

�u2 + r2 + z2 − 2ur cos 
�3/2 . �21�

From the triangle in the galactic plane, we have

u2 = �2 + r2 − 2�r cos � . �22�

Hence,

cos � =
�2 + r2 − u2

2r�
. �23�

Substituting Eqs. �16� and �23� into Eq. �21� and simplifying
yields

dgx = −
G	�u�udud
�r2 − ur cos 
�
r�u2 + r2 + z2 − 2ur cos 
�3/2 . �24�

The integral of Eq. �24� yields the x-component of g� ,

gx�r� = − 2
G

r
	

0

� 	
0

 	�u�u�r2 − ur cos 
�
�u2 + r2 + z2 − 2ur cos 
�3/2dud
 .

�25�

Inspection of Eq. �25� shows that there is a singularity in the
galactic plane �z=0� when u=r and 
=0 that causes the
numerical integration to fail. We treat this problem by imag-

ining what happens if we consider a field point situated be-
tween two thin disks as the spacing between them ap-
proaches zero, thus sandwiching the field point between the
two disks as in Fig. 7. We assume that each disk carries half
of the surface mass density of the original disk and therefore
the two disks together have the same surface mass density as
the original disk. That is, the two disks are equivalent to the
original disk for computational purposes.

As can be seen from Fig. 7, the z components of the gravi-
tational fields due to the two disks are equal in magnitude but
opposite in direction and hence cancel. The radial �x� com-
ponent due to the two disks is twice that due to a single disk
with half the surface mass density. The result is that we can
numerically calculate the gravitational field in the galactic
plane using Eq. �25�, with z small, but nonzero, and use the
original surface mass density. An effective value for z was
established by substituting the surface mass density for an
exponential disk �Eq. �1�� into Eq. �25� and reducing z until
agreement with the analytic solution in Eq. �4� was obtained
to four significant figures for all r. As a result we found z
=10−6.

As an example of the use of Eq. �25� to obtain a flat
rotation curve without the need for a dark matter halo, we
investigated functions of the form, 	=1 / �1+ �r /R�n�, where
n is not necessarily an integer and R is a scale factor. By trial
and error, we found that 	=1 / �1+ �r /2�1.4� leads to good
agreement with the data for NGC 3198, as shown in Fig. 8.

For this form of 	, the total mass of the galaxy becomes
infinite unless the distribution is cut off at some maximum
value of r. Thereafter, a Keplerian drop off is expected. As
mentioned in connection with the dark matter halo, such a
drop off has not been observed. Note also that the use of this
form for 	 violates the empirically strong assumption of a
constant mass to light ratio for spiral galaxies and is unac-
ceptable, unless there is a significant amount of baryonic
matter that is not visible. It is clear from this example that
there are a number of possible surface mass densities that
could lead to a flat rotation curve, but could possibly be
excluded on the basis of other empirical evidence. Nonethe-
less, investigating surface mass densities that can lead to flat
rotation curves provides students with an introduction to the
complexity involved in trying to pin down the composition
of our universe.

We note that an analytic solution, in contrast to the general
numerical procedure used in this paper, for the gravitational
field due to a special gravitating annulus has recently been
obtained.21 In Ref. 21, a surface mass density of 	=k /r was
assumed. This surface mass density diverges at the origin

Fig. 6. Geometry used for calculating the gravitational field due to a thin
disk.

Fig. 7. Diagram illustrating the method used to deal with the singularity at
the field point to facilitate the numerical calculation of the gravitational field
in the plane of a thin disk.
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�which is nonphysical� but nevertheless leads to an analytic
solution and yields a constant orbital velocity for circular
orbits for all r.

VI. DISCUSSION

As we have seen, it is possible to obtain a flat rotation
curve using a variety of galactic models. Three of these ap-
proaches have been outlined in this paper. Are there other
models? Quite possibly. For example, it may be possible to
obtain a flat rotation curve by modeling the hydrogen as a
fluid and using the Navier––Stokes equation, or perhaps the
hydrogen is responding to the baryonic mass of the galaxy as
it was in the “past” rather than as it is “now,” analogous to
the 81/2 min delay involving the “present” state of our Sun.

So far we have purposefully avoided coming to any non-
expert conclusions regarding the three possibilities that we
considered and have focused instead on computational pro-
cedures related to three models that lead to a flat rotation
curve. However, the majority of experts believe that a model
that includes an exponential disk and a spherically symmet-
ric dark matter halo is as close as one can get to a correct
model at the present time. For reasons of stability, it is be-
lieved that a spherical dark matter halo is to be preferred
over any suggestion that there may be a dark matter compo-
nent to the disk surface mass density as is possible with the
third procedure that we have discussed. �See Ref. 3, Chap. 6
for an introduction to the complex questions involving disk
stability and the results of N-body simulations.� Precisely
how the dark matter may be distributed in the spherical halo
is an open question, and as we have suggested, different
spherically symmetric dark matter distributions could be
tried as an extension to the present work. One way to ulti-
mately decide on the dark matter distribution in the halo
might be through a study of orbits out of the plane of the
galactic disk. Readers might be interested in a recent paper
which calculated possible orbits in the galactic plane of a
spiral galaxy with a flat rotation curve.22

The second model considered in the present paper is the
MOND model proposed by Milgrom.16 As mentioned, this
model proposes a modification to Newton’s second law for
small accelerations and has garnered much attention since it
was proposed. The successes and failures of the MOND
model and a critical evaluation of its effectiveness can be
found in Ref. 7. The MOND conjecture is an area of interest
in its own right.23 If and when the dark matter is detected in
the ongoing laboratory experiments �as an example see Ref.
24�, the MOND conjecture would presumable fall by the
wayside. Therefore, the importance of the ongoing labora-
tory experiments to detect dark matter cannot be overempha-
sized. An intriguing possibility is that these experiments
could prove to be the next �after Michelson–Morley� great
null experiments and then what?
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Superb Calculation of the Pressure in a Fluid
Bob Panoff, Shodor Foundation

Tune: Supercalifragilisticexpialidocious

Bernoulli knew he had a rule he used for wings in air
For fluid incompressible he’d never have a scare.
The density of energy’s the same at every spot
A caveat is cavitation in which case it’s not!

Oh, Superb calculation of the pressure in a fluid
Is simple so that anyone with any sense can do it.
We all deserve a force conserved among the objects paired.
Just add to pressure rho gee aitch then add half rho vee squared

A water tower tower’s o’er a town so water goes
Through every pipe, and when you turn the faucet on it flows.
The pressure head is now instead a steady stream, you see,
The pipe’s diameter determines stream velocity.

The sum at every point’s a constant, check it if you care
Each term can change within a range for water or for air.
The key’s to keep the units straight and don’t have any gap
Or else your fluid starts to leak and then you’ll just get Oh... .
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