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Intrinsic nonlinear effects in vibrating strings
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The two perpendicular polarizations of transverse oscillation in stretched strings
are shown to be parametrically coupled so that energy is spontaneously
exchanged between the perpendicular modes. The approximate solution of the
equations of motion shows that the trajectory is an ellipse with a reverse
precession. The effect is commonly observed in the teaching laboratory, and may
be important in the performance of musical instruments.

INTRODUCTION

The freely vibrating stretched wire is commonplace in
both the scientific world and in the musical world. Every
elementary course in vibrations and waves draws attention
to the sinusoidal oscillation and the harmonic structure of
the overtones. More detailed nonlinear effects have been
observed in real musical instruments,'-2 having their origin

“in the finite stiffness of the wire and in the effect of the
bridges supporting the wire, leading to departures from
harmonicity.

The parametric excitation of vibrations was first dem-
onstrated by Melde and treated theoretically by Rayleigh?:
if the tension of the wire is varied periodically at twice one
of the mode frequencies of the wire, then the system is un-
stable and oscillations grow. The purpose of this paper is to
describe the existence of intrinsic parametric excitation in
the simple stretched wire, and to explain why the behavior
of such wires when plucked or struck is usually not that
expected on the simple linear treatment, which suggests that
a steady planar motion should ensue.

Transverse vibrations are possible in two perpendicular
polarizations. For a perfectly symmetrical system, these two
perpendicular sets of modes will be degenerate. The de-
generacy tends to be lifted in practical systems by the
asymmetry of the bridge mountings. It has long been ap-
preciated that the two perpendicular modes decay at dif-
ferent rates,*3 since the coupling to the soundboard via the
bridge is different for the two polarizations. We shall first
consider a string that is perfectly symmetrically supported,
and we shall ignore stiffness effects, being concerned only
with nonlinear effects intrinsic to the geometry of the
system.

A string vibrating at frequency p in, say, the x direction
must have a tension 7 which varies slightly at twice the
frequency. This will give rise to the generation of the third
harmonic, for we have a nonlinear oscillation if T is not
constant. However, that oscillating tension can paramet-
rically excite the perpendicular mode in the y direction,
which will therefore grow, and eventually it is possible for
most (but not all) of the energy to transfer from the initial
x mode to the parametrically excited y mode. The simple
stretched string should, then, properly be considered as two
nonlinear oscillators parametrically coupled.

EQUATIONS OF MOTION

Consider an element of the string of length /g at rest
(see Fig. 1) and tension Tp. When the, string is displaced
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during oscillation, the length changes to / and the tension
to T= To+ YA(l — lp)/ly, where Y is Young’s modulus and
A is the area of cross section of the wire. The work done in

stretching the wire from Il to /, is

! : — 732
W= f "Tdl = To(ly = Io) +M. (1)
lo 21()
From Fig. 1, I} = [3 + &r2, therefore, I? — I3~ (I, — Ip)2lo
= 6r2,
Therefore,

_ (672 lo _ (2r)2 0z
g 1°'(10) 2_(62) 2’ )

where we have let [y — 0z.
Substituting (2) into (1) we obtain for the potential en-

ergy of the string

or\2 6z or\4 oz
W—TQ(B; 5+ YA(bz) o 3)
where r is the radial displacement, hence 6r2 = 6x2 + 6y?
and
1 [fax\2 | [oy\2
W= Tebz~ |[X] + [
002 2 (bz) (bz) ]

2 2]2
cvass @ 2T o
The kinetic energy (KE) of the element 6z is
KE = udz(i)2/2 = udz(x2 + y2)/2, 5)
where u is the linear mass density. We now let
x(z,1) = x(t)sinkz,
y(z,t) = y(t)sinkz

and substitute, and integrate over z, and obtain the Lag-
rangian for the complete string:

I L B SN R L PSP
L (4k)p.(x +y2) =Ty 4 (x2+y%)

X |1 +%ak2(x2 + 2], (6)

where o = 3YA/8To. Here n is the number of the harmonic
mode: for the fundamental » = 1. We have assumed that
ky = k,: parametric coupling will not occur between modes
with different wave numbers.

From Lagrange’s equations, we obtain the equations of
motion for the string. To simplify their form, we use di-
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Fig. 1. Segment of the vibrating
string, showing the coordinate
system.

mensionless variables X = kx and Y = ky, and put w? =
Tok%/u:

X+ 02X[1 + (X2 + Y?)] = 0, (7)
Y+ w?Y[1+0(X2+Y2)]=0. (8)

These symmetrical equations describe two oscillators with
cubic nonlinearities, coupled via a nonlinearity of the same
order, In the limiting case of one mode predominating, i.e.,
Y « X, Eq. (7) reduces to

X+ 02X+ cw2X3 =0, 9)

which may be solved by standard perturbation methods to
yield sinusoidal oscillations of amplitude a at the shifted
frequency p = w(1 + ga?/2) plus additional third har-
monics.

Equation (8) reduces to

Y+ w?2Y(l + 6X2) = 0. (10)

We let X = acospt, being the first-order solution for X, and
obtain

Y+ w?Y[1 + (da?/2)(1 + cos2pt)] =0, (11)

which is an equation of the Mathieu type, describing pos-
sible parametric excitation, but at a frequency somewhat
.greater than w. The symmetry of the system leads us to
expect that the ¥ motion be frequency shifted by the same
amount as the X motion since the average string tension will
be the same for each mode.

We note by inspection that the simplest exact solutions
of equations (7) and (8) are circular motions: let X = a cospt
and Y = asinpt. Each equation yields

p? = w3(1 + ca?). (12)

The surprising result will appear that the general motion
of the vibrating string is, to good approximation, a linear
sum of two circular motions with different amplitudes and
frequencies. The effect of the nonlinearity is to make those
frequencies different from those given by Eq. (12).

APPROXIMATE SOLUTION

Mathematically, the system is now similar to the spher-
ical pendulum described by Olson,® who gives an elegant
treatment which will be followed here.

Observation of real strings shows that the motion es-
sentially follows an elliptical figure precessing about its axis
of symmetry. We therefore transform the Lagrangian (6)
into a frame rotating at angular velocity £:

X = ucosQt — vsinft
Y = usinQt + vcosQt

(13)

where u, v are the orthogonal displacements of the string
in the rotating frame (Fig. 2). Simple substitution yields the
new Lagrangian
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L’ = (nwp/dk3)[u? + 62 + 2Q(wd — ww) + QX (u? +v?)

- w(u?+ 02 — w2o(u? +02)%/2]. (14)

The equations of motion follow:
i+ wlull — Qw2+ o(u?2+0v)] -2 =0, (15)
b+ w[l — Qw2+ o(u2+02)] +2Qu=0. (16)

Equation (15) can be written

i+ pu=(p?—w*+ Qu
+ 200 — w2ou(u?+ 02 (17)

We expect elliptical solutions: u = acospt, v = bsinpt.
Substituting in the right-hand side of (17) and performing
the trigonometric separation, we obtain

i + p2u = [a(p? — w? + Q2) + 2Qbp — 3w?0a3/4
— w2gab?/4] cospt + (w?caf4)(b? — a?)cos3pt. (18)

For a steady-state solution to exist at frequency p, the
coefficient of cospt must be zero. We may also neglect the
Q2 term, and assume p = w, writing (p? — w?) ~ 2wiw,
where 6w = p — w. We thus obtain the following condition
for a steady-state solution, and a corresponding condition
similarly derived from Eq. (16):

2bdw + 2Qa — 3wob3/4 — woa?b/4 = 0, (19)
2a6w + 2Qb — 3woa?/4 — woab?/4 = 0.

These solve simultaneously to give expressions for the fre-
quency shift 6w in the rotating frame, and the precession
frequency €2

ow = 3wa(a? + b2)/8, = —waoab/4. (20)

We note that for a:= b we have circular motion, and the
frequency shift in the laboratory frame is 6w + Q = woa?/2
in agreement with the exact solution.

DISCUSSION

We now see that a strictly planar oscillation of the wire,
with b = 0, remains planar since ! = 0; we observe simply
a frequency shift due to the finite amplitude a. However,
a small initial transverse component b, in quadrature, causes
a slight ellipticity of motion which then precesses, thus
ultimately transferring the energy substantially from the
initial X mode to the ¥ mode and then back again. (We
have, of course, neglected dissipative damping.) The rate
of precession is proportional to the area of the elliptical
trajectory. The precessive motion is the manifestation of
the parametric excitation of the perpendicular mode. A
finite amplitude 4 is required, since all parametric excita-
tions require “seeding.” Symmetry demands, of course, that
once the motion is predominantly in the ¥ mode, parametric
excitation of the X mode will follow; the process continues
indefinitely. '

\n

Fig. 2. Elliptical trajectory, showing
the two-coordinate systems.
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Transforming the elliptical motion back into the labo-
ratory frame, we obtain

X = (a+b)/2cos(p + Q)t] + (a = b)/2[cos(p — D)),
Y = (a+ b)/2[sin(p + D)t]
—(a —b)/2[sin(p — V], (21

which represents a linear superposition of two circular
motions in opposite senses at frequencies p + €2, p — . The
frequencies and amplitudes, however, do not correspond in
the manner of Eq. (12).

NUMERICAL EXAMPLE

If 1 is the length of the wire, p the density of the materi-
al and v = w/27w, we may write ¢ = 3YA/8T, = 3Y/
(321%pv%). ForI=1m,Y=210X 109 Nm~2,p =78 X
103 kg m~3 (piano wire), v = 100 Hz, we obtain ¢ = 2.5. If
we further assume X and Y amplitudes of 10 and 1 mm,
respectively, we obtain /27 = v (precess) = 0.25 Hz, i.e.,
it will take 1 sec for the energy to transfer from being pre-
dominantly in the X mode to predominantly in the Y
mode.

EFFECT OF ASYMMETRY

It is difficult to include these effects analytically. If the
wire is not suspended symmetrically the X and Y motions
have slightly different frequencies and the phase of the ¥
motion will drift with respect to that of the X motion. A
nonprecessing elliptical trajectory would then possess a
phase drift between two linear extremes, and describe
simple Lissajous figures.

In practice two limits can be identified:

(i) If (px — py) K, the effect of asymmetry is barely
noticeable due to an averaging effect. When the major axis
is parallel to X (see Fig. 2) the major axis oscillation gains
on the minor. After 90° precessive rotation the major axis
is parallel to Y and the minor axis oscillation gains on the
major, and the ellipse will revert to its original shape. The
observer will see the precessive motion dominate; the pre-
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cession rate Q will oscillate slightly as the area of the ellipse
varies.

(ii) If (px — py) > Q, the phase drift of the ellipse is rapid
compared with its precessional motion. As the ellipse passes
through its linear phase, when the X, Y motions are in
phase, € reverses sign. The precessive motion therefore
causes the ellipse to rock back and forth between its two
linear extremes of phase. This effect can be readily observed
in the conventional monochord of the teaching labora-
tory.

The intermediate case is difficult to visualize, but ex-
periment indicates that it involves a critical condition in
which the coordinate inversion by precession just outstrips
the phase drift due to the asymmetry.

One important consequence of asymmetry is that an
initially purely planar motion, such as might be expected
in, for example, the struck piano string, can still lead to
precessive motion and the excitation of the transverse
mode.

CONCLUSION

We have shown that the intrinsic geometrical nonlin-
earity in the vibrating string causes its general oscillation
to be precessive in nature, involving a form of parametric
excitation of the mode perpendicular to that initially ex-
cited. In musical instruments these two modes are known
to couple differently to the soundboard and radiating areas,
having different decay rates and radiating efficiencies. This
intrinsically nonlinear effect may therefore be relevant to
understanding the development of the sound from stringed
instruments.
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