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This is in agreement with several other authors’ work>*%’
based on harmonic oscillations, such as Eq. (11). However,
as may be seen from Egs. (9) and (10), it is possible that with
different initial conditions, the lower harmonics may not be
excited, and a much shorter period could occur. For a sin-
gle mode, the period is given by

T, = (4y/c)/(2n + 1) = 4m/k)"*/2n + 1).

Then, if we pursue this notion to logical extremes, one is
tempted to define the effective mass of a single mode as

M = (4/7m/(2n + 17 (13)

This course leads to many difficulties. If a general oscil-
lation includes many harmonics, which effective mass
should be used? Since all the higher frequencies are odd
multiples of f, = ¢/4l, the entire motion will be periodic
with the period of the Jowest excited harmonic. One might
then argue that the value of # in Eq. (13) for general oscilla-
tions should be that value for which the first nonzero coeffi-
cient appears in the Fourier series, Eq. (9).

This leaves us in an impossible situation. The effective
mass defined this way depends on initial conditions! Worse
yet, two motions virtually indistinguishable (one with
A, = B, =0, the other with 4, =0, B, = € = small non-
zero quantity) have very different effective masses.

If the idea is to be useful at all, I would suggest that the
notion of effective mass be tied only to properties of the
Slinky. The “natural” or fundamental motion of the spring
has period 7' = 4(m/k )'/?; it seems likely that all reasonable

mechanisms do in fact excite the lowest mode. So let us
adopt (4/7%)m as the effective mass of an unloaded Slinky,
regardless of its actual motion.
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A simple stretched string driven sinusoidally is commonly used to illustrate the concepts of
resonance and eigenmodes. In practice, such a system rarely executes planar oscillation, but
prefers circular motion. This is shown to be a consequence of the intrinsic nonlinearity of the
stretched string oscillator, and the associated parametric coupling between the two transverse

polarizations.

INTRODUCTION

Every child who tries to create standing waves on a
clothesline soon discovers that it is very difficult to main-
tain a plane polarized wave. University students commonly
do the same experiment in more detail, using controlled
tension and sinusoidal excitation. The excitation can be
transverse or longitudinal, as in Melde’s classic experiment
(described by Rayleigh'). In all cases it is commonly ob-
served that the string prefers circular motion to simple
transverse; sometimes more complicated phenomena are
seen, such as the periodic cycling of the system between
states with large and small amplitude. The purpose of this
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paper is to discuss the origins of these phenomena in this
simple system. They prove to be interesting examples of
nonlinear effects intrinsic to the stretched string system,
arising from the simple fact that the tension cannot be con-
stant if the string is varying in length due to finite ampli-
tude of displacement. The effect of this nonlinearity on the
free oscillations of a string has been discussed in an earlier
paper.? Keller® also has discussed the large-amplitude os-
cillations of strings, although his analysis is restricted to a
very specific stress—strain law, not appropriate to conven-
tional, real strings. Here we restrict detailed analysis to the
steady-state resonance behavior; transient effects are men-
tioned briefly.
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EQUATIONS OF MOTION

The equations have been derived in the earlier paper” for
the free oscillations, and need be modified only by the addi-
tion of a forcing term. We assume that the string is in the z
direction, and can be displaced in the x and y directions.
We assume standing waves in each polarization, with
wavenumbers k, = k, = k = 27/A and oscillating ampli-
tude x and y. It is convenient to define dimensionless pa-
rameters X = kx and Y = ky. We further assume that the
string is being sinusoidally excited in the x direction. In-
cluding this forcing term, the equations of motion become

X+ @ X[1+4o(X2+ Y?)] =4 cos pt, (1)
Y+oY[1+0X2+Y2)] =0, (2)

where ©” = Tok?/u and o = 3Y.//8T,. Here T, is the
static tension, ¢ the mass/unit length, ¥, Young’s modulus
(the context will not allow confusion with the displace-
ment), and ./ the cross-sectional area of the string. o clear-
ly is an indication of the nonlinearity and is greatest at low
tensions.

Equation (1) is a version of Duffing’s equation® with the
addition of nonlinear coupling to Eq. (2). The system con-
sists of two nonlinear oscillators parametrically coupled.
Exciting a nonlinear resonance in one oscillator causes the
parametric excitation of nonlinear oscillation in the sec-
ond, which then couples back into the first.

APPROXIMATE SOLUTION

Duffing’s method* is applicable here: we rearrange Eqs.
(1) and (2) so that only X, Y remain on the left-hand side,
and substitute sinusoidal forms for X and Y on the right-
hand side. We put X =acospr and Y = b cos(pt + @),
since we are looking for motion at the driving frequency.
Equation (1) becomes
X = A cos pt — w?a cos pt — w?o[a® cos® pt

+ab * cos pt cos*(pt + @ )]. 3)
Expanding the trigonometric powers and integrating twice
(ignoring constants of integration) yields
X = — cos pt /p’[4 — w’a — Jw*0d’]

— w’oab*(3 cos *p + | sin’ @)]

— sin pt /p*(lw*oab * cos @ sin @)

— cos 3pt /ap’| — Jw’oa® — w’cab*(} cos® p — 1 sin’ ¢)]
— sin 3pt /ap*( — Jw’oab’ cos @ sin @). (4)
The basis of the method is not to insist that X = a cos ptisa
good approximation, and hence the coefficient of cos pz in
Eq. (4) can be put equal to a:

—pla =4 — v’a - }w’od’

— w’oab?(3 cos® @ + } sin? @). (5)

The same condition requires that we put the coefficient of
sin pt equal to zero:

cos @ sing =0, ie., @ =nuw/2,

where n is an integer. If @ = 0 or 7 we simply have planar
motion with X = + ¥. The discussion given previously?
indicates, and experiment confirms, that this is a metasta-
ble condition which cannot persist in practice. We shall
assume the solution @ = 7/2 for the remaining discussion.
Equation (5) now becomes

PP= —A/a+ ¥l +ob?/4) + dw’ad’o. (6)
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Fig. 1. Graph relating the two orthogonal amplitudes @ and b.

Before we examine the physical content of this equation,
we should note that the amplitudes a and b are not indepen-
dent, but are linked via Eq. (2) describing the orthogonal
mode of oscillation. If we substitute X = a cos pt and
Y = b cos(pr + ¢ ) in Eq. (2), as before, and put ¢ = /2,
using a similar procedure to the above, we finally obtain

P’ =1 + 0d*/4) + }0*b 0. (7)

The relationship between @ and b is now found by eliminat-
ing p from Eq. {6) and (7), and yields the trajectory traced by
the string in the x—y plane:

b?=a’ — 24 /aow’. (8)

Equation (8) is plotted in Fig. 1 as a graph of b against a.
There is a forbidden region for b: if a < (2A/00%)'® = a_,
then & becomes imaginary, and has no real solution. Hence
experimentalily b is zero, and oscillations transverse to the
driving motion cannot be excited. For a > a_;, the stable
configuration is for b to increase from zero following the
curve of Fig. 1, with #/2 phase difference from the X mo-
tion. An elliptical trajectory ensues, which rapidly tends to
circularity with increasing a. This is the commonly ob-
served effect we mentioned earlier.

DISCUSSION

We may now return to Eq. (6) and observe its physical
significance. For @ <a_,, the ¥ motion is not excited, b is
zero, and the sytem is a simple nonlinear resonator as is
treated in many texts.’ Figure 2 shows |a| as a function of p.
We have an infinite resonance (we have neglected damping)
and the cubic nonlinearity in the X motion has caused the
resonance to bend over. It is easy to see qualitatively the
effect of damping by analogy with the linear resonator.

Above a_, , however, when b becomes finite, the simul-
taneous existence of the ¥ motion causes the entire reso-
nance curve to shift towards higher values of p. The locus of
the resonance peak meets the p axis atp = wv/(1 4 ob?/4)
~wof{l + ob?/8). The resonance frequency thus increases
under the combined but different effects of the finite X and
Y amplitudes.

Since the amplitudes ¢ and b are frequency dependent
(or, more correctly, the frequency is amplitude dependent),
as the driving frequency p is scanned through the resonance
the system state migrates along the curve of Fig. 1. The
amplitudes reach a maximum when the peak of the distort-
ed resonance curve (Fig. 2) is attained: for further increase
of frequency the system may retrace the curve of Fig. 1 in
reverse if the nonlinearity is small. More usually, when the
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Fig. 2. Nonlinear resonance curve for the amplitude |a| of the X oscilla-
tion, for zero damping.

system is sufficiently nonlinear for the resonance peak to be
concave, as shown, the system “jumps” down to the lowest
amplitude available at that frequency, and the circular mo-
tion collapses. At the same time, the entire resonance curve
jumps backwards in frequency as the amplitude b col-
lapses.

These results describe only the steady-state behavior.
Since the Y motion is excited parametrically, the pure X
motion can theoretically continue as a metastable steady
state even for large a. However, any slight perturbation will
“seed” the growth of the Y oscillation. The motion de-
scribed by Fig. 1 is the one invariably observed in practice.

From Eq. (4) we might expect an appreciable contribu-
tion to the X motion from the third harmonic; the cos 3pt
term is not required to be zero, and is to first order in o.
However, putting ¢ = 7/2 as before, the ratio of the ampli-
tudes of the third to the first harmonic is ~o{a® — b?)/36
(taking a as the amplitude of the cos pt term). We observe
that this tends to zero as the system state migrates along the
curve of Fig. 1. Even for b = 0, and @ = a_,,,, if we choose a
practical example? we find the ratio to have a typical value

Constant power equations of motion
Roger Stephenson

~1077, since a (and b ) is a small dimensionless amplitude.
Thus harmonic effects are negligible.

We also note that the curve of Fig. 1 has a second branch
for negative a. Since the sign of a has little significance, we
must ascribe some physical meaning to this branch. It de-
scribes a motion in which the ¥ oscillation has greater am-
plitude than the X (driving) oscillation. In the undamped
case considered here, that configuration is possible in the
steady state if energy is stored initially in the ¥ motion.
However, the symmetry of the system indicates that the
slightest trace of damping will make this branch unstable.
This is best seen by considering the region close to
( — a)—0: b becomes very large, tending to an infinite ¥
motion for zero driving force in the X direction, which is
physically unreasonable. A proper analysis of this branch
will require an investigation of the transient behavior not
attempted here.

Many readers will, like the author, have a system similar
to that described readily to hand in a teaching laboratory.
The effects discussed are all readily observable, but may be
accompanied in practice by other more complicated phe-
nomena such as an oscillatory precessional motion of the
elliptic trajectory, or a periodic rise and collapse of the cir-
cular motion. These phenomena are found in those systems
where the string tension is maintained by a spring or a
weight, as opposed to a fixed pin. In such systems the aver-
age tension remains constant as the amplitude varies; this
condition has not been incorporated here and is presuma-
bly responsible for the additional effects, which will be the
subject of future studies.
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Correct solutions for the common problems associated with bodies accelerating under the
application of constant power are generally missing from physics textbooks. The kinematic
equations for this motion are not overly difficult to derive and bear strong similarities to their
familiar constant force counterparts. The concept of ““zip” is here defined as the square root of the
power to mass ratio, and is shown to be a useful parameter of this kind of motion. Several specific
problems are solved and the results compared with available real data.

L. INTRODUCTION

Most physics texts discuss the motion of automobiles
because they are an important part of the student’s exper-
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ience of acceleration, velocity, distance, power, etc. Yet
quite often the equations used are completely inappro-
priate.' In particular, the assumption that the force acting
on the car remains constant is realistic only during braking
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