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DCGAN for the synthesis of multivariate
multifractal textures: How do we know it works ?

V. Mauduit, P. Abry, Fellow, IEEE, R. Leonarduzzi, S. G. Roux and E. Quemener,

Abstract—Deep Learning is nowadays widely used for several
tasks in image processing. Notably, it has been massively used for
image synthesis, mostly with strong geometrical contents. It has
however been much less used for texture synthesis. Also, the issue
of assessing the quality of the synthesized textures has not often
been addressed. The present study aims to study the ability of
Deep Convolutional Generative Adversarial Networks to synthe-
size multivariate textures characterized by rich multiscale cross-
statistics (multifractals). The focus is on quantifying the quality
of the synthesized textures, on assessing the reproducibility of the
learning procedure and on studying the impact of loss functions
and of training dataset sizes.

Index Terms—Generative Adversarial Network, Multivariate
Texture Synthesis, Quality Assessment, Multifractals.

I. INTRODUCTION

Context. After impressive successes in numerous image pro-
cessing tasks (classification, segmentation,. . . ) [1], deep learn-
ing (DL) is nowadays massively used for image synthesis [2],
[3]. However, most applications are related to images with
dominant cartoon content (edges, shapes, angles, objects, . . . )
[4], [5], [6]. Texture synthesis with DL architectures has been
much less addressed, while it is often considered that intrinsic
dimensions are larger for textured than for geometric images,
hence inducing larger difficulties for DL [7]. Studying issues
in DL-based texture synthesis is thus at the heart of this work.
Related Works. Despite massive use [2], [8], [9], image
synthesis by inverting convolutional neural networks (CNN)
was shown to be practically unstable and theoretically poorly
understood (cf. a contrario [10]). Autoencoder (AE) were
also used for image synthesis [11]. However, since designed
to create latent variable representations, AE often fail as
generators of new instances and synthesized images suffer
from large artifacts or lack important content such as high-
frequency information [11], [12]. The recently introduced
Generative Adversarial Networks (GAN) attempt to overcome
these limitations. They have been successfully used in many
domains with state-of-the-art results [3], [13], [14], [15], which
motivates their use here.

One unsolved issue consists of the assessment of the quality
of the generated images. Often, this is simply done by human
visual inspection (cf. e.g. [16]). Quantitative scores were also
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proposed, based on information theoretic measures [16]. While
potentially valid for images with strong geometric content,
they are much less relevant for textures, whose characteristics
are statistical in nature. The quality assessment of DL texture
synthesis thus remains an open question, of high relevance
in practice to assess efficiency, robustness and reproducibilty,
issues at the core of the present work.
Goals, Contributions and outlines The overall goal of the
present work is to assess the quality of GAN-synthesized
multivariate textures and the reproducibility of the training
procedure. To that end, we make use of multivariate multi-
fractal textures, widely used in applications and of interest per
se [17], [18], but used here only as archetypal examples for
realistic multivariate textures with complex spatial and cross-
spatial dynamics. The originality of the present work lies in
the use of such models with known and controlled statistics
(described in Section II) to construct a posteriori indices (based
on state-of-the-art wavelet and wavelet leader analysis) to
quantify the quality of GAN-synthesized textures, and thus to
assess the reproducibility of the training procedure. GAN ar-
chitectures used here are described in Section III. Experiments
and results, reported in Section IV, show i) the relevance of
the proposed a posteriori indices to assess synthesis quality, ii)
a quantified significant lack of reproducibility in training GAN
architectures, iii) a quantified impact of the learning dataset
size on performance, iv) the relevance of the construction of
an a priori quality index based on the loss functions only.

II. MULTIVARIATE MULTIFRACTAL TEXTURES

Modeling. After Mandelbrot’s seminal work [19], Multifractal
random walks (MRW) [20] are nowadays used as versatile
models for real-world textures, well-characterized with multi-
scale scale-free statistics [21], [22]. Elaborating on bivariate
MRW 1D signals [18], [23], we propose here to define
multivariate MRW textures (MMRW), as ∀m = 1, . . . ,M,
Xm(x) = Gm(x)eωm(x), with G(x) = {G1(x), . . . , GM (x)}
and ω(x) = {ω1(x), . . . , ωM (x)} two independent zero-
mean multivariate 2D-Gaussian processes. G(x) is defined
as the multivariate extension of the univariate 2D fractional
Gaussian noise (2D-fGn) [24], [25]. G(x) is fully defined by
its M×M covariance functions, controlled by M Hurst expo-
nents H = (H1, . . . ,HM ) and a M×M pointwise covariance
matrix Σ [26], [27]. ω(x) is defined via M ×M covariance
functions, designed to induce multifractality in spatial statistics
as: {Σmf}(m1,m2) = ρmf (m1,m2)λm1

λm2
log
(

L
||x||+1

)
,

(for ||x|| ≤ L and 0 otherwise, with L an arbitrary integral
scale) thus fully controlled by a vector of multifractality
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Λ = (λ1, . . . , λM ) and a M ×M correlation matrix ρmf .
Analysis. It is well-documented that wavelet representations
constitute reference tools to analyze multifractal properties in
textures [17], [25]. Let {dXm

(j, k)}, m = 1, . . . ,M , denote
the discrete wavelet transform coefficients of the M -variate
texture X , defined as inner products between each component
Xm and dilated (at scale 2j) and translated (at location 2jk)
templates a tensor-product based 2D wavelet [28].

Calculations not detailed here show that, for any
pair of components Xm1

(x), Xm2
(x), the wavelet co-

variance Sm1,m2
(j) =

∑
k dXm1

(j, k)dXm1
(j, k) satisfies

Sm1,m2(2j) ' Σm1,m2Cψ2jζm1,m2 , with Cψ a constant that
depends on the chosen wavelet and on Hm1 , Hm2 , λm1 , λm2 ,
and ζm1,m2

= Hm1
+ Hm2

− (λ2m1
+ λ2m2

)/2. The wavelet
coherence (or crosscorrelation) functions Cssm1,m2

(j) =

Sm1,m2
(j)/

√
Sm1,m1

(j)Sm2,m2
(j) are thus constant across

scales with levels that depend only on the point-covariance
matrix Σ. Therefore, the functions Sm1,m2(j) and Cssm1,m2

(j)
only probe the second order statistics of MMRW and thus
do not quantify multifractality. Notably they are blind to the
cross-multifractalities (off-diagonal terms in Σmf ).

To measure higher-order statistics and multifractality,
wavelet leaders L(j, k) have been further constructed, as
local suprema of wavelet coefficients, taken over finer scales
and within a short spatial neighborhood [29], [17]. Ex-
tending calculations in [18], [23], it can then be shown
that the first C(m)

1 (2j) and second order C(m1,m2)
2 (2j) cu-

mulants of lnLX behave linearly in ln 2j : C
(m)
1 (2j) =

c
(0,m)
1 + c

(m)
1 ln 2j , and C

(m1,m2)
2 (2j) = c

(0,m1,m2)
2 +

c
(m1,m2)
2 ln 2j , with c

(m1,m2)
2 = ρmf (m1,m2)λ2m1

λ2m2
. This

permits to define a wavelet multifractal coherence function as

C
(mf)
m1,m2(2j) = C

(m1,m2)
2 (2j)/

√
C

(m1,m2)
2 (2j)C

(m1,m2)
2 (2j),,

which boils down to C
(mf)
m1,m2(2j) = ρmf (m1,m2). As func-

tions of scales 2j , C(m)
1 (2j), C(m1,m2)

2 (2j) and C
(mf)
m1,m2(2j)

thus characterize spatial dependencies amongst components
not already encoded in the wavelet coherence functions.

These wavelet and wavelet-leader multiscale statistics will
be used here to assess the quality of the DL-synthesized
textures. They are implemented using the documented toolbox
made available on the authors’ websites.

III. DEEP-CONVOLUTIONAL GAN
Generative adversarial networks constitute an increasingly
popular class of deep learning architectures, widely used for
image synthesis over the past years. Originally proposed in [3],
GAN rely on the competition between two neural networks,
the Generator, G, and the Discriminator, D. The Generator
consists of a nonlinear filter producing, with white gaussian
noise as input, fake images resembling in some sense target
images. The Discriminator outputs the probability that image
X , used as input, belongs to the target distribution. The joint
optimization of the Discriminator and Generator relies on the
use of a training set, consisting of samples of the target distri-
bution, and results from solving a MinMax problem [3]. GAN
implementations were traditionally based on fully-connected
layers, followed by (nonlinear) activation functions and max-
pooling. However, the original GAN has been documented

to be unstable and difficult to train. Numerous attempts to
stabilize optimization were reported, e.g., [13], [16], [15].
Deep Convolutional GAN (DCGAN) were proposed in [13]
to scale up the original GAN by using convolutional (instead
of fully-connected) layers. They rely on strategic architectural
choices (e.g. batch normalization, strided convolutions, (leaky)
ReLU activations) to achieve training convergence [13]. The
Generator is fed with a low-dimensional white noise, and it
progressively upsamples the output of each convolutional layer
to the target resolution. The Discriminator is a standard CNN
using strided convolutions to downsample the outputs.
Loss Functions. Cross Binary Entropy is used as loss function
[3]. The optimal discriminator is obtained by maximizing
LD(θD) = 1

m

∑m
i=1

[
log(D(x(i))) + log(1−D(G(z(i))))

]
,

with θD the weights for D, x(i), z(i) training and white noise
samples. The generator is trained by minimizing LG(θG) =
1
m

∑m
i=1 log(D(G(z(i)))), with θG the weights for G.

IV. SYNTHESIS QUALITY QUANTITATIVE ASSESSMENT

A. Experimental set-up

GPU facilities, Architectures, optimization and learning.
Numerical experiments are conducted on dedicated worksta-
tions, each with several General Purpose Graphical Processing
Unit (Nvidia RTX 2080 Super), under SIDUS Operating
System and a Linux Debian Stretch distribution with Nvidia
backported packages [30]. DCGAN are implemented using
Keras, following architectures proposed in [13]. For the Dis-
criminator, five convolutional layers are used, with strides
(2, 2) and filters of size 3 × 3, and Leaky ReLU activation
functions. For the Generator, white noise is filtered and re-
sampled using a fully-connected layer, and a ReLu activation.
Upsampling is performed by pixel duplications followed by
convolutions with filters of size 3×3. For optimization, Adam
amsgrad variant [31] is used, with learning rate of 2.10−4

and momentum of 0.5. Weights are initialized using uniform
initialization [32]. The discriminator is trained using dropout
at rate 1/4, batches of size of 32 and batch normalization [33].
The size of the input white Gaussian noise is set to 100.
Training dataset. The training dataset consists of 20000
independent copies of 4-variate MMRW textures, each of size
512× 512, synthesized using Matlab routines devised by our-
selves, implementing directly definitions via circulent matrix
embedding[34]. Selfsimilarity and multifractality exponents
are chosen equal (∀m,Hm = 0.7 and λm =

√
0.03), so that

all components have exactly the same statistics (notably same
marginal distributions and covariance functions) and can hence
not be distinguished. The off-diagonal entries of the cross-
correlation Σ and cross-multifractal Σmf matrices are however
chosen different for each pair of components, with some
pairs having opposite signs for cross-correlation and cross-
multifractality, other pairs have same signs, other pairs with
cross-correlation but no cross-multifractality, and conversely.
We believe that this constitutes a complicated texture model
where all the richness lies in cross-dependencies, both at the
second statistical order, and/or at higher-orders. A 4-variate
sample of such MMRW textures is shown in Fig. 1 (top row).
For MMRW, the corresponding theoretical wavelet coherence
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C
(ss)
m1,m2(2j) and wavelet multifractal coherence C

(mf)
m1,m2(2j)

functions are constant across scales 2j), at levels that depend
only on matrices Σ and Σmf respectively. These functions
C

(ss)
m1,m2(2j) and C(mf)

m1,m2(2j), estimated from 100 independent
copies of true MMRW, are shown in Fig. 3 (blue lines, with
lower triangles) and used as ground truth.
reproducibility. To test reproducibility, DCGAN training is
repeated 24 times from scratch.

Fig. 1. Samples of a 4-variate textures. MMRW Textures (top row),
DCGAN synthetized textures best trial (middle row), worst trial (bottom row).

B. DCGAN synthesis quality assessment
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Fig. 2. DCGAN synthesis quality assessment. A posteriori Cross-
Correlation index Q(ss) vs. Cross-Multifractality index Q(mf) (left), A
posteriori Q(ss) (middle) and Q(mf) vs. a priori Loss-based, DiffLoss,
indices (right).

Definition of wavelet based a posteriori indices. The wavelet
and wavelet leader analyses described in Section II are applied
to DCGAN generated textures. The functions Sm1,m2

(j),
C

(m)
1 (2j), C(m)

2 (2j), C(ss)
m1,m2(2j) and C

(mf)
m1,m2(2j) are com-

puted as averages from 10 samples of DCGAN generated
textures (red stars) and compared against the ground truth
functions obtained from average over 100 true MMRW tex-
tures (blue triangles), as illustrated in Fig. 3. Because the rich-
ness of targeted MMRW textures lies in their cross-statistics,
two quantitative quality indices, Q(ss) and Q(mf), are con-
structed as sums of differences of respectively C

(ss)
m1,m2(2j)

and C
(mf)
m1,m2(2j) computed from ground truth and DCGAN

generated textures, across all available scale 2j and across
all (6) pairs of components. These indices are referred to as
a posteriori as they can be computed only after training is
completed, and DCGAN textures generated.
Quality assessment and reproducibility. Fig. 2(left) com-
pares Q(ss) and Q(mf) for each of the independent training
trials. It shows that i) Q(mf) is systematically larger than
Q(ss), indicating that higher-order statistics are less easy to
reproduce than 2nd order statistics ; ii) Q(ss) and Q(mf)

are significantly correlated (correlation coefficient of 0.86),
indicating that DCGAN synthesized textures reproduce cross-
coherences (2nd order statistics) and cross-multifractalities
(higher-order statistics) between pairs in comparable manner,
i.e., DCGAN works for either all statistics or none ; iii) and,
last and foremost, there is a significantly large variability
across trials in the quality of the DCGAN synthesized textures.
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Fig. 3. DCGAN synthesis quality assessment. Univariate multiscale anal-
ysis log2 S2(2j), C1(2j) and C2(2j) for each component (top), Multi-
scale cross-coherence C

(ss)
m1,m2 (2

j) for each pair (middle), Multiscale cross-
mutifractality C

(mf)
m1,m2 (2

j) for each pair (bottom). Best trial (left column),
worst trial (right column).

To further inspect this large variability, Fig. 1 illustrates true
MMRW (top) against DCGAN textures for the best and worst
trials, corresponding respectively to the bottom left (smallest
Q(ss) and Q(mf)) and top right (largest Q(ss) and Q(mf))
points in Fig. 2(left). Fig. 3 further compares ground truth
functions Sm1,m2(j), C(m)

1 (2j), C(m)
2 (2j), C(ss)

m1,m2(2j) and
C

(mf)
m1,m2(2j) (blue triangles) against those (red stars) obtained

on average for the best (left) and worst (right) trials. For the
best trial, Fig. 3(left) shows that, despite mild imperfections
visible in Fig. 1(middle row), the statistics of DCGAN textures
satisfactorily match those of true MMRW across all scales,
both component-wise and across components, both at the 2nd
order and at higher statistical orders. Notably, positive and/or
negative cross-correlations and cross-multifractalities are well
achieved. Conversely, for the worst trial, Fig. 1(bottom row)
shows DCGAN textures strongly differ visually from true
MMRW. In accordance, Fig. 3(right) shows quantitatively that
DCGAN statistics do not reproduce those of the targeted
MMRW, notably both univariate multifractality (higher-order
statistics) and all cross-statistics (cross-correlations and cross-
multifractalities) are totally missed. Additionally, quantile-
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Fig. 4. Convergence as functions of iterations. Mean values and confidence
intervals (from averages across trials) for Q(ss)( left) and Q(mf) (right), for
each pair of components, for all (blue), best only (red), worst only (black)
trials.

quantile plots, not reported here for space reasons, show that
marginal distributions (1st order univariate statistics) are well
reproduced for the best trial and not at all for the worst one.

In sum, DCGAN performance for texture synthesis can
range from excellent to extremely poor across independent
trials, despite identical settings (same architectures, training
dataset, initialization procedures,. . . ).
Convergence. To investigate the lack of reproducibility in
DCGAN synthesis, Fig. 4 reports Q(ss) and Q(mf) for each
pair of components independently as functions of the number
of iterations, computed as average across all, best and worst
trials (defined as Q(ss) and Q(mf) being respectively below
or above empirically chosen threholds). Fig. 4 shows, for best
trials, smooth decreases in Q(ss) and Q(mf) when the number
of iterations increase, indicating a smooth convergence of the
training. For worst trials, Fig. 4 shows an increase of Q(ss) and
Q(mf) along iterations, indicating that the learning is diverging
and that further iterating is not improving convergence: cor-
responding trials are definitely lost and useless. Interestingly,
Fig. 4 also illustrates the benefits to iterate longer when larger
(absolute values of) cross-correlation or cross-multifractality
(hence more complicated cross-statistics) are targeted.
Impact of training set size. To test the impact of the training
size on performance, the same experiments were repeated
with training dataset sizes of 15000, 10000, 5000, 500, and
50 samples. Fig. 5 compares Q(ss) and Q(mf) independently
for each pair of components as functions of the number of
iterations for each training set size (for clarity, only 15000,
5000, and 50 are shown). These comparisons show that all
conclusions drawn so far (lack of reproducibility and large
variability in performance) are not impacted despite a drastic
reduction in the training set size, from 20000 to 500 samples.
A mild decrease in performance starts to be quantifiable for a
training set of 50 samples only!

Loss function based a priori index. Indices Q(ss) and
Q(mf) are of great use to assess the quality of the DCGAN
textures and the reproducibility of the training procedure.
They, however, are a posteriori indices: their computation
requires that training is completed, textures are generated and
analyzed and foremost that a ground truth is available for
comparisons. Significant information regarding (the multiscale
statistics of) targeted textures is hence needed, which somehow
contradicts the use of deep learning to synthesize textures,
as it is expected to discover relevant statistics by itself. To
overcome this issue, we constructed an a priori index from the
only quantities available during training: the losses functions

Fig. 5. Convergence as functions of iterations, for learning datasets of
different sizes. Mean values and confidence intervals (from averages across
trials) for Q(ss)( left) and Q(mf) (right), for each pair of components, for
best trials only, when the learning dataset sizes vary from 20000 (red stars)
to 5000 (blue o) and 50 (black triangles) samples.

as functions of iterations. Empirically, several constructions
were tested and it turns out that the simplest, the absolute
value of the difference of the Generator and Discriminator loss
functions, hereafter DiffLoss, correlates significantly with both
Q(ss) and Q(mf) (Fig. 2(middle and right)). This validates that
this a priori index can actually be used to predict the quality of
the DCGAN textures, while the training is being completed,
without having to synthesize and analyze DCGAN textures
and an a priori known ground truth, and hence to continue
iterating for a trial which will not converge in the end.
Loss function. Wasserstein loss functions [15], with same
architectures, were also used for their potential better train-
ing properties. However, achieved results were equivalent in
terms of overall large variability in performance and lack of
reproducibility, and are hence not reported here.

V. DISCUSSION AND CONCLUSIONS

The originality of the proposed work lied in defining a pos-
teriori indices permitting to assess quantitatively the quality of
DCGAN synthesized textures. This has permitted to quantify
that indeed DCGAN architectures have significant potential
to learn relevant features from sample textures. Here, focus
was on cross-multifractality, a non trivial and intricate higher-
order cross statistics. This has also permitted to show that this
success comes at the price of a significantly large variability in
performance and hence lack of reproducibility in training for
the DCGAN architectures used here: Out of 24 independent
trials, less than a half led to low enough indices Q(ss) and
Q(mf), hence to relevant DCGAN textures. Also, it showed
that, as opposed to common belief, the training set needs
not be large and that 50 samples of 4-variate textures were
enough to train the neural network. Finally, an a priori index,
constructed from the loss functions, hence directly available
and usable while the network is being trained, has been shown
to be significantly correlated with the a posteriori quality
indices Q(ss) and Q(mf), only available when the training
has been completed. Further investigations include exploring
a priori/a posteriori synthesis quality index designs and tuning
architecture complexity to task complexity.
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